Publ. Math. Debrecen **41 / 3–4** (1992), 189–198

A square of set of elements of order two in orthogonal groups

By JAN AMBROSIEWICZ (Białystok)

Let G be group, $K_m = \{g \in G : o(g) = m\}$, $O_n(K, f)$ a group of automorphisms of the vector space $V_n(K)$ which leave invariant a quadratic form f of determinant different from zero.

It is known that the group $O_n(K, f)$, char $K \neq 2$, is generated by reflections, (see [4], pp 68–69).

In this paper we will prove a stronger theorem:

If K is the real field \mathbb{R} or $K = GF(p^s)$, p > 2, then $O_n(K, f) = K_2K_2$.

If K is the complex field \mathbb{C} or $K = GF(2^s)$, then $O_n(K, f) \neq K_2K_2$.

It also has been proved that $PGL(2, K) = K_2K_2$ while $PGL(n, K) \neq K_2K_2$ with $n \geq 3$, where PGL(n, K) = GL(n, K)/Z, (cf [7]).

Notations are standard. In addition we will use the following notations:

$$F_{s} = \begin{bmatrix} 0 & & 1 \\ & \ddots & \\ 1 & & 0 \end{bmatrix}, \quad E_{s} = \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix}, \quad F_{s}, E_{s} \in M_{s \times s}(K).$$

 ${}^{t}A$ – transpose of the matrix A with regard to the second diagonal of $A, O_n^+(K, f)$ – a subgroup of matrices of $O_n(K, f)$, called rotations, $\Omega_n(K, f)$ – a commutant of $O_n^+(K, f)$. Throughout the paper the symbol f denotes a quadratic form of determinant from zero.

We will often use the following lemmas.

Lemma 1. Let G be a group. An element $g \in K_2^m$, $(m \ge 2)$ if and only if there is an element $x \in K_2^{m-1}$, $x \ne g$ such that $xgx = g^{-1}$, (see [2]).

Lemma 2. i) If $K = GF(p^s)$, p > 2, then in the vector space $V_n(K)$ there exists an orthogonal basis in which each quadratic form of determi-

nant different from zero takes the form

(1)
$$f(x) = \sum_{i=1}^{n-1} x_i^2 + \eta x_n^2,$$

where $\eta = 1$ for *n* odd but $\eta = 1$ or a particular not square ν for *n* even. ii) If $K = GF(2^s)$, then in the vector space $V_n(K)$ there exists an orthogonal basis in which each quadratic form of determinant different from zero takes the form

(2)
$$f(x) = x_1 x_2 + x_3 x_4 + \dots + x_{n-2} x_{n-1} + x_n^2$$

for *n* odd and
$$f(x) = x_1 x_2 + x_3 x_4 + \dots + x_{n-3} x_{n-2} + x_{n-1} x_n + \lambda \left(x_{n-1}^2 + x_n^2\right)$$

for *n* even,

where $\lambda = 0$ or is a particular one of the values α for which $x_{n-1}x_n + \alpha(x_{n-1}^2 + x_n^2)$ is irreducible in the $GF(2^s)$, (see [5], pp 158, 197).

Lemma 3. Let $A_i \in GL(n_i, K)$, $B = \text{diag}(A_1 \dots A_k) \in Gl(n, K)$, $n = n_1 + n_2 \dots n_k$, $K = GF(p^s)$, p > 2. If A_i fulfils at least one of the following conditions

i)
$$\begin{cases} A_i^t = A_i \\ A_i^t A_i = E \end{cases}$$
 ii)
$$\begin{cases} {}^tA_i = A_i \\ A_i^t A_i = E \end{cases}$$

then there exists $T \in K_2$ such that $TBT = B^{-1}$ and $B \in K_2K_2$.

PROOF. If i) holds, then $A_i = A_i^{-1}$ and $T_i A_i T_i = A_i^{-1}$, where $T_i = -E$ for $A_i \neq -E$ and $T_i = F$ for $A_i = -E$. If ii) holds, then a calculation shows that $T_i A_i T_i = A_i^t = A_i^{-1}$, where $T_i = F$ for $A_i \neq F$ and $T_i = -E$ for $A_i = F$.

Now we construct the matrix

(3)
$$T = \text{diag}(T_1, \dots, T_k), \text{ where} T_i = -E \text{ if } (-E)A_i(-E) = A_i^{-1} \text{ or } T_i = F \text{ if } FA_iF = A_i^{-1}.$$

Thus

(4)
$$TBT = \operatorname{diag}(A_1^{-1}, \dots, A_k^{-1}) = B^{-1}.$$

From the construction of T we see that $T \neq E$, $T^2 = E$. Therefore $B \in K_2 K_2$ by (4) and Lemma 1.

A square of set of elements of order two in orthogonal groups

Lemma 4. Let $A \in GL(2, K)$, charK = 2, $|K| \neq 2$. If A fulfils at least one of the following conditions

i)
$$\begin{cases} A^t = A \\ A^t A = E \end{cases}$$
 ii)
$$\begin{cases} tA = A \\ A^t A = E \end{cases}$$

then there exists $T \neq A$ such that $T \in K_2$, $TAT = A^{-1}$ and $A \in K_2K_2$.

PROOF. If $A \neq F$ fulfils i) or ii) then we can take T = F. If A = F, then there exists $T = \begin{bmatrix} u & v \\ v & u \end{bmatrix} \neq A$, $u^2 + v^2 = 1$, by $|K| \neq 2$. In both cases $TAT = A^{-1}$. Hence $A \in K_2 K_2$ by Lemma 1.

Theorem 1. If K = R, then $O_n(K, f) = K_2 K_2$.

PROOF. Each matrix of $O_n(K, f)$ is orthogonally similar to the ma- trix

(5)
$$A = \operatorname{diag}\left(\begin{bmatrix}\cos\varphi_i, & \sin\varphi_i\\ -\sin\varphi_i, & \cos\varphi_i\end{bmatrix}, \dots \begin{bmatrix}\cos\varphi_r, & \sin\varphi_r\\ -\sin\varphi_r, & \cos\varphi_r\end{bmatrix}, E_k, E_s\right).$$

The matrices in brackets fulfil conditions i) or ii) of Lemma 3. The matrix (3) is an orthogonal matrix so $A \in K_2 K_2 \subseteq O_n(R, f)$ by Lemma 3. Since K_2K_2 is a normal set, $O_n(R, f) \subseteq K_2K_2 \subseteq O_n(R, f)$.

Theorem 2. Let $A \in O_n(K, f)$. If K = R or $K = GF(p^s), p > 2$, f – quadratic form (1) with $\mu = 1$, then $A \in K_2$ iff $A^t = A$, $A \neq E$.

PROOF. It is known that f is an inner product in the case K = R; f is also an inner product in the case $K = GF(p^s)$, p > 2, by Lemma 2. Hence if $A \in O_n(K, f)$, then $A^t A = AA^t = E$. If $A \in K_2$, then $A^t =$ $A^t E = A^t A^2 = A^t A A = A.$ Conversely, if $A^t = A$, $A \neq E$, then $AA^t = AA = A^2 = E$. Hence

 $A \in K_2$.

From Theorems 1 and 2 we have

Corollary 2.1. If K = R, then each matrix of $O_n(K, f)$ is a product of two symmetric matrices.

Corollary 2.2. If $K = GF(p^s)$, p > 2, f – quadratic form (1) with $\eta = 1$, then $O_2(K, f) = K_2 K_2$ and each matrix is a product of symmetric matrices.

PROOF. A simple calculation shows that

$$O_2(K,f) = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix}, \begin{bmatrix} a & b \\ b & -a \end{bmatrix}, a^2 + b^2 = 1 \right\}.$$

These matrices fulfil the conditions i) and ii) of Lemma 3. Thus they belong to K_2K_2 , by Lemma 3. The second part of the Theorem follows from Theorem 2.

Jan Ambrosiewicz

Theorem 3. If $K = GF(p^s)$, p > 2, f-quadratic form (1) with $\eta \neq 1$, then $O_2(K, f) = K_2K_2$.

PROOF. A calculation shows, that matrices of the group $O_2(K, f)$ have the form

$$A = \begin{bmatrix} a & b \\ -b\eta^{-1} & a \end{bmatrix}, \quad B = \begin{bmatrix} a & b \\ b\eta^{-1} & -a \end{bmatrix}, \quad a^2 + \eta d^2 = \eta.$$

We have

$$TAT = A^{-1}, \ T \in K_2, \ \text{where } T = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \neq A$$

 $SBS = B^{-1}, \ \text{where } S = -E \neq B.$

Hence $A, B \in K_2K_2$, by Lemma 1.

Lemma 5. In the group PGL(2, K), $K_2K_2 = PGL(2, K)$.

PROOF. A calculation shows that

$$K_2 = \left\{ \begin{bmatrix} u & 0\\ 0 & v \end{bmatrix}, \begin{bmatrix} x & y\\ t & -x \end{bmatrix}, \ u \neq v, \ u^2 + v^2 = s, \ x^2 + yt = k, \\ s, k \in K^x \right\}.$$

We have

(6)
$$TA_{1}T = A_{1}^{-1}Z, \text{ where}$$

$$T = \begin{bmatrix} 1 & ab^{-1} \\ 0 & -1 \end{bmatrix} Z = \begin{bmatrix} b & a \\ 0 & -b \end{bmatrix} Z, A_{1} = \begin{bmatrix} 0 & 1 \\ b & a \end{bmatrix} Z$$
and $A_{1}Z \neq TZ \in K_{2}.$
(7)
$$TA_{2} = A_{2}^{-1}Z, A_{2}Z \neq TZ \in K_{2}, \text{ where}$$

$$T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} Z, A_{2} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} Z.$$

From (6), (7) and Lemma 1 follows that A_1Z , $A_2Z \in K_2K_2$. The set K_2K_2 is a normal set, so matrices similar to A_1Z , A_2Z also belong to the set K_2K_2 . It is known that each matrix of GL(2, K) is similar to the matrix A_1 or A_2 . Thus in the group PGL(2, K) each matrix is similar to the matrix A_1Z or A_2Z . Therefore $PGL(2, K) \subseteq K_2K_2 \subseteq PGL(2, K)$.

The Lemma 5 does not hold for $n \geq 3$.

Theorem 4. If $n \ge 3$, then $K_2K_2 \neq PGL(n, K)$.

PROOF. Let us consider all the possible cases: i) |K| > 3, $|K| \neq GF(4)$, ii) |K| = 2, iii) |K| = 3, iv) |K| = 4.

In the case i) let $A = \text{diag}(u^{-1}, u, 1)$, $B = \text{diag}(1, u, u^{-1}) \in GL(3, K)$. In this case there is an element u such that $u^3 \neq 1$. A calculation shows that if $\bar{A} = AZ$, $\bar{B} = BZ$, then $\bar{A}, \bar{B} \in K_2K_2$ but $\bar{A}\bar{B} \notin K_2K_2$ by Lemma 1. Therefore the matrices $\text{diag}(A, E_s)Z$,

diag $(B, E_s)Z \in M_{n \times n}$ (K), n = 3 + s, belong to the set K_2K_2 but their product does not belong to the set K_2K_2 . In the remaining cases we act similarly, namely in the case ii) we take

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

and in the case iii)

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 2 \end{bmatrix}.$$

In the case iv) there exists an element u such that $u^2 \neq 1$. A calculation shows that if $u^2 \neq 1$, then the matrix $\overline{A} = AZ$ with $A = \text{diag}(u^2, u^2, u)$ cannot be similar to $A^{-1}Z$ in the group PGL(3, K). Hence from Lemma 1 follows that $\overline{A} \notin K_2K_2$. Therefore the matrix

 $\operatorname{diag}(A, E_s)Z \in M_{n \times n}$ (K), n = 3 + s, does not belong to the set.

In the cases i), ii), iii) we proved more than stated in Theorem 4, namely

Corollary 4.1. If $n \ge 3$, $K \ne GF(4)$, then K_2K_2 is not a subgroup of PGL(n, K).

By the way we remark that if $n \geq 3$, then $K_2K_2 \not\leq GL(n, K)$, $K_2K_2 \not\leq SL(n, K)$ and $K_2K_2 \not\leq PSL(n, K)$, (see [2]).

Theorem 5. If $K = GF(p^s)$, p > 2, then

- i) $O_3^+ = (K, f) = K_2 K_2,$
- ii) $\Omega_3(k, f) = K_2 K_2$, where -1 is a square,
- iii) $K_2K_2 \leq \Omega_3(K, f)$, where -1 is not a square.

PROOF. It is known (see [4] p.94) that $O_3^+(K, f) \simeq PGL(2, K)$ and $\Omega_3(K, f) \simeq PSL(2, K)$. Now i) follows from Lemma 5 while ii) and iii) follow from the theorem 5 of [2].

Theorem 6. If $K = GF(p^s)$, p > 2, then $O_3(K, f) = K_2K_2$.

PROOF. It is known (see [4] p.84) that $O_3(K, f)$ is a Cartesian product $E \times O_3^+(K, f)$. Let $(E, A) \in O_3(K, f)$. From Theorem 5 and Lemma 1 it follows that for each $A \in O_3^+(K, f)$ there exists $T_A \in K_2 \subset O_3^+(K, f)$ such that $T_A \neq A$ and $T_A A T_A = A^{-1}$. Hence the matrix $T = (E, T_A)$ fulfils

Jan Ambrosiewicz

conditions $T \neq (E, A)$, $T^2 = (E, E)$ and $T(E, A)T = (E, A)^{-1}$. Thus $(E, A) \in K_2K_2 \subseteq O_3(K, f)$ by Lemma 1. Therefore $O_3(K, f) \subseteq K_2K_2$.

Theorem 7. If $K = GF(p^s)$, p > 2, then $O_n(K, f) = K_2K_2$.

PROOF. Induct on n. Theorem is true for n = 2, by Theorem 3 and Corollary 2.2, and for n = 3, by Theorem 6. Suppose that the Theorem holds for n - 1. Let dim V = n, $A \in O_n(K, f)$. Since the determinant of f is different from zero, there exists $v \in V$ such that $Av \neq O$. Let us consider all possible cases.

i). If Av = v, then $V = [v] \oplus [v]^{\perp}$ and $A([v]^{\perp}) = [v]^{\perp}$. In the basis (v, e_2, \ldots, e_n) , $e_i \in [v]^{\perp}$, the transformation has the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & A_1 \end{bmatrix}$. The matrix A_1 is an orthogonal n-1 by n-1 matrix. Hence $A_1 \in K_2K_2 \subseteq O_{n-1}(K, f')$ by the induction hypothesis. Therefore there exists $T_1 \neq A_1$, by Lemma 1, such that $T_1 \in K_2$ and $T_1A_1T_1 = A_1^{-1}$. The matrix $T = \begin{bmatrix} 1 & 0 \\ 0 & T_1 \end{bmatrix} \in O_n(K, f)$ fulfils all assumptions of Lemma 1 so $TAT = A^{-1}$. Hence $A \in K_2K_2 \subseteq O_n(K, f)$.

ii) If Av = -v, then in the basis (v, e_2, \ldots, e_n) the transformation A has the matrix $A = \begin{bmatrix} -1 & 0 \\ 0 & A_2 \end{bmatrix}$. The rest of the proof is similar to i).

iii) Now let Av be without any conditions. Since char $K \neq 2$ and A is an orthogonal transformation, by simple calculation $f(v + Av) + f(-v + Av) = 4f(v) \neq 0$. Hence $f(v+Av) \neq 0$ or $f(-v+Av) \neq 0$. If $f(v+Av) \neq 0$, then $V = [v + Av] \oplus [v + Av]^{\perp}$ and the transformation

a)
$$S_{v+Av}x = x - \frac{2B(x, v+Av)}{f(v+Av)}(v+Av) \text{ for all } x \in v$$

is an orthogonal reflection with regard to $[v + Av]^{\perp}$, (see [3] p.86). For x = Av we have

$$S_{v+Av}(Av) = Av - \frac{2B(Av, v + Av)}{f(v + Av)}(v + Av)$$

A simple calculation shows that $B(Av, v + Av) = \frac{1}{2}f(v + Av)$. Hence $S_{v+Av}Av = -v$ is an orthogonal transformation and as a result $A(v) = -S_{v+Av}(v)$ for all $v \in V$, by $S_{v+Av}^2 = E$. Therefore $A(v + Av) = -S_{(v+Av)}(v + Av) = v + Av$, by a). Thus we obtain the case i). If $f(-v + Av) \neq 0$, then the same calculation gives A(-v + Av) = -(-V + Av) i.e.

the case ii). By mathematical induction, the theorem holds for every n.

A square of set of elements of order two in orthogonal groups

Theorem 8. In the unitary group $U_n(C, f)$, $K_2K_2 \neq U_n(C, f)$.

PROOF. If $n \geq 3$, then the matrix $A = \varepsilon E \in U_n(C, f)$, where ε is a primary n^{th} root of unity. There does not exist $T \in K_2$ such that $T^{-1}AT = A^{-1}$ because otherwise we receive $A^2 = E$, a contradiction.

If n = 2, the matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ must fulfil the following conditions: $a\bar{a} = c\bar{c} = 1$, $b\bar{b} + d\bar{d} = 0$, $a\bar{b} + c\bar{d} = 0$, ad - bc = 1. Thus $A = \begin{bmatrix} a & b \\ -\bar{b} & \bar{a} \end{bmatrix}$, $a\bar{a} + b\bar{b} = 1$. A simple calculation shows that $A^2 = E$ iff $A = \pm E$.

The same formal calculation as in the proof of Theorem 8 in the case n = 2, shows that $K_2K_2 = \{E\}$ is the group $SU(2, p^{2k})$. The definition of $SU(2, p^{2k})$ is given in [6] p.194.

For the investigation of automorphism of a quadratic form over $K = GF(2^s)$ we need a few more lemmas.

Lemma 6. Let G be a group, P a subset such that $P = P^{-1}$ and G - P a subgroup of G. Then $G - P \leq PP$.

PROOF. We have

(8)
$$bP \cap P \neq \emptyset$$
 for each $b \in G - P$.

If not, there exists $c \in G - P$ such that $cP \subset G - P$. Hence there exists $p \in P$ such that $cp = g \in G - P$ and $p = C^{-1}g \in G - P$, a contradiction. Now (8) implies that for each $b \in G - P$ there exist p_1, p_2 such that $bp_1 = p_2$ i.e. $b = p_2 p_1^{-1} \in PP$, by $P^{-1} = P$. Hence $G - P \subset PP$.

Lemma 7. Let G be a group, H < G. Then $(G - H)^2 \leq G$, (see [1]).

From Lemmas 6 and 7 results

Theorem 9. Let G be a group, P a subset of G such that $P = P^{-1}$ and G - P a subgroup of G. Then $G - P < PP \leq G$.

By Lemma 2 a quadratic form over $GF(2^s)$ is

a) $f = x_1 x_2$, b) $f = x_1 x_2 + \lambda (x_1^2 + x_2^2), \ \lambda \neq 0$.

The following two theorems concern groups of automorphisms of forms a), b).

Theorem 10. In the group $O_2(K, f)$, $K = GF(2^s)$ with $f = x_1x_2$, $K_2K_2 = O_2^+(K, f) \neq O_2(K, f)$.

Jan Ambrosiewicz

PROOF. If |K| = 2, then the theorem is evident because $K_2 = \{E\}$. If $|K| \neq 2$, then

$$O_2(K, f) = \left\{ \begin{bmatrix} a & 0\\ 0 & a^{-1} \end{bmatrix}, \begin{bmatrix} 0 & b\\ b^{-1} & 0 \end{bmatrix}, a, b \in K^x \right\},$$
$$K_2 = \left\{ \begin{bmatrix} 0 & b\\ b^{-1} & 0 \end{bmatrix}; b \in K^x \right\}$$

and $O_2^+(K, f) = O_2(K, f) - K_2$ is a subgroup of $O_2(K, f)$. From Theorem 9 for $P = K_2$ we have $O_2^+(K, f) \leq K_2K_2 \triangleleft O_2(K, f)$. It is easy to see that $K_2K_2 \subseteq O_2^+(K, f)$. Hence $K_2K_2 = O_2^+(K, f)$.

Theorem 11. If $K = GF(2^s)$, then in the group $O_2(K, f)$ with

$$\begin{split} f &= x_1 x_2 + \lambda (x_1^2 + x_2^2), \quad \lambda \neq 0 \,, \\ O_2^+(K,f) &= O_2(K,f) - K_2 = K_2 K_2 \neq O_2(K,f) \,. \end{split}$$

PROOF. The matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in O_2(K, f)$ must fulfil the conditions (9) $ac\lambda^{-1} + a^2 + c^2 = 1$, $bd\lambda^{-1} + b^2 + d^2 = 1$, ad + bc = 1.

Thus matrices of group $O_2(K, f)$ have the form $\begin{bmatrix} a & b \\ c & a \end{bmatrix}$ or $\begin{bmatrix} a & b \\ b & d \end{bmatrix}$ and

$$K_2 = \left\{ \begin{bmatrix} a & b \\ c & a \end{bmatrix}, \ a \neq 1 \lor b \neq 0 \lor c \neq 0 \right\}.$$

The set

$$O_2^+(K,f) = \left\{ \begin{bmatrix} a & b \\ b & d \end{bmatrix}, \ a \neq 1 \lor d \neq 0 \lor b \neq 1, \quad a+d = d\lambda^{-1} \right\}$$

is a subgroup of $O_2(K, f)$, (see [4], p.105). From Theorem 9 results that

(10)
$$O_2^+(K,f) \le K_2 K_2 \le O_2(K,f).$$

By Lemma 1 and a simple calculation we see that $F = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \notin K_2K_2$. Hence $K_2K_2 \neq O_2(K, f)$. Let us observe that $K_2K_2 \subseteq O_2^+(K, f)$. Indeed, we have

$$\begin{bmatrix} a & b \\ c & a \end{bmatrix} \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & a_1 \end{bmatrix} = \begin{bmatrix} aa_1 + bc_1, & ab_1 + ba_1 \\ ca_1 + ac_1 & cb_1 + aa_1 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = C.$$

From conditions (9) for $b_1 \neq 0$, $b \neq 0$ we have $s = c_{11} + c_{22} = bc_1 + cb_1 = bb_1^{-1}(a_1^2 + 1) + b_1b^{-1}(a^2 + 1) = ba_1 + b_1a\lambda^{-1} = c_{12}\lambda^{-1}$. The proof is similar if $c \neq 0$, $c_1 \neq 0$. Similarly it can be shown that $c_{21} = c_{12}$. Thus $C \in O_2(K, f)$. Therefore $K_2K_2 \subseteq O_2^+(K, f)$ and $O_2^+(K, f) = K_2K_2$, by (10).

Lemma 8. If $K = GF(2^{s})$, then $K_{2}K_{2} \neq O_{3}(K, f)$.

PROOF. A calculation shows that K_2 consists of matrices

$$A = \begin{bmatrix} a & , a(a^2+1)b^{-2} & , 0 \\ b^2a^{-1} & , a & , 0 \\ b & , ab^{-1}(a+1) & , 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & c^2 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \end{bmatrix},$$
$$C = \begin{bmatrix} 0 & d & 0 \\ d^{-1} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad D = \begin{bmatrix} 1 & 0 & 0 \\ e^2 & 1 & 0 \\ e & 0 & 1 \end{bmatrix}.$$

We will show that $B \notin K_2K_2$. Suppose that there exists $T \in K_2$ such that $T \neq B$ and $TBT = B^{-1}$. The condition $T \neq B$ is fulfilled by matrices A, C, D. A simple calculation shows that the equalities ABA = B, CBC = B, DBD = B do not hold. Thus $B \in K_2K_2$ by Lemma 1.

Theorem 12. If $K = GF(2^s)$, then $K_2K_2 \neq O_n(K, f)$.

PROOF. If n is even, then from Theorem 10, 11 and Lemma 1 it results that there exists $A_1 \in O_2(K, f)$ for which there is no $T_1 \in K_2 \subset O_2(K, f)$ such that $T_1 \neq A_1$ and $T^{-1}A_1T_1 = A_1^{-1}$. Hence for $A = \text{diag}(E_m, A_1) \in O_{m+2}(K, f)$ (m-even, f-extension quadratic form f to n = m + 2) there is no $T \in K_2 \subset O_{m+2}(K, f')$ such that $T \neq A$, $T^{-1}AT = A^{-1}$. Therefore $A \notin K_2K_2 \subset O_{m+2}(K, f')$, by Lemma 1.

If n is odd, the proof is the same except that we use Lemma 8, instead of Theorems 10, 11.

References

- [1] E. AMBROSIEWICZ, On the property W for modular groups, *Demonstratio Mathematica*, Vol **XI**, Nr 2 (1978).
- [2] J. AMBROSIEWICZ, On the square of sets of linear groups, Rend. Sem. Mat. Univ. Padova, Vol 75 (1986).
- [3] Н. Бурбаки, Группы и Алгебры Ли, Москва, 1972.
- [4] Ж. Дьёдонне, Геометрия классических групп, Москва, 1974.
- [5] L. E. DICKSON, Linear groups, Berlin, Tubner, 1900.
- [6] B. HUPPERT, Endliche Gruppen I, Springer-Verlag, Berlin Heidelberg New York, 1967.

Jan Ambrosiewicz : A square of set of elements of order ...

[7] F. BACHMANN, Eine Kennzeichnung der Gruppe der gebrochen linearen Transformationen, Math. Annalen, Bd. 126.8 (1953), 79–92.

JAN AMBROSIEWICZ INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF BIALYSTOK 15–351 BIALYSTOK UL. WIEJSKA 45 A POLAND

(Received May 21, 1991)