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On Finsler spaces of Douglas type II.
Projectively flat spaces

By S. BÁCSÓ (Debrecen) and M. MATSUMOTO (Kyoto)

Abstract. The notion of Douglas space may be regarded as a generalization of
the notion of projectively flat space. On the basis of this viewpoint the characterization
of the projective flatness is clearly established.

1. Introduction

We consider an n-dimensional Finsler space Fn = (Mn, L(x, y)) with
the fundamental function L(x, y). Let gij(x, y) = ∂̇i∂̇jF , F = L2/2, be
the fundamental tensor and put

(1.1) 2girG
r = (∂̇i∂rF )yr − ∂iF.

The geodesics of Fn are given by the differential equations

(1.2) ẍiẋj − ẍj ẋi + 2Dij(x, ẋ) = 0,

where Dij(x, y) = Gi(x, y)yj − Gj(x, y)yi are positively homogeneous
in (yi) of degree three.

Fn is said to be of Douglas type or a Douglas space [2], if Dij(x, y)
are homogeneous polynomials in (yi) of degree three. A Berwald space is
of Douglas type, because its Gi(x, y) are homogeneous polynomials in (yi)
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of degree two. Next a projectively flat space is also of Douglas type,
because such a space is covered by rectilinear coordinate neighborhoods in
which Gi(x, y) are proportional to yi ([1], [8]).

The purpose of the second part of our papers is to characterize pro-
jectively flat Finsler spaces. We have had several papers ([3]–[5]) on this
subject, but any of them is rather long and hard to understand. On the
contrary, our method of characterization in the present paper is quite clear,
on the basis of Theorem 5 of the first part [2]. To facilitate the understand-
ing of our method, we are now concerned with a characterization of locally
Minkowski spaces as follows.

Let Fn be a locally Minkowski space. It is covered by adapted co-
ordinate neighborhoods ([2], [6]) in which L(x, y) is independent of (xi).
Thus Gi vanish identically. Conversely, if Gi = 0 hold, then we have
L;i = ∂iL− (∂̇rL)Gr

i = 0 leads to L = L(y).
We have the transformation law of connection coefficients for a coor-

dinate change (xi) → (x̄a):

(1.3) Gj
i
kX̄a

i = Ḡb
a
cX̄

b
jX̄

c
k + ∂kX̄a

j , X̄a
i = ∂ix̄

a.

Let (x̄a) be an adapted coordinate system. Then Ḡb
a
c vanish and we get

the system of differential equations

(1.4) ∂ix̄
a = X̄a

i, ∂kX̄a
j = Gj

i
k(x)X̄a

i.

It should be remarked in (1.4) that Gj
i
k are functions of (xi) alone, be-

cause Fn is, of course, a Berwald space. The (x̄a) of a solution (x̄a, X̄a
i)

of (1.4) is obviously an adapted coordinate system.
The integrability condition of (1.4) is

∂kGi
h
j − ∂jGi

h
k + Gi

r
jGr

h
k −Gi

r
kGr

h
j = 0.

The left-hand side is nothing but the h-curvature tensor Hi
h
jk of the

Berwald connection of Fn. Consequently we have: A Berwald space is
locally Minkowski, if and only if the curvature tensor H vanishes identi-
cally, as it is well-known ([1], [6]). The essential point of the procedure
above is Gj

i
k = Gj

i
k(x).

In writing the present paper, we have had invaluable suggestions and
criticisms by Prof. Dr. Shun-ichi Hōjō and Prof. Dr. Katsumi Okubo. We
would like to thank Prof. Dr. Lajos Tamássy for his friendly encourage-
ment. The second author remembers that the main part of the paper [5]
was written in 1979 while he was a visiting professor at Lajos Kossuth
University, Debrecen.
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2. Projective invariants

We are concerned with an n-dimensional Finsler space Fn with the
Berwald connection BΓ = (Gj

i
k, Gi

j , 0) ([1], [6]); the connection coeffi-
cients are derived from Gi given by (1.1), as Gi

j = ∂̇jG
i and Gj

i
k = ∂̇kGi

j .
The h- and v-covariant differentiations with respect to BΓ are denoted by
(; , ·), and we define the δ-differentiation as δi = ∂i−Gr

i∂̇r. The surviving
torsion and curvature tensors are

h-curvature Hi
h
jk := δkGi

h
j + Gi

r
jGr

h
k − [j, k],

hv-curvature Gi
h
jk := ∂̇kGi

h
j ,

(v)h-torsion Rh
jk := δkGh

j − [j, k],

where [j, k] indicates the term(s), obtained from the preceding term(s) by
interchanging the indices j, k.

A projective change Fn = (Mn, L(x, y)) → F̄n = (Mn, L̄(x, y)) of the
Finsler metric gives rise to various projective invariants. First we have

Q0-invariants Qh := Gh − 1
n + 1

Gyh,

Q1-invariants Qh
i := Gh

i − 1
n + 1

(Giy
h + Gδh

i),

Q2-invariants Qi
h
j := Gi

h
j − 1

n + 1
(Gijy

h + Giδ
h

j + Gjδ
h

i),

where Qh
i = ∂̇iQ

h, Qi
h
j = ∂̇jQ

h
i, G = Gr

r, Gi = Gr
r
i and Gij =

Gr
r
ij is the hv-Ricci tensor of BΓ. The Q2-invariants satisfy the following

important identities:

(2.3) (a) Qi
h
j = Qj

h
i, (b) Qr

r
j = 0.

Secondly we have a projectively invariant tensor [2], the

(2.4) Douglas tensor Di
h
jk := ∂̇kQi

h
j .

This can be written in terms of BΓ as

Di
h
jk = Gi

h
jk − 1

n + 1
Gij·kyh − 1

n + 1
{Gijδ

h
k + (i, j, k)},
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where (i, j, k) indicates the terms, obtained from the preceding term(s) by
cyclic permutation of indices i, j, k.

Thirdly we have another invariant tensor ([1], [5]), the

Weyl tensor Wi
h
jk := Hi

h
jk +

1
n + 1

{δh
iHjk + yhHjk·i

+ δh
jHk·i − [j, k]},

where Hjk = Hj
r
kr is the h-Ricci tensor of BΓ and Hk is the

H-vector Hk :=
1

n− 1
(nH0k + Hk0),

with the subscript 0 denoting the transvection by yi. Let us remark that
the Weyl tensor vanishes identically in any two-dimensional Finsler space.

Finally the H-vector gives rise to the

K-tensor Kij := (n− 1){Hi;j − [i, j]}.
We shall turn our attention to the projective connection

PΓ = (Pj
i
k, Gi

j , 0) ([2], [7]), suggested by the Q2-invariants:

(2.5) Pj
i
k := Gj

i
k − 1

n + 1
Gjkyi.

The covariant differentiations with respect to PΓ are denoted by (|, ·). The
surviving torsion and curvature tensors are

(2.6)

h-curvature Ni
h
jk := δkPi

h
j + Pi

r
jPr

h
k − [j, k],

hv-curvature Ui
h
jk := ∂̇kPi

h
j ,

(v)h-torsion Nh
jk := N0

h
jk,

(v)hv-torsion Uh
jk := U0

h
jk.

We have the following relations among those tensors of BΓ and PΓ:

(2.7)

Ni
h
jk = Hi

h
jk − 1

n + 1
yh{Gij;k − [j, k]},

Ui
h
jk = Gi

h
jk − 1

n + 1
(Gij·k yh + Gijδ

h
k},

Nh
jk = Rh

jk, Uh
jk =

1
n + 1

yhGjk.



On Finsler spaces of Douglas type II 427

The h-Ricci tensor Nij = Ni
r
jr and the hv-Ricci tensor Uij = Ui

r
jr of PΓ

are written as

(2.8) (a) Nij = Hij − 1
n + 1

Gij;0, (b) Uij =
2

n + 1
Gij .

The Douglas tensor is written in terms of PΓ as

Di
h
jk = Ui

h
jk − 1

2
(δh

iUjk + δh
jUik).

The Weyl tensor is also written in the form

(2.9) Wi
h
jk = Ni

h
jk + (δh

iMjk + δh
jMik − [j, k]},

where we defined the

(2.10) M1-tensor Mjk :=
1

n2 − 1
(nNjk + Nkj).

3. Q3-invariants

Starting from the Q2-invariants we shall introduce the following quan-
tities in a way similar to constructing the h-curvature tensor:

(3.1) Q3-invariants Qi
h
jk := δkQi

h
j + Qi

r
jQr

h
k − [j, k].

These do not constitute a tensor field, but it is observed from (2.2) and (2.4)
that

δkQi
h
j − [j, k] = ∂kQi

h
j − (∂̇rQi

h
j)Gr

k − [j, k]

= ∂kQi
h
j −Di

h
jr

{
Qr

k +
1

n + 1
(Gkyr + Gδr

k)
}
− [j, k]

= ∂kQi
h
j − (∂̇rQi

h
j)Qr

k − 1
n + 1

GDi
h
jk − [j, k].

Hence we have

(3.1’) Qi
h
jk = ∂kQi

h
j − (∂̇rQi

h
j)Qr

k + Qi
r
jQr

h
k − [j, k].

Thus the Q3-invariants are in fact projective invariants.
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Next (2.2) and (2.5) give

(3.2) Qi
h
j = Pi

h
j − 1

n + 1
(Giδ

h
j + Gjδ

h
i).

Hence the Q3-invariants can be written in terms of PΓ as

(3.3) Qi
h
jk = Ni

h
jk − 1

n + 1
{δh

iJjk + δh
jJik − [j, k]},

where we put

(3.3a) Jij := δjGi −GrPi
r
j +

1
n + 1

GiGj .

The identity (2.3) yields

(3.4) (a) Qi
h
jk + (i, j, k) = 0, (b) Qr

r
jk = 0.

Hence we get the symmetric invariants

(3.5) Qij := Qi
r
jr.

From (3.3) it follows that

(3.6) Qij = Nij +
1

n + 1
(nJij − Jji),

which implies Jij = {(n + 1)Qij − nNij − Nji}/(n − 1). As a conse-
quence, (3.3) shows that

(3.7) Πi
h
jk := Qi

h
jk +

1
n− 1

{δh
jQik − [j, k]}

is a tensor field with the components

Πi
h
jk = Ni

h
jk +

1
n + 1

δh
i{Njk − [j, k]}(3.7’)

+
1

n2 − 1
{δh

j(nNik + Nki)− [j, k]}.

Since (2.10) gives Nij = nMij−Mji, it is easy to show that the right-
hand side of (3.7’) can be rewritten in the form of the right-hand side
of (2.9). Therefore we have
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Proposition 1. The Weyl tensor W coincides with the Π-tensor the

components of which are written in terms of Q-invariants as (3.7).

Next (2.10) and (3.6) yield

(3.8) Mij =
1

n− 1
Qij − 1

n + 1
Jij .

Let us define in terms of PΓ the

M2-tensor Mijk := {Mij|k − [j, k]} − 1
2
UirN

r
jk.

On account of (2.7) and (2.8) we have

Mijk =
{

1
n− 1

Qij|k − 1
n + 1

Jij|k − [j, k]
}
− 1

n + 1
GirR

r
jk.

We examine this expression of the M2-tensor. On account of (3.2), we
have

Qij|k − [j, k] = Πijk − 1
n + 1

{QijGk − [j, k]},

where we define

(3.9) Πijk := δkQij + Qi
r
jQrk − [j, k].

Next, we recall the commutation formula ([6], (3.11))

δkδj − [j, k] = −Rr
jk∂r.

Then (3.3a) together with (2.6) leads to

Jij|k − [j, k] = −Rr
jkGri −GrNi

r
jk

+
1

n + 1
{GjJik + GiJjk − [j, k]}.

Consequently we obtain

Mijk =
1

n− 1
Πijk +

1
n + 1

GrNi
r
jk

+
1

n + 1

{
Gj

(
1

n− 1
Qik − 1

n + 1
Jik

)
− 1

n + 1
GiJik − [j, k]

}
.



430 S. Bácsó and M. Matsumoto

Finally (2.9) and (3.8) lead to the conclusive expression of the M2-tensor
as follows:

(3.10) Mijk =
1

n− 1
Πijk +

1
n + 1

GrWi
r
jk.

It should be remarked that Mijk and Wi
r
jk are components of the ten-

sors, but Πijk are not components of any tensor, nor are they projective
invariants, because δk appears in (3.9).

In the paper [7] we showed the following relations between the M2-
tensor and the K-tensor:

Mijk =
1

n2 − 1
Kjk·i − UirW0

r
jk, Kij = (n2 − 1)M0ij .

Since the Weyl tensor vanishes in the two-dimensional case, we have

Proposition 2. In the two-dimensional case

(a) 3Mijk = Kjk·i, (b) Kij = 3M0ij .

4. Douglas spaces

A Finsler space Fn is said to be of Douglas type or a Douglas space [2],
if Dij = Giyj−Gjyi are homogeneous polynomials in (yi) of degree three.
Fn is a Douglas space, if and only if
(1) the Douglas tensor D vanishes identically or, as shown by (2.4),
(2) the Q2-invariants Qi

h
j are functions of position (xi) alone.

Then (2.2) gives 2Qh = Qi
h
j(x)yiyj and

2Dij = {Qr
i
s(x)yrys}yj − {Qr

j
s(x)yrys}yi.

Hence the equations of geodesics (1.2) are written in the form

(4.1) ẍiẋj − ẍj ẋi + {Qr
i
s(x)ẋrẋsẋj − [i, j]} = 0.

We shall, in particular, deal with the two-dimensional case. De-
note (x1, x2) by (x, y) and put y′ = dy/dx. Then (4.1) is written in the
form

(4.2) y′′−Q2
1
2(y′)3 +(Q2

2
2− 2Q1

1
2)(y′)2 +(2Q1

2
2−Q1

1
1)y′+Q1

2
1 = 0.
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Paying attention to (2.3), the above can be rewritten as

(4.2’) y′′ := f(x, y, y′) = Y3(y′)3 + Y2(y′)2 + Y1y
′ + Y0

where Y ’s are given by

Y3 = Q2
1
2(x, y), Y2 = 3Q1

1
2(x, y) = −3Q2

2
2(x, y),(4.2a)

Y1 = 3Q1
1
1(x, y) = −3Q1

2
2(x, y), Y0 = −Q1

2
1(x, y).

Since the Q2-invariants Qi
h
j(x) will play various essential roles in the the-

ory of Douglas spaces, we state the following

Definition. The set {Qi
h
j(x)} is called the characteristic of a Douglas

space.

For a Douglas space the Q3-invariants, given by (3.1), are functions
of position alone and written in the form

(4.3) Qi
h
jk(x) = ∂kQi

h
j + Qi

r
jQr

h
k − [j, k],

and Proposition 1 yields the

Proposition 3. For a Douglas space the components of the Weyl ten-
sor are functions of position alone.

Further, (3.9) is reduced for a Douglas space to

(4.4) Πijk(x) = ∂kQij + Qi
r
jQrk − [j, k].

Thus, for a Douglas space the Πijk are projective invariants.
Let us find the transformation law of the Q2-invariants for a coordi-

nate change (xi) → (x̄a). First (1.3) is rewritten in the

Gj
i
k = Ḡb

a
cX

i
aX̄b

jX̄
c
k + X̄a

jkXi
a,

where Xi
a = ∂xi/∂x̄a and X̄a

jk = ∂kX̄a
j . Then we get

Gj = ḠbX̄
b
j + (n + 1)Yj , Yj :=

1
n + 1

X̄a
jrX

r
a.

Since the Pj
i
k of PΓ satisfy the same transformation law as the Gj

i
k, (3.2)

yields

(4.5) Qj
i
kX̄a

i = Q̄b
a
cX̄

b
jX̄

c
k + X̄a

jk − YjX̄
a

k − YkX̄a
j .
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Proposition 4. The Q2-invariants Qj
i
k obey the transformation law

(4.5) for a change of coordinates (xi) → (x̄a), where Yi = X̄a
irX

r
a/(n+1).

We quote from the paper [7] the equation

Wm
i
hj|k + Dm

i
hrW0

r
jk − δi

hMmjk + (h, j, k) = 0.

Contract this in i = k. Since W satisfies Wm
r
rj = Wm

r
jr = 0 [7], the

above leads to

Proposition 5. For a Douglas space Fn, n > 2, the M2-tensor can

be written as Mmhj = Wm
r
hj|r/(n− 2).

5. Projectively flat Finsler spaces

Let us consider a projectively flat Finsler space Fn ([5]; [1], §3.3). As
has been mentioned in the Introduction, Fn has a covering by rectilinear
coordinate neighborhoods in which there exists a function P (x, y) satisfy-
ing Gi = Pyi, that is, Dij = Giyj −Gjyi = 0. Consequently Fn is a kind
of Douglas space. We have

Gi
j = P·jyi + Pδi

j , Gr
r(= G) = (n + 1)P,

which implies Qh=0 by (2.2). Conversely Qh=0 leads to Gh=Gyh/(n+1),
so that the space is projectively flat. Therefore we have

Proposition 6. (1) A projectively flat Finsler space is a Douglas

space. (2) A coordinate system (xi) of a projectively flat space is rec-

tilinear, if and only if the characteristic vanishes identically in (xi).

We are concerned with the transformation law (4.5) in a projectively
flat space, where (xi) is an arbitrary coordinate system, while (x̄a) is
assumed to be rectilinear. Then Proposition 6 leads to the differential
equations

∂ix̄
a = X̄a

i,(5.1)

∂jX̄
a

i = Qi
r
jX̄

a
r + YiX̄

a
j + YjX̄

a
i.(5.2)

It should be remarked that Qi
r
j are functions of (xi) alone in (5.2).
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Since Qi
r
j are symmetric, we have ∂j(∂ix̄

a) − [i, j] = 0. Next we
consider ∂k(∂jX̄

a
i) − [j, k] = 0. We put Yjk = ∂kYj and Zjk = Yjk −

YjYk − YrQj
r
k. Paying attention to (4.3) we get

Xh
a{∂k(∂jX̄

a
i)− [j, k]} = Qi

h
jk + {δh

iZjk + δh
jZik − [j, k]} = 0.

Let us contract this in h = i. Then (3.4a) leads to Zjk = Zkj . Next,
contracting in h = k, we get Zij = Qij/(n− 1), that is,

(5.3) ∂kYj = YjYk + YrQj
r
k +

1
n− 1

Qjk,

and finally the above is written as Πi
h
jk = 0 by (3.7).

Therefore we obtain the complete system of differential equations (5.1),
(5.2) and (5.3) for the functions (x̄a, X̄a

i, Yi) and Πi
h
jk = 0 as the inte-

grability condition of (5.2).
Now we must deal with the integrability condition of (5.3). Paying

attention to (3.7), (3.9) and (4.3), it follows from (5.3) that

∂k(∂jYi)− [j, k] =
1

n− 1
Πijk + YrΠi

r
jk.

Consequently we get another condition Πijk = 0.
Now we can consider the system (5.1), (5.2) and (5.3) of differential

equations in a Douglas space, because of Qj
i
k = Qj

i
k(x). Then it can be

stated that the system is completely integrable, if and only if both Πi
h
jk

and Πijk vanish identically. Thus we obtain a set of solutions (x̄a, X̄a
i, Yi)

for given initial values at a point x0, where det(X̄a
i) 6= 0 at x0 is to be

assumed.
The following observation is necessary: For a set of solutions

(x̄a, X̄a
i, Yi) (5.2) gives

X̄a
ijX

h
a = Qi

h
j + Yiδ

h
j + Yjδ

h
i.

Contracting in h = i, we have Yj = X̄a
jrX

r
a/(n+1) on account of (2.5b).

Hence we have Q̄b
a
c = 0 from (4.5), so that (x̄a) is certainly a rectilinear

coordinate system.
In the case n > 2, Πi

h
jk = 0 leads to Πijk = 0 from Propositions 1, 5

and (3.10). In the case n = 2, Πi
h
jk = 0 is only an identity from Proposi-

tion 1.
Summarizing all the above, we have
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Theorem. A Finsler space Fn is projectively flat if and only if Fn is

a Douglas space and its characteristic satisfies

(1) n > 2 : Πi
h
jk = 0,

(2) n = 2 : Πijk = 0,

where these Π’s are given by (3.7), (4.3), (3.5) and (4.4). Then a rectilinear

coordinate system (x̄a) is obtained by solving the system of differential

equations (5.1), (5.2) and (5.3).

As has been shown in Proposition 1, Πi
h
jk is the Weyl tensor W . In

the two-dimensional case, Πijk = 0 is equivalent to Mijk = 0 from (3.10)
and the latter is also equivalent to Kij = 0 from Proposition 2. Therefore
the Theorem may also be given in another formulation as follows:

Corollary. A Finsler space Fn is projectively flat, if and only if its

Douglas tensor D vanishes identically and

(1) n > 2: the Weyl tensor W = 0,

(2) n = 2: the K-tensor K = 0.

The statement of the Corollary is well known and is the same as
Theorem 1 of the paper [5]. However, to find the components of W or K

requires tiresome and complicated calculations in most cases.
On the contrary, we may safely say that the Π-quantities in the The-

orem are comparatively easy to find. Moreover, the method to find a
rectilinear coordinate system is given concretely.

In particular, we shall be concerned with the two-dimensional case.
In each coordinate neighborhood the geodesics are given by a second or-
der differential equation of the normal form y′′ = f(x, y, y′). Conversely
it is known [9] that with such a differential equation y′′ = f(x, y, y′) a
two-dimensional Finsler space, defined on a domain of the (x, y)-plane, is
connected so that y′′ = f(x, y, y′) is the equation of the geodesics.

Example 1. Assume that a two-dimensional Finsler space F 2 on a
domain of the (x, y)-plane has the geodesics given by the equation y′′ =
f(x, y) where y′ is not contained. (4.2’) with (4.2a) shows that Q1

2
1 =

−f(x, y) and the other Qj
i
k = 0. Then (4.3) gives Q1

2
12 = −fy and the

other Qi
h
jk = 0. Thus (3.5) gives (Q11, Q12, Q22) = (−fy, 0, 0) and (4.4)

leads to (Π112, Π212) = (−fyy, 0). Consequently the Theorem leads to the
conclusion that F 2 is projectively flat, if and only if f(x, y) is linear in
y : A(x)y + B(x).
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Example 2. We consider a differential equation

(5.4) y′′ + P (x)y′ + Q(x)y = R(x),

called linear in y. As has been shown in the paper [9], this is the equation of
geodesics of the two-dimensional Finsler space, defined on the (x, y)-plane,
with the fundamental function of the Kropina type

L(x, y; p, q) =
1
p

exp
(∫

Pdx

)
{(2R−Qy)yp2 + q2}.

Then we obtain successively:

(Q1
1
1, Q1

1
2, Q2

1
2, Q1

2
1, Q1

2
2, Q2

2
2) =

(
−P

3
, 0, 0, Qy −R,

P

3
, 0

)
,

(Q1
1
12, Q2

1
12, Q1

2
12, Q2

2
12) =

(
0, 0,−2P 2

9
− P ′

3
, 0

)
,

(Q11, Q12, Q22) =
(

Q− 2P 2

9
− P ′

3
, 0, 0

)
.

Consequently we obtain Π112 = Π212 = 0, and hence the space is projec-
tively flat.

We are concerned with the differential equation (5.1), (5.2) and (5.3).
The last of these is written as

∂xY1 = (Y1)2 − 1
3
PY1 + (Qy −R)Y2 + Q− 2P 2

9
− P ′

3
,(1)

∂yY1 = Y2

(
Y1 +

P

3

)
= ∂xY2,(2)

∂yY2 = (Y2)2.(3)

From (3) we get Y2 = 1/{g(x) − y} with some function g(x). (2) shows
that there exists a function Y (x, y) such that ∂xY = Y1 and ∂yY = Y2.
Hence we have

Y = − log |g(x)− y|+ h(x), Y1 = − g′

g − y
+ h′(x),

with some function h(x). Then (2) leads to h′ + P/3 = 0, and Y1 =
−g′/(g − y)− P/3. Substituting these Y1 and Y2 in (1), we get

g′′ + P (x)g′ + Q(x)g = R(x).
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Consequently g(x) must be a solution of the geodesics equation (5.4). We
take a solution w(x) of (5.4), and then

Y1 = − w′

w − y
− P

3
, Y2 =

1
w − y

.

Next we consider (5.2), which is now written as

∂xX̄a
1 = −

{
P +

2w′

w − y

}
X̄a

1 + (Qy −R)X̄a
2,(4)

∂yX̄a
1 =

X̄2
1 − w′X̄a

2

w − y
= ∂xX̄a

2,(5)

∂yX̄a
2 =

2X̄a
2

w − y
.(6)

First (6) gives X̄a
2 = f(x)/(w− y)2 with some f(x), and (5) gives X̄a

1 =
f ′/(w − y)− fw′/(w − y)2 immediately. Then (4) leads to

f ′′ + P (x)f ′ + Q(x)f = 0.

Hence f(x) must be a solution of the homogenized equation of (5.4). Thus
we shall choose a solution u(x) for a = 1 and v(x) for = 2, where u and v

should be chosen as independent of each other, i.e., J = u′v − uv′ 6= 0.
Therefore we obtain

X̄1
1 =

u′

w − y
− uw′

(w − y)2
, X̄1

2 =
u

(w − y)2
,

X̄2
1 =

v′

w − y
− vw′

(w − y)2
, X̄2

2 =
v

(w − y)2
.

Then we have the det(X̄a
i) = J/(w − y)3.

Consequently (5.1) gives easily

x̄1 =
u

w − y
+ c1, x̄2 =

v

w − y
+ c2,

where c’s are arbitrary constants. Therefore we could find a rectilinear
coordinates system (x̄a).
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Finally we shall show concretely that, in the two-dimensional case,
(5.1), (5.2) and (5.3) certainly give a rectilinear coordinate system. We
denote (x̄a) by (x̄, ȳ). In our notation we have

dx̄ = X̄1
idxi, dȳ = X̄2

idxi,

dȳ

dx̄
=

X̄2
1 + X̄2

2y
′

X̄1
1 + X̄1

2y′
:= D(x, y, y′),

d

dx̄

(
dȳ

dx̄

)
=

Dxdx + Dydy + Dy′dy′

X̄1
1dx + X̄1

2dy
=

Dx + Dyy′ + Dy′y
′′

X̄1
1 + X̄1

2y′
:= ȳ′′.

Putting Xijk := X̄2
ijX̄

1
k − X̄1

ijX̄
2
k and X := X̄1

1 + X̄1
2y
′, we get

Dx =
1

X2
{X111 + (X112 + X121)y′ + X122(y′)2},

Dy =
1

X2
{X121 + (X122 + X221)y′ + X222(y′)2},

Dy′ =
J

X2
, J := X1

1X
2
2 −X1

2X
2
1.

It follows from (5.2) that

X111 = JQ1
2
1, X121 = J(Q1

2
2 + Y1), X221 = J(Q2

2
2 + 2Y2),

X112 = −J(Q1
1
1 + 2Y1), X122 = −J(Q1

1
2 + Y2), X222 = −JQ2

1
2.

Thus the numerator of ȳ′′ is equal to

J{y′′ −Q2
1
2(y′)3 + (Q2

2
2 − 2Q1

1
2)(y′)2 + (2Q1

2
2 −Q1

1
2)y + Q1

2
1}.

As has been shown by (4.2), the terms inside parentheses vanish along
geodesics. Therefore ȳ′′ = 0 is nothing but the equation of geodesics in
terms of the rectilinear coordinate system (x̄, ȳ).
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