Publ. Math. Debrecen 53 / 3-4 (1998), 383–387

On automorphism groups of simple arguesian lattices

By E. T. SCHMIDT (Budapest)

Abstract. Let \mathfrak{G} be a group. In this paper we prove that there exists a *simple arguesian* lattice M whose automorphism group is isomorphic to \mathfrak{G} .

A lattice L is called *interval finite*, if every interval of L is finite. In this note we give a new proof of a theorem of CHRISTIAN HERRMANN [3]. This theorem was proved by G. GRÄTZER and E. T. SCHMIDT [2] for finite groups and later by CHRISTIAN HERRMANN [3] in the present form.

Theorem. Every group \mathfrak{G} can be represented as the automorphism group of an interval finite, simple, arguesian lattice M.

Let \mathfrak{G} be a given group. By R. FRUCHT [1], there exists an undirected graph $\langle V, E \rangle$ with no loops whose automorphism group is isomorphic to \mathfrak{G} (that is, V is a set and the set E of edges is a subset of two-elements subsets of V). We begin our construction with this graph.

We consider first a vector space \mathfrak{V} over the two element field Z_2 with a basis V'. We assume that V and V' have the same cardinality, i.e. |V| = |V'|. Then we can identify the vertices of the graph with the basis elements of this vector space, that means, we can consider the elements v_0, v_1, v_2, \ldots of V as the basis elements of the vector space \mathfrak{V} . Let A be the lattice of all finitely generated subspaces of the vector space \mathfrak{V} . This lattice A is obviously a simple, atomistic, arguesian lattice. The vector

Mathematics Subject Classification: Primary 06C05; Secondary 08A35.

Key words and phrases: automorphism group, lattice, simple, modular, arguesian.

The research of the author was supported by the Hungarian National Foundation for Scientific Research, under Grant No. T023186.

space \mathfrak{V} is over the two element field Z_2 , consequently every line contains three points. The subspace generated by v_i will be denoted by the same letter v_i . The lattice A has the following three types of atoms:

- 1. The atoms v_i , $i \in I$ (i.e. the elements of the basis), these form the set V and I an arbitrary index set;
- 2. Consider the third point $v_i + v_j$ $(i, j \in I)$ of the line $\overline{v_i, v_j}$ spanned by v_i and v_j . Some of these $v_i + v_j$ -s correspond to edges of the graph (i.e. $\{v_i, v_j\}$ is an edge), in this case $v_i + v_j$ will be denoted by v_{ij} . All these atoms form a subset W;
- 3. All other atoms.

We consider the given \mathfrak{G} as a subgroup of the automorphism group of A. To the vertices of the Frucht graph correspond the atoms $v_i \in V$, $i \in I$ and to the edges $\{v_i, v_j\}$ correspond the atoms v_{ij} , these determine the edges in V. Obviously, every permutation of the v_i -s can be extended to an automorphism of A and every automorphism of A is determined by its restriction to the basis V. Indeed, if α and β are two automorphisms of A such that their restrictions to V are the same, then the restriction of $\gamma = \alpha \beta^{-1}$ is the identity map ϵ of V. By any extension of ϵ (i.e. automorphism with the property that its restriction to V is ϵ) the atoms v_i and v_j are fixed elements, consequently $v_i + v_j$ must be fixed. Similarly, $(v_i + v_j) + v_k$ must be a fixd element. In this way we get that by an extension of ϵ all atoms are fixed elements which means that this extension is the identity mapping of A. It follows that all automorphisms with the property that V and W are invariant form a group isomorphic to \mathfrak{G} . To ensure that we have no more automorphisms than the graph we must *label* the vertices and the edges, i.e. the atoms $v_i \in V$ and $v_{ij} \in W$. This will be done by lattices which are glued to A. The idea of the gluing is the following. The ideal (v_i) of A has two elements. We will define a special lattice F_1 with a two element dual ideal D_1 which is therefore isomorphic to $(v_i]$. Similarly, for every $v_{ij} \in W$ we use a lattice F_2 with the dual ideal D_2 . For every $i \in I$ we consider an isomorphic copy F_1^i of F_1 with the dual ideal D_1^{i} and similarly the lattices $F_2^{ij} \cong F_2$ with the dual ideal $D_2{}^{ij}$. We can apply the gluing construction for the lattices $A, F_1{}^i$ and $F_2{}^{ij}$ simultaneously, identifying the ideal $(v_i]$ with D_1^{i} and $(v_{ij}]$ with D_2^{ij} . On this way we get a join-semilattice and M is the arguesian lattice generated by this configuration. First we define the lattices F_1 , F_2 . We give the

description of M as a sublattice of a vectorspace lattice and prove that this is a simple arguesian lattice with the given automorphism group.

N is the chain of all nonnegative integers and N^* denotes the chain of the nonpositive integers. Take the direct product $\mathfrak{C}_2 \times N^*$, (where \mathfrak{C}_2 denotes the two element lattice). In this direct product for every $i \in N$ the elements (0, -i - 1), (1, -i - 1), (0, -i), (1, -i) form a "covering square" (isomorphe to $\mathfrak{C}_2 \times \mathfrak{C}_2$). Into these "covering squares", for $i = 0, 1, \ldots$ we insert one more element z_i so that a copy of \mathfrak{M}_3 , the five element non distributive modular lattice, is obtained. The resulting lattice is F_1 , see Figure 1a. The lattice F_2 is similar but we don't insert z_0 , into the first "covering square", see Figure 1b. The dual ideal consisting of (0,0) and (1,0) etc. of F_1 is D_1 . We use isomorphic copies of F_1 and F_2 to label the v_i -s and the v_{ij} -s.

Figure 1a Figure 1b

 F_1 is a simple arguesian lattice and it has exactly one nontrivial automorphism α , where $\alpha(z_0) = (0, 0)$ and $\alpha(0, 0) = (z_0)$. F_2 is a rigid (has no nontrivial automorphism) arguesian lattice, its congruence lattice is the four element Boolean lattice.

We define our lattice M as a sublattice of a vectorspace lattice $K = L(\mathfrak{W})$ of a vectorspace \mathfrak{W} over Z_2 . Take the set $\{u_j^k, v_j; j \in I, k \in N\}$ as a basis of \mathfrak{W} . Let z_j^k be the third point of the line spanned by u_j^k and v_j . Define the following subspaces, (where [X] denotes the subspace spanned

E. T. Schmidt

by the set X): $\boldsymbol{o} = [u_j^k; j \in I, k \in N], v_i = [v_i, u_j^k; j \in I, k \in N] = [v_i, \boldsymbol{o}].$ The convex sublattice of K, generated by (as lattice) v_i -s form a sublattice isomorphic to A, we identify A with this sublattice.

Set $\boldsymbol{u_i}^0 = \boldsymbol{o}$, $\boldsymbol{u_i}^1 = [\boldsymbol{u_j}^k; j \in I, k \in N, \boldsymbol{u_j}^k \neq \boldsymbol{u_i}^0]$, $\boldsymbol{u_i}^2 = [\boldsymbol{u_j}^k; i \in I, k \in N, \boldsymbol{u_j}^k \neq \boldsymbol{u_i}^0, \boldsymbol{u_i}^1]$... Then $\boldsymbol{u_i}^0 > \boldsymbol{u_i}^1 > \boldsymbol{u_i}^2 > \ldots$ is a chain of type ω^* . The convex sublattice generated by these chains will be denoted by C. Take the sublattice $A \cup C$, then A is a dual ideal and C is an ideal of this lattice. We adjoin further elements $\boldsymbol{w_i}^0, \boldsymbol{w_i}^1, \boldsymbol{w_i}^2, \ldots$ and $\boldsymbol{z_i}^1, \boldsymbol{z_i}^2, \boldsymbol{z_i}^3 \ldots$, which are defined as follows:.

$$w_i^{1} = [u_i^{1}, v_i], w_i^{2} = [u_k^{2}, v_i], w_i^{3} = [u_k^{3}, v_i] \dots$$

and

$$\boldsymbol{z_i}^1 = [\boldsymbol{u_i}^1, z_i^1], \boldsymbol{z_i}^2 = [\boldsymbol{u_i}^2, z_i^2], \boldsymbol{z_i}^3 = [\boldsymbol{u_i}^3, z_i^3] \dots$$

Then the join of the chains $u_i^0 > u_i^1 > u_i^2 > \ldots$ and $w_i^0 > w_i^1 > w_i^2 > \ldots$ form a sublattice isomorphic to $\mathfrak{C}_2 \times N^*$. For every j, u_i^j , z_i^{j+1} and w_i^{j+1} generete \mathfrak{M}_3 . For every $i \in I$ all these elements form a sublattice, the flap

 $F_1{}^i = \{ u_i{}^0, u_i{}^1, u_i{}^2 \dots \} \cup \{ w_i{}^0, w_i{}^1, w_i{}^2 \dots \} \cup \{ z_i{}^1, z_i{}^2, z_i{}^3 \dots \}$ isomorphic to the lattice F_1 .

Similarly, we define for the elements v_{ij} the flaps

 $F_2{}^{ij} = \{ u_{ij}{}^0, u_{ij}{}^1, u_{ij}{}^2 \dots \} \cup \{ w_{ij}{}^0, w_{ij}{}^1, w_{ij}{}^2 \dots \} \cup \{ z_{ij}{}^2, z_{ij}{}^3, z_{ij}{}^4 \dots \} \text{ isomorphic to } F_2.$

Let M be $A \cup C \cup \bigcup (F_1^i, F_2^{ij} \mid i, j \in I)$.

M can be vizulised as follows, see Figure 2.

It is easy to see that M is a sublattice of K. The lattice K is an arguesian lattice, consequently M is again arguesian. We prove that M is simple. We know that A and the F_1^{i} -s are simple lattices and the intervals $[\boldsymbol{u_i}^k, \boldsymbol{u_i}^{k+1}]$ and $[\boldsymbol{u_j}^k, \boldsymbol{u_j}^{k+1}]$ resp. $[\boldsymbol{u_{ij}}^k, \boldsymbol{u_{ij}}^{k+1}]$ and $[\boldsymbol{u_j}^k, \boldsymbol{u_j}^{k+1}]$ are projective in C. These imply that any two prime intervals are projective, which proves that M is a simple lattice.

M contains the chains $w_i^{1} > w_i^{2} > w_i^{3} > \ldots$ and $w_{ij}^{0} > w_{ij}^{1} > w_{ij}^{2} \ldots$, where w_i^{1}, w_i^{2}, \ldots resp. $w_{ij}^{1}, w_{ij}^{2} \ldots$, $(i, j \in I)$ are meet irreducible elements.and M has no other chains of this type. Then for any automorphism the image of w_i^{1} must be w_j^{1} for some j and similarly the image of u_{ij}^{1} is some $u_{k\ell}^{1}$. This yields that the restriction of an automorphism to the atoms of the dual ideal A of M is a permutation, where V and W are invariant. This proves that the automorphim group of M is isomorphic to \mathfrak{G} .

386

Figure 2

References

- R. FRUCTH, Herstellung von graphen mit vorgegebener abstrakter gruppe, Compos. Math. 6 (1938), 239–250.
- [2] G. GRÄTZER and E. T. SCHMIDT, On finite automorphism groups of simple arguesian lattices, *Submitted for publication in Studia Sci. Math.*
- [3] CH. HERRMANN, On automorphism groups of Arguesian lattices, Acta Math. Acad. Sci. Hungar.

E. T. SCHMIDT MATHEMATICAL INSTITUTE OF THE TECHNICAL UNIVERSITY OF BUDAPEST H-1521 BUDAPEST, MÜEGYETEM RKP. 3 HUNGARY

 ${\it E-mail: \ schmidt@math.bme.hu, \ \ URL: \ http://www.bme.math/~schmidt/}$

(Received October 30, 1997; revised March 16, 1998)