On the direct decomposition of Pappian projective Veldkamp planes

By KÁLMÁN PÉNTEK (Szombathely)

Abstract

The theory of projective planes over rings of stable rank 2 was developed by F.D. Veldkamp. In this paper a necessary and sufficient condition will be given for a Veldkamp plane to be a direct product of a collection of n Veldkamp planes.

1. Introduction

The factorisation-problem of Pappian Veldkamp planes is closely related to the decomposition of commutative rings. A commutative ring R is decomposable if and only if it contains a full system of orthogonal idempotent elements. We are looking for a geometric interpretation of this system of elements in case the commutative ring in question is the coordinate-ring of some projective Pappian Veldkamp plane. The goal is that the existence of a certain configuration serves as a neccesary and sufficient condition for the decomposability of projective Pappian Veldkamp planes. The configuration which guarantees the decomposability is the direct product of n copies of the Δ triangle-configuration (Δ^{n}) joined to the well-known Thomsen-configuration.

2. Definitions and preliminary results

For the sets \boldsymbol{P} and \boldsymbol{B} let us consider the binary relations $\boldsymbol{I} \subseteq \boldsymbol{P} \times \boldsymbol{B}$ and $\approx \subseteq \boldsymbol{P} \times \boldsymbol{B}$. The quadruple $\boldsymbol{D}=(\boldsymbol{P}, \boldsymbol{B}, I, \approx)$ will be called an

Mathematics Subject Classification: 51C05, 51A10.
Key words and phrases: projective Veldkamp plane, direct decomposition, orthogonal idempotent elements, configurations.
incidence-neighbouring-structure or shortly $I N$-structure. The elements of set \boldsymbol{P} are the points, the elements of the set \boldsymbol{B} are called lines of the structure. A point $p \in \boldsymbol{P}$ and a line $L \in \boldsymbol{B}$ are incident (neighbouring) if $(p, L) \in \boldsymbol{I}$ (resp. $(p, L) \in \approx)$. Instead of $(p, L) \in \boldsymbol{I}((p, L) \in \approx)$ we will use the notation $p \boldsymbol{I} L$ (resp. $p \approx L$). The neighbour-relation may be extended to pairs of points (to pairs of lines) by the following definition: Point $p \in \boldsymbol{P}$ is neighbouring to point $q \in \boldsymbol{P}$ (line $L \in \boldsymbol{B}$ to line $M \in \boldsymbol{B}$) if for all lines $L \in \boldsymbol{B}$ (points $p \in \boldsymbol{P})$ for which $q \boldsymbol{I} l(p \boldsymbol{I} m)$ holds, $p \approx L$ is valid as well. The fact that the point p is neighbouring to the point q (line L to line M), will be be denoted by $p \approx q$ ($L \approx M$ resp.). Pairs of elements are often called distant if they are not neighbours, i.e., distant means: $\not \approx$.

A trivial example for an $I N$-structure is the classical projective plane. (Here incidence and neighbouring coincide.) Other examples: The projective Hjelmslev plane (Klingenberg [1954]), the projective Klingenberg plane (Klingenberg [1955, 1956]), and the projective Veldkamp plane (VeldKamp [1981, 1988, 1995]).

Let $\boldsymbol{D}=(\boldsymbol{P}, \boldsymbol{B}, \boldsymbol{I}, \approx)$ be a finite $I N$-structure with $\boldsymbol{P}=\left\{p_{1}, \ldots, p_{r}\right\}$ and $\boldsymbol{B}=\left\{L_{1}, \ldots, L_{s}\right\}$. The incidence matrix $M(\boldsymbol{D})=\left(m_{i j}\right)_{r \times s}$ of \boldsymbol{D} is defined by

$$
\begin{aligned}
& m_{i j}:=1 \Leftrightarrow p_{i} \boldsymbol{I} L_{j} \\
& m_{i j}:=0 \text { otherwise. }
\end{aligned}
$$

Similarly, the neighbour-matrix $N(\boldsymbol{D})=\left(n_{i j}\right)_{r \times s}$ of \boldsymbol{D} is defined by

$$
\begin{aligned}
& n_{i j}:=1 \Leftrightarrow p_{i} \approx L_{j} \\
& n_{i j}:=0 \text { otherwise. }
\end{aligned}
$$

The neighbour-relation in the point-point and the line-line case may be described by neighbour-matrices $N_{P}(\boldsymbol{D})=\left(n_{i j}^{P}\right)_{r \times r}$ and $N_{B}(\boldsymbol{D})=$ $\left(n_{i j}^{B}\right)_{s \times s}$ defined by

$$
\begin{array}{ll}
n_{i j}^{P}:=1 \Leftrightarrow p_{i} \approx p_{j} & n_{i j}^{B}:=1 \Leftrightarrow L_{i} \approx L_{j} \\
n_{i j}^{P}:=0 \text { otherwise } & n_{i j}^{B}:=0 \text { otherwise } .
\end{array}
$$

In our investigations a basic role will be played by the direct product of $I N$-structures. For every $i=1, \ldots, n$ let $\boldsymbol{D}_{i}=\left(\boldsymbol{P}_{i}, \boldsymbol{B}_{i}, \boldsymbol{I}_{i}, \approx_{i}\right)$ be an
$I N$-structure, and put $\boldsymbol{P}=P_{1} \times \cdots \times P_{n}$ and $\boldsymbol{B}=\boldsymbol{B}_{1} \times \cdots \times \boldsymbol{B}_{n}$. We have to define the incidence- and the neighbour-relations over $\boldsymbol{P} \times \boldsymbol{B}$. The incidence-relation $\boldsymbol{I} \subseteq \boldsymbol{P} \times \boldsymbol{B}$ is given by

$$
\left(p_{1}, \ldots, p_{n}\right) \boldsymbol{I}\left(L_{1}, \ldots, L_{n}\right): \Leftrightarrow\left(p_{1} \boldsymbol{I}_{1} L_{1} \wedge \cdots \wedge p_{n} \boldsymbol{I}_{n} L_{n}\right)
$$

and the neighbour-relation $\approx \subseteq \boldsymbol{P} \times \boldsymbol{B}$ by

$$
\left(p_{1}, \ldots, p_{n}\right) \approx\left(L_{1}, \ldots, L_{n}\right): \Leftrightarrow\left(p_{1} \approx_{1} L_{1} \vee \cdots \vee p_{n} \approx_{n} L_{n}\right) .
$$

The resulting $I N$-structure ($\boldsymbol{P}, \boldsymbol{B}, \boldsymbol{I}, \approx$) will be called the direct product of the $I N$-structures $\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{n}$ and denoted by $\boldsymbol{D}_{1} \times \cdots \times \boldsymbol{D}_{n}$. Especially, if $\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{n}$ are projective Veldkamp planes, then $\boldsymbol{D}_{1} \times \cdots \times \boldsymbol{D}_{n}$ is a projective Veldkamp plane as well. In this structure

$$
\left(p_{1}, \ldots, p_{n}\right) \approx\left(q_{1}, \ldots, q_{n}\right) \Leftrightarrow\left(p_{1} \approx_{1} q_{1} \vee \cdots \vee p_{n} \approx_{n} q_{n}\right)
$$

and

$$
\left(L_{1}, \ldots, L_{n}\right) \approx\left(M_{1}, \ldots, M_{n}\right) \Leftrightarrow\left(L_{1} \approx_{1} M_{1} \vee \cdots \vee L_{n} \approx_{n} M_{n}\right) .
$$

are valid.

3. The Δ - and the Δ^{n}-configuration

Let $\Delta=(\boldsymbol{P}, \boldsymbol{B}, \boldsymbol{I}, \approx)$ be an $I N$-structure, where $\boldsymbol{P}=\left\{p_{0}, p_{1}, p_{2}\right\}$ is the set of points, $\boldsymbol{B}=\left\{L_{0}, L_{1}, L_{2}\right\}$ is the set of lines, and the incidencerelation is given by

$$
p_{i} \boldsymbol{I} L_{j} \Leftrightarrow i \neq j \quad(i, j=0,1,2) .
$$

The neighbour-relation coincides with the incidence-relation:

$$
p_{i} \approx L_{j}: \Leftrightarrow p_{i} \boldsymbol{I} L_{j} .
$$

By definition, the neighbouring of points resp. lines is given by

$$
p_{i} \approx p_{j} \Leftrightarrow i=j, \quad(i, j=0,1,2)
$$

and by

$$
L_{i} \approx L_{j} \Leftrightarrow i=j, \quad(i, j=0,1,2) .
$$

The incidence-matrix $M(\Delta)$ and the neighbour-matrices of Δ are the following:

$$
M(\Delta)=N(\Delta)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \quad N_{P}(\Delta)=N_{B}(\Delta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Let $\Delta^{2}=\Delta \times \Delta$. It is easy to show that the incidence- and neighbourrelations in Δ^{2} may be described by

$$
\begin{aligned}
\left(p_{i_{1}}, p_{i_{2}}\right) \boldsymbol{I}\left(L_{j_{1}}, L_{j_{2}}\right) & \Leftrightarrow\left(i_{1} \neq j_{1} \wedge i_{2} \neq j_{2}\right) ; \\
\left(p_{i_{1}}, p_{i_{2}}\right) \approx\left(L_{j_{1}}, L_{j_{2}}\right) & \Leftrightarrow\left(i_{1} \neq j_{1} \vee i_{2} \neq j_{2}\right) ; \\
\left(p_{i_{1}}, p_{i_{2}}\right) \approx\left(q_{j_{1}}, q_{j_{2}}\right) & \Leftrightarrow\left(i_{1}=j_{1} \vee i_{2}=j_{2}\right) ; \\
\left(L_{i_{1}}, L_{i_{2}}\right) \approx\left(M_{j_{1}}, M_{j_{2}}\right) & \Leftrightarrow\left(i_{1}=j_{1} \vee i_{2}=j_{2}\right),
\end{aligned}
$$

where $i_{1}, i_{2}, j_{1}, j_{2}=0,1,2$.
Let us introduce the following notation:

$$
q_{3 i+j}:=\left(p_{i}, p_{j}\right) \quad \text { and } \quad G_{3 i+j}:=\left(L_{i}, L_{j}\right) \quad(i, j=0,1,2) .
$$

Using this notation the point-set and the line-set of Δ^{2} are $\left\{q_{0}, \ldots, q_{8}\right\}$ and $\left\{G_{0}, \ldots, G_{8}\right\}$ respectively. The incidence- and neighbour-matrices of Δ^{2} are:

$$
M\left(\Delta^{2}\right)=\left(\begin{array}{ccccccccccc}
0 & 0 & 0 & \cdot & 0 & 1 & 1 & \cdot & 0 & 1 & 1 \\
0 & 0 & 0 & \cdot & 1 & 0 & 1 & \cdot & 1 & 0 & 1 \\
0 & 0 & 0 & \cdot & 1 & 1 & 0 & \cdot & 1 & 1 & 0 \\
. & . & . & . & . & . & . & \cdot & . & . & \cdot \\
0 & 1 & 1 & \cdot & 0 & 0 & 0 & \cdot & 0 & 1 & 1 \\
1 & 0 & 1 & \cdot & 0 & 0 & 0 & \cdot & 1 & 0 & 1 \\
1 & 1 & 0 & \cdot & 0 & 0 & 0 & \cdot & 1 & 1 & 0 \\
. & . & . & . & . & . & . & . & . & . & \cdot \\
0 & 1 & 1 & \cdot & 0 & 1 & 1 & \cdot & 0 & 0 & 0 \\
1 & 0 & 1 & \cdot & 1 & 0 & 1 & \cdot & 0 & 0 & 0 \\
1 & 1 & 0 & \cdot & 1 & 1 & 0 & \cdot & 0 & 0 & 0
\end{array}\right)
$$

$$
N_{P}\left(\Delta^{2}\right)=N_{B}\left(\Delta^{2}\right)=\left(\begin{array}{ccccccccccc}
0 & 1 & 1 & . & 1 & 1 & 1 & . & 1 & 1 & 1 \\
1 & 0 & 1 & . & 1 & 1 & 1 & . & 1 & 1 & 1 \\
1 & 1 & 0 & . & 1 & 1 & 1 & . & 1 & 1 & 1 \\
. & . & . & . & . & . & . & . & . & . & . \\
1 & 1 & 1 & . & 0 & 1 & 1 & . & 1 & 1 & 1 \\
1 & 1 & 1 & . & 1 & 0 & 1 & . & 1 & 1 & 1 \\
1 & 1 & 1 & . & 1 & 1 & 0 & . & 1 & 1 & 1 \\
. & . & . & . & . & . & . & . & . & . & . \\
1 & 1 & 1 & . & 1 & 1 & 1 & . & 0 & 1 & 1 \\
1 & 1 & 1 & . & 1 & 1 & 1 & . & 1 & 0 & 1 \\
1 & 1 & 1 & . & 1 & 1 & 1 & . & 1 & 1 & 0
\end{array}\right)
$$

(cf. Figure 1).
Similarly, we define the direct product Δ^{n} as the direct product of n copies of Δ. The incidence- and neighbour-relations may be described by indices:

$$
\begin{aligned}
&\left(p_{i_{1}}, \ldots, p_{i_{n}}\right) \boldsymbol{I}\left(L_{j_{1}}, \ldots, L_{j_{n}}\right) \Leftrightarrow\left(i_{1} \neq j_{1} \wedge \cdots \wedge i_{n} \neq j_{n}\right) \\
&\left(p_{i_{1}}, \ldots, p_{i_{n}}\right) \approx\left(L_{j_{1}}, \ldots, L_{j_{n}}\right) \Leftrightarrow\left(i_{1} \neq j_{1} \vee \cdots \vee i_{n} \neq j_{n}\right) \\
&\left(p_{i_{1}}, \ldots, p_{i_{n}}\right) \approx\left(q_{j_{1}}, \ldots, q_{j_{n}}\right) \Leftrightarrow\left(i_{1}=j_{1} \vee \cdots \vee i_{n}=j_{n}\right) \\
&\left(L_{i_{1}}, \ldots, L_{i_{n}}\right) \approx\left(M_{j_{1}}, \ldots, M_{j_{n}}\right) \Leftrightarrow\left(i_{1}=j_{1} \vee \cdots \vee i_{n}=j_{n}\right) \\
& i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}=0,1,2 ; \quad\left(p_{i_{1}}, \ldots, p_{i_{n}}\right),\left(q_{j_{1}}, \ldots, q_{j_{n}}\right) \in \boldsymbol{P} \\
&\left(L_{i_{1}}, \ldots, L_{i_{n}}\right),\left(M_{j_{1}}, \ldots, M_{j_{n}}\right) \in \boldsymbol{B}
\end{aligned}
$$

For the sake of a simple description of $I N$-matrices on Δ^{n} we introduce the notations

$$
\begin{aligned}
q_{3^{n-1} i_{1}+3^{n-2} i_{2}+\cdots+i_{n}} & :=\left(p_{i_{1}}, \ldots, p_{i_{n}}\right) \\
G_{3^{n-1} i_{1}+3^{n-2} i_{2}+\cdots+i_{n}} & :=\left(L_{i_{1}}, \ldots, L_{i_{n}}\right),
\end{aligned}
$$

where $i_{1}, \ldots, i_{n}=0,1,2$. We shall give the $I N$-matrices $M\left(\Delta^{n}\right), N\left(\Delta^{n}\right)$, $N_{P}\left(\Delta^{n}\right)$ and $N_{B}\left(\Delta^{n}\right)$ by recursion. It is easy to show that if $M\left(\Delta^{n-1}\right)$ is already given then

$$
M\left(\Delta^{n}\right)=\left(\begin{array}{ccc}
\mathbf{0} & M\left(\Delta^{n-1}\right) & M\left(\Delta^{n-1}\right) \\
M\left(\Delta^{n-1}\right) & \mathbf{0} & M\left(\Delta^{n-1}\right) \\
M\left(\Delta^{n-1}\right) & M\left(\Delta^{n-1}\right) & \mathbf{0}
\end{array}\right)
$$

where $\mathbf{0}$ denotes the zero-matrix of order 3^{n-1}. Naturally, the order of $M\left(\Delta^{n}\right)$ is 3^{n}.

Similarly, denote the neighbour-matrix of Δ^{n-1} by $N\left(\Delta^{n-1}\right)$, the point-point neighbour-matrix and the line-line neighbour-matrix of Δ^{n-1} by $N_{P}\left(\Delta^{n-1}\right)$ and by $N_{B}\left(\Delta^{n-1}\right)$ respectively, then

$$
\begin{aligned}
& N\left(\Delta^{n}\right)=\left(\begin{array}{ccc}
N\left(\Delta^{n-1}\right) & \mathbf{1} & \mathbf{1} \\
\mathbf{1} & N\left(\Delta^{n-1}\right) & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & N\left(\Delta^{n-1}\right)
\end{array}\right) \\
& N_{P}\left(\Delta^{n}\right)=\left(\begin{array}{ccc}
\mathbf{1} & N_{P}\left(\Delta^{n-1}\right) & N_{P}\left(\Delta^{n-1}\right) \\
N_{P}\left(\Delta^{n-1}\right) & \mathbf{1} & N_{P}\left(\Delta^{n-1}\right) \\
N_{P}\left(\Delta^{n-1}\right) & N_{P}\left(\Delta^{n-1}\right) & \mathbf{1}
\end{array}\right) \\
& N_{B}\left(\Delta^{n}\right)=\left(\begin{array}{ccc}
\mathbf{1} & N_{B}\left(\Delta^{n-1}\right) & N_{B}\left(\Delta^{n-1}\right) \\
N_{B}\left(\Delta^{n-1}\right) & \mathbf{1} & N_{B}\left(\Delta^{n-1}\right) \\
N_{B}\left(\Delta^{n-1}\right) & N_{B}\left(\Delta^{n-1}\right) & \mathbf{1}
\end{array}\right)
\end{aligned}
$$

where 1 denotes the $3^{n-1} \times 3^{n-1}$-matrix every component of which is 1 . Naturally, the order of $N\left(\Delta^{n}\right), N_{P}\left(\Delta^{n}\right)$ and $N_{B}\left(\Delta^{n}\right)$ is 3^{n}.

4. Pappian projective Veldkamp planes

An important type of $I N$-structures is the projective Veldkamp plane, introduced by F. D. Veldkamp [1981]. The $I N$-relations of such a plane
are given by seven axioms. Accepting two further axioms concerning central transvections and affine dilatations and their duals we get a Desarguesian projective Veldkamp plane (Veldkamp [1981]). Every Desarguesian projective Veldkamp plane may be coordinatized by a ring of stable rank two, which is not necessarily commutative and is unique up to isomorphism. The Desarguesian projective Veldkamp planes, which are coordinatizable by a commutative ring of stable rank 2 will be called Pappian projective Veldkamp planes. It is easy to show that the direct product of Desarguesian (Pappian) Veldkamp planes as $I N$-structure is again a Desarguesian (Pappian) Veldkamp plane. The coordinate ring of this direct product is the direct product of the coordinate rings of the single components. (Veldkamp [1988])

Closing this section we note that as in case of classical projective planes, the notion of affine Veldkamp planes may be defined on projective Veldkamp planes as well. A more detailed discussion of Veldkamp planes resp. spaces may be found in the work of F. D. Veldkamp [1995].
5. The configurations $T_{L},\left\{\Delta^{2}, T_{L}\right\}$ and $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$

Let \boldsymbol{V} be a projective Veldkamp plane, L an arbitrary but fixed line of \boldsymbol{V}, and \boldsymbol{V}_{L} an affine plane corresponding to the ideal line L. Consider the points a_{0}, a_{1}, and a_{2}, incident to the ideal line L, lying pairwise distant from each other, i.e. let $a_{0}, a_{1}, a_{2} \in L a_{i} \not \approx a_{j}$ if $i \neq j(i, j=0,1,2)$. The set of lines incident to the point $a_{i}(i=0,1,2)$ and lying distant from the ideal line L will be denoted by $\left[a_{i}\right]$ and called the affine pencil with support a_{i}.

The affine pencils $\left[a_{i}\right](i=0,1,2)$ of an affine Veldkamp plane \boldsymbol{V}_{L} have the following properties:
(1) If a is a point of a Veldkamp plane lying distant from the ideal line L then for $i=0,1,2$ the pencil $\left[a_{i}\right]$ has exactly one line incident to a.
(2) Every line of the pencil $\left[a_{i}\right]$ lies distant from every line of the pencil $\left[a_{j}\right]$ if $i \neq j(i, j=0,1,2)$.
(3) On any pair of lines of the pencil $\left[a_{i}\right](i=0,1,2)$ there exists no other common point lying distant from L except a_{i}.
By (1)-(3) we can state that the lines of pencils $\left[a_{i}\right](i=0,1,2)$ form a three-web on the plane \boldsymbol{V}_{L}. On the basis of this three-web we will define
the $T_{L^{-}}$and T-configurations. The incidence-structure $\{\boldsymbol{P}, \boldsymbol{B}, \boldsymbol{I}\}$ is a $T_{L^{-}}$ configuration, if

$$
\boldsymbol{P}=\left\{p_{i j k} \mid i, j, k=0,1,2 ; i \neq j \neq k \neq i \wedge p_{i j k} \not \approx L\right\}
$$

is the set of points,

$$
\boldsymbol{B}=\left\{L_{m n} \mid m, n=0,1,2 ; L_{m n} \in\left[a_{m}\right]\right\}
$$

is the set of lines, and the incidence \boldsymbol{I} is defined by

$$
p_{i j k} \boldsymbol{I} L_{0 i}, L_{1 j}, L_{2 k} \quad(i, j, k=0,1,2 \wedge i \neq j \neq k \neq i) .
$$

Completing the T_{L}-configuration by points a_{0}, a_{1}, a_{2} and by line L we get a configuration denoted by T (cf. Figure 2).

We note that the additive structure of the cooordinate-ring of the plane \boldsymbol{V} is an Abelian group, therefore every T_{L}-configuration of the plane is closing. The configurations T_{L} and T on the planes \boldsymbol{V}_{L} and \boldsymbol{V} respectively correspond to the Thomsen-configuration well-known in webgeometry.

In what follows let \boldsymbol{V} be such a projective Veldkamp plane, some affine plane \boldsymbol{V}_{L} of which contains a Δ^{2}-configuration. Let us select a Δ-configuration in Δ^{2}. It is easy to show that there exist exactly six such configurations in Δ^{2}, one of them is the configuration determined by the point-set $\left\{q_{0}, q_{4}, q_{8}\right\}$. (Here we use the notations of Figure 2.) If the remaining six points: $q_{1}, q_{2}, q_{3}, q_{5}, q_{6}$ and q_{7} are simultaneously the points of a T_{L}-configuration, then we say that the configurations Δ^{2} and T_{L} are joined. This situation will be denoted by $\left\{\Delta^{2}, T_{L}\right\}$ (cf. Figure 3).

As a generalization of the construction given above let now \boldsymbol{V} denote such a projective Veldkamp plane, some affine plane \boldsymbol{V}_{L} of which contains a Δ^{n}-configuration $n \geq 2$. Let us select a Δ-configuration in Δ^{n}. There exist several such configurations in Δ^{n}, one of them is determined by the point-set $\left\{q_{0}, q_{\left(3^{n}-1\right) / 2}, q_{3^{n}-1}\right\}$. If the remaining $3 \cdot 2^{n}-6=6\left(2^{n-1}-1\right)$ points lying on the sides of Δ are simultaneously the points of $2^{n-1}-1$ T_{L}-configurations, then we say that the confugurations Δ^{n} and the "concentric" T_{L}-configurations mentioned above are joined. This situation will be denoted by $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$ (cf. Figure 4$)$.

6. Decomposition of Pappian projective Veldkamp planes

In this section we will prove our main result the Decomposability Theorem. We will investigate the question, what is the necessary and sufficient condition for the decomposability of a Pappian projective Veldkamp plane into n direct components, which are copies of a plane of the same type as the original one. We shall demonstrate the methods used in the proof in the case $n=2$.

Theorem 1. The Pappian projective Veldkamp plane \boldsymbol{V} is isomorphic to the direct product of the Pappian projective Veldkamp planes \boldsymbol{V}_{1} and \boldsymbol{V}_{2} if and only if some affine plane \boldsymbol{V}_{L} of \boldsymbol{V} contains a joined $\left\{\Delta^{2}, T_{L}\right\}$ configuration.

Proof. As it is well-known from the general theory of commutative rings with unit element, for such rings the following assertions are equivalent (LAMBEK [1966]):
(1) The ring R contains a pair $e_{1}, e_{2} \in R$ of orthogonal idempotent elements i.e. such elements, for which $e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}, e_{1} e_{2}=0$, $e_{1}+e_{2}=1$, and $e_{1}, e_{2} \neq 0,1$ hold.
(2) The ring R is the direct sum of the principal ideals $R e_{1}$ and $R e_{2}$, i.e., $R=R e_{1} \oplus R e_{2} ;$
(3) The ring R is isomorphic to the direct product of the rings $R e_{1}$ and $R e_{2}$, i.e.: $R \cong R e_{1} \times R e_{2}$.

The following assertion was proved by Veldkamp [1988]: Let R, R_{1} and R_{2} be the coordinate rings of the Desarguesian Veldkamp planes \boldsymbol{V}, \boldsymbol{V}_{1} and \boldsymbol{V}_{2} respectively. Then $R \cong R_{1} \times R_{2}$ iff $\boldsymbol{V} \cong \boldsymbol{V}_{1} \times \boldsymbol{V}_{2}$.

By this fact and by (1)-(3) it is enough to prove that the coordinate ring of the Pappian projective Veldkamp plane \boldsymbol{V} contains a pair of orthogonal idempotent elements if and only if there exists an affine plane \boldsymbol{V}_{L} in \boldsymbol{V} containing a joined $\left\{\Delta^{2}, T_{L}\right\}$-configuration.

Assume that the affine plane \boldsymbol{V}_{L} of \boldsymbol{V} contains the joined $\left\{\Delta^{2}, T_{L}\right\}$ configuration. We select the following points as a coordinate-quadrangle for $V: o:=q_{0}, e_{x}:=q_{4}, e_{y}:=q_{8}, x:=a_{2}, y:=a_{1}$. Let further $L_{\infty}:=L$. Using this coodinate system the points and line of the $\left\{\Delta^{2}, T_{L}\right\}$ get the homogeneous coordinates given in Figure 5.

Examining the $I N$-matrices of the Δ^{2}-configuration we can make the following statements:

- The point $\lceil 1,0, a\rceil$ lies distant from the point $\lceil 1,1,0\rceil$, and their unique connecting line is $\lfloor-a, a, 1\rfloor$. The point $\lceil 1, a, 0\rceil$ is incident to the line $\lfloor-a, a, 1\rfloor$, therefore $1(-a)+a^{2}+0 \cdot 1=0$, hence $a^{2}=a$ holds. It is easy to show that $a \neq 0,1$.
- The point $\lceil 1,0,1-a\rceil$ lies distant from the point $\lceil 1,1,0\rceil$, and their unique connecting line is $\lfloor a-1,1-a, 1\rfloor$. The point $\lceil 1,1-a, 0\rceil$ is incident to the line $\lfloor a-1,1-a, 1\rfloor$, therefore $1 \cdot(a-1)+(1-a)^{2}+0 \cdot 1=0$ hence $(1-a)^{2}=(1-a)$ holds. By $a \neq 0,1$ follows that $1-a \neq 0,1$.
- Finally, the point $\lceil 1,1-a, a\rceil$ is incident to the line $\lfloor a-1,1,1-a\rfloor$ therefore $1 \cdot(a-1)+(1-a) \cdot 1+a(1-a)=0$, hence $a(1-a)=0$.

By arguments discussed above we can state that the pair $a, 1-a$ is an orthogonal and idempotent pair of elements in the coordinate-ring of the plane.

Conversely, if \boldsymbol{V} is coordinatized by a commutative ring of stable rank two, and this ring contains an orthogonal and idempotent pair a, b of elements, then $b=1-a$ and the coordinatized points and lines of Figure 5 form a joined $\left\{\Delta^{2}, T_{L}\right\}$-configuration.

Finally, we note that if \boldsymbol{V} is a Pappian projective Veldkamp plane and $\boldsymbol{V} \cong \boldsymbol{V}_{1} \times \boldsymbol{V}_{2}$ then both \boldsymbol{V}_{1} and \boldsymbol{V}_{2} are Pappian projective Veldkamp planes, since if R is the coordinate-ring of \boldsymbol{V} which is commutative and of stable rank two, and for $i=1,2 R_{i}$ is the coordinate-ring of \boldsymbol{V}_{i}, then by $R \cong R_{1} \times R_{2}, R_{1}$ and R_{2} are necessarily commutative rings of stable rank two (Velkamp [1988]).

We can copy the previous proof for the case of n components.
Theorem 2. A Pappian projective Veldkamp plane \boldsymbol{V} is isomorphic to the direct product of the Pappian projective Veldkamp planes $\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{n}$ if and only if some affine plane \boldsymbol{V}_{L} of \boldsymbol{V} contains a joined $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$ configuration.

Proof. As it is well-known from the theory of commutative rings with unit element, for such rings the following assertions are equivalent (Lambek [1966]):
(1') The ring R contains a system $e_{1}, \ldots, e_{n} \in R$ of orthogonal idempotent elements, i.e. such elements, for which $e_{i}^{2}=e_{i}, e_{i} e_{j}=0(i \neq j)$, $e_{1}+\cdots+e_{n}=1$, and $e_{i} \neq 0,1$ holds if $i, j=1, \ldots, n$;
(2') The ring R is the direct sum of the principal ideals $R e_{1}, \ldots, R e_{n}$, i.e., $R=R e_{1} \oplus \cdots \oplus R e_{n} ;$
(3') The ring R is isomorphic to the direct product of the rings $R e_{1}, \ldots$, $R e_{n}$, i.e.: $R \cong R e_{1} \times \cdots \times R e_{n}$.
The following assertion was proved by Veldkamp [1988]: Let R and R_{i} be the coordinate rings of Desarguesian Veldkamp planes \boldsymbol{V} and \boldsymbol{V}_{i} respectively $(i=1, \ldots, n)$. Then $R \cong R_{1} \times \cdots \times R_{n}$ iff $\boldsymbol{V} \cong \boldsymbol{V}_{1} \times \cdots \times \boldsymbol{V}_{n}$.

By this fact and by ($\left.1^{\prime}\right)-\left(3^{\prime}\right)$ it is enough to prove that the coordinate ring of the Pappian projective Veldkamp plane \boldsymbol{V} contains a system of n orthogonal idempotent elements if and only if there exists an affine plane \boldsymbol{V}_{L} in \boldsymbol{V} containing a joined $\left\{\Delta^{n},\left(2^{n-1}-1\right) \cdot T_{L}\right\}$-configuration.

Assume that the affine plane \boldsymbol{V}_{L} of \boldsymbol{V} contains the joined $\left\{\Delta^{n},\left(2^{n-1}-1\right) \cdot T_{L}\right\}$-configuration. We select the following points as a coordinate-quadrangle for $\boldsymbol{V}: o:=q_{0}, e_{x}:=q_{\left(3^{n}-1\right) / 2}, e_{y}:=q_{3^{n}-1}$, $x:=a_{2}, y:=a_{1}$. Let further $L_{\infty}:=L$. The graphic description of the resulting coordinates is given in Figure 5 for $n=2$ and in Figure 6 for $n=3$.

Examining the $I N$-matrices of the Δ^{n}-configuration we can make the following statements:

- The point $\left\lceil 1,0, e_{i}\right\rceil$ lies distant from the point $\lceil 1,1,0\rceil$, and their unique connecting line is $\left\lfloor-e_{i}, e_{i}, 1\right\rfloor$. The point $\left\lceil 1, e_{i}, 0\right\rceil$ is incident to the line $\left\lfloor-e_{i}, e_{i}, 1\right\rfloor$, therefore $1\left(-e_{i}\right)+e_{i}^{2}+0 \cdot 1=0$ hence $e_{i}^{2}=e_{i}$ holds if $i=1, \ldots, n$. It is easy to show that $e_{i} \neq 0,1(i=1, \ldots, n)$.
- The point $\left\lceil 1, e_{i}, e_{j}\right\rceil(i \neq j, i, j=1, \ldots, n)$ is incident to the line $\left\lfloor-e_{i}, 1, e_{i}\right\rfloor(i=1, \ldots, n)$, therefore $1\left(-e_{i}\right)+e_{i} \cdot 1+e_{i} e_{j}=0$ hence $e_{i} e_{j}=0$ holds.

Considering the "concentric" position of the $\left(2^{n-1}-1\right) T_{L}$ configurations in the joined $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$-configuration we can state that $e_{1}+\cdots+e_{n}=1$ holds as well, therefore the set $\left\{e_{1}, \ldots, e_{n}\right\}$ is a full system of orthogonal idempotent elements in the coordinate-ring R of the plane \boldsymbol{V}.

Conversely, if \boldsymbol{V} is coordinatized by a commutative ring of stable rank two, and this ring contains a full system of orthogonal idempotent elements then the point-set defined by the following recursion yields the points of a joined $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$-configuration (cf. Figure 5 and Figure 6):

$$
\begin{aligned}
P_{0} & :=\{\lceil 1,0,0\rceil\} \\
P_{i} & :=P_{i-1} \cup\left\{\left\lceil 1, x+e_{i}, y\right\rceil,\left\lceil 1, x, y+e_{i}\right\rceil \mid\lceil 1, x, y\rceil \in P_{i-1}\right\}(1 \leq i \leq n) .
\end{aligned}
$$

Note further that if \boldsymbol{V} is a Pappian projective Veldkamp plane and $\boldsymbol{V} \cong \boldsymbol{V}_{1} \times \cdots \times V_{n}$ then the $\boldsymbol{V}_{i}(i=1, \ldots, n)$ are also Pappian projective Veldkamp planes. Indeed, if R is the commutative coordinate-ring of \boldsymbol{V} having stable rank two, and R_{i} is the coodinate-ring of \boldsymbol{V}_{i} of the same type as that of R, then by $R \cong R_{1} \times \cdots \times R_{n}$, the R_{i} are necessarily commutative rings of stable rank two.

7. Corollaries

It is well-known from the theory of finite commutative rings that every finite commutative ring with unit element is isomorphic to the finite direct product of commutative local rings (McDonald [1974]). The components of this direct product are the coordinate-rings of finite Pappian projective Klingenberg planes.

By this note and by Theorem 2 the following statement holds.
Corollary 1. Every finite Pappian projective Veldkamp plane is isomorphic to the direct product of a finite number of Pappian projective Klingenberg planes. This direct product has exactly n components iff the Veldkamp plane contains a joined $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$-confuguration.

From Corollary 1 it follows further that among finite Pappian projective Veldkamp planes the Pappian projective Klingenberg planes are those planes, which contain no joined $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$-configuration for $n \geq 2$.

Indeed, if a finite Pappian Veldkamp plane $P_{2}(R)$ contains no $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$-configuration in case of $n \geq 2$ and the coordinatering of the plane is not a local ring, then R is isomorphic to the direct product of finitely many commutative local rings L_{1}, \ldots, L_{n}, therefore $P_{2}(R) \cong P_{2}\left(L_{1}\right) \times \cdots \times P_{2}\left(L_{n}\right)$. Then by Theorem $2, P_{2}(R)$ contains a $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$-configuration, a contradiction. Conversely, if for $n \geq 2$ the finite Pappian projective Klingenberg plane $P_{2}(L)$ contains a $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$-configuration then by Theorem $2, P_{2}(L)$ is isomorphic to direct product of finitely many Pappian projective Klingenberg planes $P_{2}\left(L_{1}\right), \ldots, P_{2}\left(L_{n}\right)$, hence $L \cong L_{1} \times \cdots \times L_{n}$. But then $K \cong L / \operatorname{rad}(L) \cong$ $L_{1} \times \cdots \times L_{n} / \operatorname{rad}\left(L_{1} \times \cdots \times L_{n}\right) \cong L_{1} \times \cdots \times L_{n} / \operatorname{rad}\left(L_{1}\right) \times \cdots \times \operatorname{rad}\left(L_{n}\right) \cong$ $L_{1} / \operatorname{rad}\left(L_{1}\right) \times \cdots \times L_{n} / \operatorname{rad}\left(L_{n}\right) \cong K_{1} \times \cdots \times K_{n}$ where $\operatorname{rad}(L)$ and
$\operatorname{rad}\left(L_{i}\right)(1 \leq i \leq n)$ are the Jacobson radicals of L and L_{i}, and K, K_{i} are the facor-fields corresponding to the radicals. But then $K \cong K_{1} \times \cdots \times K_{n}$, a contradiction by $n \geq 2$.

Therefore the following assertion holds:
Corollary 2. A finite Pappian projective Veldkamp plane is a Pappian projective Klingenberg plane if and only if it contains no joined $\left\{\Delta^{n},\left(2^{n-1}-1\right) T_{L}\right\}$-configuration if $n>1$.

Figure 1:
The Δ^{2}-configuration.

Figure 2:
The $T_{L^{-}}$and the T-configuration.

Figure 3:
The $\left\{\Delta^{2}, T_{L}\right\}$-configuration.

Figure 4:
The points of the $\left\{\Delta^{3}, T_{L}\right\}$-configuration.

Figure 5:
The coordinatization of the $\left\{\Delta^{2}, T_{L}\right\}$-configuration.

Figure 6:
The partial coordinatization of the $\left\{\Delta^{3}, T_{L}\right\}$-configuration.

Acknowledgement. I would like to thank LászLÓ KÁszonyi for his suggestion to work out the English version of the paper and the referees for their valuable remarks.

References

[1] W. Klingenberg, Projektive und affine Ebenen mit Nachbarelementen, Math. Z. 60 (1954), 384-406.
[2] W. Klingenberg, Desarguesche Ebenen mit Nachbarelementen, Math Sem. Univ. Hamburg 20 (1955), 97-111.
[3] W. Klingenberg, Projektive Geometrien mit Homomorphismus, Math. Ann. 132 (1956), 180-200.
[4] F. D. Veldkamp, Projective planes over rings of stable rank 2, Geom. Dedicata 11 (1981), 285-308.
[5] F.D. Veldkamp, Projective geometry over finite rings, Qaderno del Sem. di Geom. Combin. Dip. di Mat. Univ. di Roma "La Sapienza", 1988.
[6] F.D. Veldkamp, Projective geometry over rings, in: Handbook of Incidence Geometry (Buekenhout, F., ed.), Elsevier Science B. V., 1995.
[7] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, 1966.
[8] B. R. McDonald, Finite Rings with Identity, Marcel Dekker, I.N.C., 1974.

```
KÁLMÁN PÉNTEK
DEPARTMENT OF MATHEMATICS
BERZSENYI DÁNIEL TANÁRKÉPZÖ FÖISKOLA
H-9700 SZOMBATHELY
HUNGARY
```

(Received July 1, 1997; revised February 18, 1998)

