On automorphism groups of simple arguesian lattices

By E. T. SCHMIDT (Budapest)

Abstract

Let \mathfrak{G} be a group. In this paper we prove that there exists a simple arguesian lattice M whose automorphism group is isomorphic to \mathfrak{G}.

A lattice L is called interval finite, if every interval of L is finite. In this note we give a new proof of a theorem of Christian Herrmann [3]. This theorem was proved by G. GrätZer and E. T. Schmidt [2] for finite groups and later by Christian Herrmann [3] in the present form.

Theorem. Every group \mathfrak{G} can be represented as the automorphism group of an interval finite, simple, arguesian lattice M.

Let \mathfrak{G} be a given group. By R. Frucht [1], there exists an undirected graph $\langle V, E\rangle$ with no loops whose automorphism group is isomorphic to \mathfrak{G} (that is, V is a set and the set E of edges is a subset of two-elements subsets of V). We begin our construction with this graph.

We consider first a vector space \mathfrak{V} over the two element field Z_{2} with a basis V^{\prime}. We assume that V and V^{\prime} have the same cardinality, i.e. $|V|=\left|V^{\prime}\right|$. Then we can identify the vertices of the graph with the basis elements of this vector space, that means, we can consider the elements $v_{0}, v_{1}, v_{2}, \ldots$ of V as the basis elements of the vector space \mathfrak{V}. Let A be the lattice of all finitely generated subspaces of the vector space \mathfrak{V}. This lattice A is obviously a simple, atomistic, arguesian lattice. The vector

[^0]space \mathfrak{V} is over the two element field Z_{2}, consequently every line contains three points. The subspace generated by v_{i} will be denoted by the same letter v_{i}. The lattice A has the following three types of atoms:

1. The atoms $v_{i}, i \in I$ (i.e. the elements of the basis), these form the set V and I an arbitrary index set;
2. Consider the third point $v_{i}+v_{j}(i, j \in I)$ of the line $\overline{v_{i}, v_{j}}$ spanned by v_{i} and v_{j}. Some of these $v_{i}+v_{j}$-s correspond to edges of the graph (i.e. $\left\{v_{i}, v_{j}\right\}$ is an edge), in this case $v_{i}+v_{j}$ will be denoted by $v_{i j}$. All these atoms form a subset W;
3. All other atoms.

We consider the given \mathfrak{G} as a subgroup of the automorphism group of A. To the vertices of the Frucht graph correspond the atoms $v_{i} \in V$, $i \in I$ and to the edges $\left\{v_{i}, v_{j}\right\}$ correspond the atoms $v_{i j}$, these determine the edges in V. Obviously, every permutation of the v_{i}-s can be extended to an automorphism of A and every automorphism of A is determined by its restriction to the basis V. Indeed, if α and β are two automorphisms of A such that their restrictions to V are the same, then the restriction of $\gamma=\alpha \beta^{-1}$ is the identity map ϵ of V. By any extension of ϵ (i.e. automorphism with the property that its restriction to V is ϵ) the atoms v_{i} and v_{j} are fixed elements, conseqently $v_{i}+v_{j}$ must be fixed. Similarly, $\left(v_{i}+v_{j}\right)+v_{k}$ must be a fixd element. In this way we get that by an extension of ϵ all atoms are fixed elements which means that this extension is the identity mapping of A. It follows that all automorphisms with the property that V and W are invariant form a group isomorphic to \mathfrak{G}. To ensure that we have no more automorphisms than the graph we must label the vertices and the edges, i.e. the atoms $v_{i} \in V$ and $v_{i j} \in W$. This will be done by lattices which are glued to A. The idea of the gluing is the following. The ideal $\left(v_{i}\right]$ of A has two elements. We will define a special lattice F_{1} with a two element dual ideal D_{1} which is therefore isomorphic to $\left(v_{i}\right]$. Similarly, for every $v_{i j} \in W$ we use a lattice F_{2} with the dual ideal D_{2}. For every $i \in I$ we consider an isomorphic copy $F_{1}{ }^{i}$ of F_{1} with the dual ideal $D_{1}{ }^{i}$ and similarly the lattices $F_{2}{ }^{i j} \cong F_{2}$ with the dual ideal $D_{2}{ }^{i j}$. We can apply the gluing construction for the lattices $A, F_{1}{ }^{i}$ and $F_{2}{ }^{i j}$ simultaneously, identifying the ideal $\left(v_{i}\right]$ with $D_{1}{ }^{i}$ and $\left(v_{i j}\right]$ with $D_{2}{ }^{i j}$. On this way we get a join-semilattice and M is the arguesian lattice generated by this configuration. First we define the lattices F_{1}, F_{2}. We give the
description of M as a sublattice of a vectorspace lattice and prove that this is a simple arguesian lattice with the given automorphism group.
N is the chain of all nonnegative integers and N^{*} denotes the chain of the nonpositive integers. Take the direct product $\mathfrak{C}_{2} \times N^{*}$, (where \mathfrak{C}_{2} denotes the two element lattice). In this direct product for every $i \in N$ the elements $(0,-i-1),(1,-i-1),(0,-i),(1,-i)$ form a "covering square" (isomorphc to $\mathfrak{C}_{2} \times \mathfrak{C}_{2}$). Into these "covering squares", for $i=0,1, \ldots$ we insert one more elemwnt z_{i} so that a copy of \mathfrak{M}_{3}, the five element non distributive modular lattice, is obtained. The resulting lattice is F_{1}, see Figure 1a. The lattice F_{2} is similar but we don't insert z_{0}, into the first "covering square", see Figure 1b. The dual ideal consisting of $(0,0)$ and $(1,0)$ etc. of F_{1} is D_{1}. We use isomorphic copies of F_{1} and F_{2} to label the v_{i}-s and the $v_{i j}$-s.

Figure 1 a
Figure $1 b$
F_{1} is a simple arguesian lattice and it has exactly one nontrivial automorphism α, where $\alpha\left(z_{0}\right)=(0,0)$ and $\alpha(0,0)=\left(z_{0}\right) . F_{2}$ is a rigid (has no nontrivial automorphism) arguesian lattice, its congruence lattice is the four element Boolean lattice.

We define our lattice M as a sublattice of a vectorspace lattice $K=$ $L(\mathfrak{W})$ of a vectorspace \mathfrak{W} over Z_{2}. Take the set $\left\{u_{j}{ }^{k}, v_{j} ; j \in I, k \in N\right\}$ as a basis of \mathfrak{W}. Let $z_{j}{ }^{k}$ be the third point of the line spanned by $u_{j}{ }^{k}$ and v_{j}. Define the following subspaces, (where $[X]$ denotes the subspace spanned
by the set $X): \boldsymbol{o}=\left[u_{j}{ }^{k} ; j \in I, k \in N\right], \boldsymbol{v}_{\boldsymbol{i}}=\left[v_{i}, u_{j}{ }^{k} ; j \in I, k \in N\right]=\left[v_{i}, \boldsymbol{o}\right]$. The convex sublattice of K, generated by (as lattice) $\boldsymbol{v}_{\boldsymbol{i}}$-s form a sublattice isomorphic to A, we identify A with this sublattice.

Set $\boldsymbol{u}_{\boldsymbol{i}}{ }^{0}=\boldsymbol{o}, \boldsymbol{u}_{\boldsymbol{i}}{ }^{1}=\left[u_{j}{ }^{k} ; j \in I, k \in N, u_{j}{ }^{k} \neq u_{i}{ }^{0}\right], \boldsymbol{u}_{\boldsymbol{i}}{ }^{2}=\left[u_{j}{ }^{k} ; i \in I\right.$, $\left.k \in N, u_{j}{ }^{k} \neq u_{i}{ }^{0}, u_{i}{ }^{1}\right] \ldots$ Then $\boldsymbol{u}_{\boldsymbol{i}}{ }^{0}>\boldsymbol{u}_{\boldsymbol{i}}{ }^{1}>\boldsymbol{u}_{\boldsymbol{i}}{ }^{2}>\ldots$ is a chain of type ω^{*}. The convex sublattice generated by these chains will be denoted by C. Take the sublattice $A \cup C$, then A is a dual ideal and C is an ideal of this lattice. We adjoin further elements $\boldsymbol{w}_{\boldsymbol{i}}{ }^{0}, \boldsymbol{w}_{\boldsymbol{i}}{ }^{1}, \boldsymbol{w}_{i}{ }^{2}, \ldots$ and $\boldsymbol{z}_{\boldsymbol{i}}{ }^{1}, \boldsymbol{z}_{\boldsymbol{i}}{ }^{2}, \boldsymbol{z}_{\boldsymbol{i}}{ }^{3} \ldots$, which are defined as follows:.

$$
\boldsymbol{w}_{\boldsymbol{i}}^{1}=\left[\boldsymbol{u}_{\boldsymbol{i}}^{1}, v_{i}\right], \boldsymbol{w}_{\boldsymbol{i}}^{2}=\left[\boldsymbol{u}_{\boldsymbol{k}}^{2}, v_{i}\right], \boldsymbol{w}_{\boldsymbol{i}}^{3}=\left[\boldsymbol{u}_{\boldsymbol{k}}^{3}, v_{i}\right] \ldots
$$

and

$$
\boldsymbol{z}_{\boldsymbol{i}}^{1}=\left[\boldsymbol{u}_{\boldsymbol{i}}^{1}, z_{i}^{1}\right], \boldsymbol{z}_{\boldsymbol{i}}^{2}=\left[\boldsymbol{u}_{\boldsymbol{i}}^{2}, z_{i}^{2}\right], \boldsymbol{z}_{\boldsymbol{i}}^{3}=\left[\boldsymbol{u}_{\boldsymbol{i}}^{3}, z_{i}^{3}\right] \ldots
$$

Then the join of the chains $\boldsymbol{u}_{\boldsymbol{i}}{ }^{0}>\boldsymbol{u}_{i}{ }^{1}>\boldsymbol{u}_{i}{ }^{2}>\ldots$ and $\boldsymbol{w}_{\boldsymbol{i}}{ }^{0}>\boldsymbol{w}_{\boldsymbol{i}}{ }^{1}>$ $\boldsymbol{w}_{\boldsymbol{i}}{ }^{2}>\ldots$ form a sublattice isomorphic to $\mathfrak{C}_{2} \times N^{*}$. For every $j, \boldsymbol{u}_{\boldsymbol{i}}{ }^{j}$, $\boldsymbol{z}_{\boldsymbol{i}}{ }^{j+1}$ and $\boldsymbol{w}_{\boldsymbol{i}}{ }^{j+1}$ generete \mathfrak{M}_{3}. For every $i \in I$ all these elements form a sublattice, the flap
${F_{1}}^{i}=\left\{\boldsymbol{u}_{\boldsymbol{i}}{ }^{0}, \boldsymbol{u}_{\boldsymbol{i}}{ }^{1}, \boldsymbol{u}_{\boldsymbol{i}}{ }^{2} \ldots\right\} \cup\left\{\boldsymbol{w}_{\boldsymbol{i}}{ }^{0}, \boldsymbol{w}_{\boldsymbol{i}}{ }^{1}, \boldsymbol{w}_{\boldsymbol{i}}{ }^{2} \ldots\right\} \cup\left\{\boldsymbol{z}_{\boldsymbol{i}}{ }^{1}, \boldsymbol{z}_{\boldsymbol{i}}{ }^{2}, \boldsymbol{z}_{\boldsymbol{i}}{ }^{3} \ldots\right\}$ isomorphic to the lattice F_{1}.

Similarly, we define for the elements $v_{i j}$ the flaps
$F_{2}{ }^{i j}=\left\{\boldsymbol{u}_{\boldsymbol{i j}}{ }^{0}, \boldsymbol{u}_{\boldsymbol{i j}}{ }^{1}, \boldsymbol{u}_{\boldsymbol{i} \boldsymbol{j}}{ }^{2} \ldots\right\} \cup\left\{\boldsymbol{w}_{\boldsymbol{i}}{ }^{0}, \boldsymbol{w}_{\boldsymbol{i} \boldsymbol{j}}{ }^{1}, \boldsymbol{w}_{\boldsymbol{i} \boldsymbol{j}}{ }^{2} \ldots\right\} \cup$ $\left\{\boldsymbol{z}_{\boldsymbol{i j}}{ }^{2}, \boldsymbol{z}_{\boldsymbol{i j}}{ }^{3}, \boldsymbol{z}_{\boldsymbol{i j}}{ }^{4} \ldots\right\}$ isomorphic to F_{2}.

Let M be $A \cup C \cup \bigcup\left(F_{1}{ }^{i}, F_{2}{ }^{i j} \mid i, j \in I\right)$.
M can be vizulised as follows, see Figure 2.
It is easy to see that M is a sublattice of K. The lattice K is an arguesian lattice, consequently M is again arguesian. We prove that M is simple. We know that A and the $F_{1}{ }^{i}$-s are simple lattices and the intervals $\left[\boldsymbol{u}_{\boldsymbol{i}}{ }^{k}, \boldsymbol{u}_{\boldsymbol{i}}{ }^{k+1}\right]$ and $\left[\boldsymbol{u}_{\boldsymbol{j}}{ }^{k}, \boldsymbol{u}_{\boldsymbol{j}}{ }^{k+1}\right] \operatorname{resp} .\left[\boldsymbol{u}_{\boldsymbol{i}}{ }^{k}, \boldsymbol{u}_{\boldsymbol{i}}{ }^{k+1}\right]$ and $\left[\boldsymbol{u}_{\boldsymbol{j}}{ }^{k}, \boldsymbol{u}_{\boldsymbol{j}}{ }^{k+1}\right]$ are projective in C. These imply that any two prime intervals are projective, which proves that M is a simple lattice.
M contains the chains $\boldsymbol{w}_{\boldsymbol{i}}{ }^{1}>\boldsymbol{w}_{\boldsymbol{i}}{ }^{2}>\boldsymbol{w}_{\boldsymbol{i}}{ }^{3}>\ldots$ and $\boldsymbol{w}_{\boldsymbol{i j}}{ }^{0}>\boldsymbol{w}_{\boldsymbol{i j}}{ }^{1}>$ $\boldsymbol{w}_{\boldsymbol{i j}}{ }^{2} \ldots$, where $\boldsymbol{w}_{\boldsymbol{i}}{ }^{1}, \boldsymbol{w}_{\boldsymbol{i}}{ }^{2}, \ldots$ resp. $\boldsymbol{w}_{\boldsymbol{i}}{ }^{1}, \boldsymbol{w}_{\boldsymbol{i}}{ }^{2} \ldots,(i, j \in I)$ are meet irreducible elements.and M has no other chains of this type. Then for any automorphism the image of $\boldsymbol{w}_{\boldsymbol{i}}{ }^{1}$ must be $\boldsymbol{w}_{\boldsymbol{j}}{ }^{1}$ for some j and similarly the image of $\boldsymbol{u}_{\boldsymbol{i}}{ }^{1}$ is some $\boldsymbol{u}_{\boldsymbol{k} \boldsymbol{\ell}}{ }^{1}$. This yields that the restriction of an automorphism to the atoms of the dual ideal A of M is a permutation, where V and W are invariant. This proves that the automorphim group of M is isomorphic to \mathfrak{G}.

Figure 2

References

[1] R. Fructh, Herstellung von graphen mit vorgegebener abstrakter gruppe, Compos. Math. 6 (1938), 239-250.
[2] G. Grätzer and E. T. Schmidt, On finite automorphism groups of simple arguesian lattices, Submitted for publication in Studia Sci. Math.
[3] Ch. Herrmann, On automorphism groups of Arguesian lattices, Acta Math. Acad. Sci. Hungar.
E. T. SCHMIDT

MATHEMATICAL INSTITUTE OF THE TECHNICAL UNIVERSITY
OF BUDAPEST
H-1521 BUDAPEST, MÜEGYETEM RKP. 3
HUNGARY
E-mail: schmidt@math.bme.hu, URL: http://www.bme.math/~schmidt/
(Received October 30, 1997; revised March 16, 1998)

[^0]: Mathematics Subject Classification: Primary 06C05; Secondary 08A35.
 Key words and phrases: automorphism group, lattice, simple, modular, arguesian.
 The research of the author was supported by the Hungarian National Foundation for Scientific Research, under Grant No. T023186.

