A square of set of elements of order two in orthogonal groups

By JAN AMBROSIEWICZ (Białystok)

Let G be group, $K_{m}=\{g \in G: o(g)=m\}, O_{n}(K, f)$ a group of automorphisms of the vector space $V_{n}(K)$ which leave invariant a quadratic form f of determinant different from zero.

It is known that the group $O_{n}(K, f)$, $\operatorname{char} K \neq 2$, is generated by reflections, (see [4], pp 68-69).

In this paper we will prove a stronger theorem:
If K is the real field \mathbb{R} or $K=G F\left(p^{s}\right), p>2$, then $O_{n}(K, f)=K_{2} K_{2}$.
If K is the complex field \mathbb{C} or $K=G F\left(2^{s}\right)$, then $O_{n}(K, f) \neq K_{2} K_{2}$.
It also has been proved that $\operatorname{PGL}(2, K)=K_{2} K_{2}$ while $P G L(n, K) \neq$ $K_{2} K_{2}$ with $n \geq 3$, where $P G L(n, K)=G L(n, K) / Z$, (cf [7]).

Notations are standard. In addition we will use the following notations:

$$
F_{s}=\left[\begin{array}{ccc}
0 & & 1 \\
& \ddots & \\
1 & & 0
\end{array}\right], \quad E_{s}=\left[\begin{array}{lll}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right], \quad F_{s}, E_{s} \in M_{s \times s}(K)
$$

${ }^{t} A$ - transpose of the matrix A with regard to the second diagonal of $A, O_{n}^{+}(K, f)$ - a subgroup of matrices of $O_{n}(K, f)$, called rotations, $\Omega_{n}(K, f)$ - a commutant of $O_{n}^{+}(K, f)$. Throughout the paper the symbol f denotes a quadratic form of determinant from zero.

We will often use the following lemmas.
Lemma 1. Let G be a group. An element $g \in K_{2}^{m},(m \geq 2)$ if and only if there is an element $x \in K_{2}^{m-1}, x \neq g$ such that $x g x=g^{-1}$, (see [2]).

Lemma 2. i) If $K=G F\left(p^{s}\right), p>2$, then in the vector space $V_{n}(K)$ there exists an orthogonal basis in which each quadratic form of determi-
nant different from zero takes the form

$$
\begin{equation*}
f(x)=\sum_{i=1}^{n-1} x_{i}^{2}+\eta x_{n}^{2} \tag{1}
\end{equation*}
$$

where $\eta=1$ for n odd but $\eta=1$ or a particular not square ν for n even. ii) If $K=G F\left(2^{s}\right)$, then in the vector space $V_{n}(K)$ there exists an orthogonal basis in which each quadratic form of determinant different from zero takes the form

$$
f(x)=x_{1} x_{2}+x_{3} x_{4}+\cdots+x_{n-2} x_{n-1}+x_{n}^{2}
$$

for n odd and

$$
\begin{align*}
& f(x)=x_{1} x_{2}+x_{3} x_{4}+\cdots+x_{n-3} x_{n-2}+x_{n-1} x_{n}+\lambda\left(x_{n-1}^{2}+x_{n}^{2}\right) \tag{2}\\
& \quad \text { for } n \text { even, }
\end{align*}
$$

where $\lambda=0$ or is a particular one of the values α for which $x_{n-1} x_{n}+$ $\alpha\left(x_{n-1}^{2}+x_{n}^{2}\right)$ is irreducible in the $G F\left(2^{s}\right)$, (see [5], pp 158, 197).

Lemma 3. Let $A_{i} \in G L\left(n_{i}, K\right), B=\operatorname{diag}\left(A_{1} \ldots A_{k}\right) \in G l(n, K)$, $n=n_{1}+n_{2} \ldots n_{k}, K=G F\left(p^{s}\right), p>2$. If A_{i} fulfils at least one of the following conditions

$$
\text { i) }\left\{\begin{array} { l l }
{ A _ { i } ^ { t } } & { = A _ { i } } \\
{ A _ { i } ^ { t } A _ { i } } & { = E }
\end{array} \quad \text { ii) } \quad \left\{\begin{array}{ll}
{ }^{t} A_{i} & =A_{i} \\
A_{i}^{t} A_{i} & =E
\end{array}\right.\right.
$$

then there exists $T \in K_{2}$ such that $T B T=B^{-1}$ and $B \in K_{2} K_{2}$.
Proof. If i) holds, then $A_{i}=A_{i}^{-1}$ and $T_{i} A_{i} T_{i}=A_{i}^{-1}$, where $T_{i}=-E$ for $A_{i} \neq-E$ and $T_{i}=F$ for $A_{i}=-E$. If ii) holds, then a calculation shows that $T_{i} A_{i} T_{i}=A_{i}^{t}=A_{i}^{-1}$, where $T_{i}=F$ for $A_{i} \neq F$ and $T_{i}=-E$ for $A_{i}=F$.

Now we construct the matrix

$$
\begin{align*}
T & =\operatorname{diag}\left(T_{1}, \ldots, T_{k}\right) \text {, where } \\
T_{i} & =-E \text { if }(-E) A_{i}(-E)=A_{i}^{-1} \quad \text { or } \quad T_{i}=F \text { if } F A_{i} F=A_{i}^{-1} . \tag{3}
\end{align*}
$$

Thus

$$
\begin{equation*}
T B T=\operatorname{diag}\left(A_{1}^{-1}, \ldots, A_{k}^{-1}\right)=B^{-1} . \tag{4}
\end{equation*}
$$

From the construction of T we see that $T \neq E, T^{2}=E$. Therefore $B \in K_{2} K_{2}$ by (4) and Lemma 1 .

Lemma 4. Let $A \in G L(2, K), \operatorname{char} K=2,|K| \neq 2$. If A fulfils at least one of the following conditions

$$
\text { i) }\left\{\begin{array} { l l }
{ A ^ { t } } & { = A } \\
{ A ^ { t } A } & { = E }
\end{array} \quad \text { ii) } \quad \left\{\begin{array}{ll}
{ }^{t} A & =A \\
A^{t} A & =E
\end{array}\right.\right.
$$

then there exists $T \neq A$ such that $T \in K_{2}, T A T=A^{-1}$ and $A \in K_{2} K_{2}$.
Proof. If $A \neq F$ fulfils i) or ii) then we can take $T=F$. If $A=F$, then there exists $T=\left[\begin{array}{cc}u & v \\ v & u\end{array}\right] \neq A, u^{2}+v^{2}=1$, by $|K| \neq 2$. In both cases $T A T=A^{-1}$. Hence $A \in K_{2} K_{2}$ by Lemma 1.

Theorem 1. If $K=R$, then $O_{n}(K, f)=K_{2} K_{2}$.
Proof. Each matrix of $O_{n}(K, f)$ is orthogonally similar to the matrix

$$
A=\operatorname{diag}\left(\left[\begin{array}{cc}
\cos \varphi_{i}, & \sin \varphi_{i} \tag{5}\\
-\sin \varphi_{i}, & \cos \varphi_{i}
\end{array}\right], \ldots\left[\begin{array}{cc}
\cos \varphi_{r}, & \sin \varphi_{r} \\
-\sin \varphi_{r}, & \cos \varphi_{r}
\end{array}\right], E_{k}, E_{s}\right) .
$$

The matrices in brackets fulfil conditions i) or ii) of Lemma 3. The matrix (3) is an orthogonal matrix so $A \in K_{2} K_{2} \subseteq O_{n}(R, f)$ by Lemma 3. Since $K_{2} K_{2}$ is a normal set, $O_{n}(R, f) \subseteq K_{2} K_{2} \subseteq O_{n}(R, f)$.

Theorem 2. Let $A \in O_{n}(K, f)$. If $K=R$ or $K=G F\left(p^{s}\right), p>2$, f - quadratic form (1) with $\mu=1$, then $A \in K_{2}$ iff $A^{t}=A, A \neq E$.

Proof. It is known that f is an inner product in the case $K=R$; f is also an inner product in the case $K=G F\left(p^{s}\right), p>2$, by Lemma 2. Hence if $A \in O_{n}(K, f)$, then $A^{t} A=A A^{t}=E$. If $A \in K_{2}$, then $A^{t}=$ $A^{t} E=A^{t} A^{2}=A^{t} A A=A$.

Conversely, if $A^{t}=A, A \neq E$, then $A A^{t}=A A=A^{2}=E$. Hence $A \in K_{2}$.

From Theorems 1 and 2 we have
Corollary 2.1. If $K=R$, then each matrix of $O_{n}(K, f)$ is a product of two symmetric matrices.

Corollary 2.2. If $K=G F\left(p^{s}\right), p>2, f$-quadratic form (1) with $\eta=1$, then $O_{2}(K, f)=K_{2} K_{2}$ and each matrix is a product of symmetric matrices.

Proof. A simple calculation shows that

$$
O_{2}(K, f)=\left\{\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right],\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right], \quad a^{2}+b^{2}=1\right\} .
$$

These matrices fulfil the conditions i) and ii) of Lemma 3. Thus they belong to $K_{2} K_{2}$, by Lemma 3. The second part of the Theorem follows from Theorem 2.

Theorem 3. If $K=G F\left(p^{s}\right), p>2, f$-quadratic form (1) with $\eta \neq 1$, then $O_{2}(K, f)=K_{2} K_{2}$.

Proof. A calculation shows, that matrices of the group $O_{2}(K, f)$ have the form

$$
A=\left[\begin{array}{cc}
a & b \\
-b \eta^{-1} & a
\end{array}\right], \quad B=\left[\begin{array}{cc}
a & b \\
b \eta^{-1} & -a
\end{array}\right], a^{2}+\eta d^{2}=\eta
$$

We have

$$
\begin{aligned}
& T A T=A^{-1}, T \in K_{2}, \quad \text { where } T=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \neq A \\
& S B S=B^{-1}, \quad \text { where } S=-E \neq B
\end{aligned}
$$

Hence $A, B \in K_{2} K_{2}$, by Lemma 1 .
Lemma 5. In the group $P G L(2, K), K_{2} K_{2}=P G L(2, K)$.
Proof. A calculation shows that

$$
\begin{array}{r}
K_{2}=\left\{\left[\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right],\left[\begin{array}{cc}
x & y \\
t & -x
\end{array}\right], u \neq v, u^{2}+v^{2}=s, x^{2}+y t=k\right. \\
\\
\left.\qquad s, k \in K^{x}\right\}
\end{array}
$$

We have

$$
\text { and } A_{1} Z \neq T Z \in K_{2}
$$

$$
\begin{align*}
& T A_{1} T=A_{1}^{-1} Z, \text { where } \tag{6}\\
& T=\left[\begin{array}{cc}
1 & a b^{-1} \\
0 & -1
\end{array}\right] \quad Z=\left[\begin{array}{cc}
b & a \\
0 & -b
\end{array}\right] Z, A_{1}=\left[\begin{array}{ll}
0 & 1 \\
b & a
\end{array}\right] Z
\end{align*}
$$

$$
\begin{equation*}
T A_{2}=A_{2}^{-1} Z, A_{2} Z \neq T Z \in K_{2}, \text { where } \tag{7}
\end{equation*}
$$

$$
T=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] Z, \quad A_{2}=\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right] Z
$$

From (6), (7) and Lemma 1 follows that $A_{1} Z, A_{2} Z \in K_{2} K_{2}$. The set $K_{2} K_{2}$ is a normal set, so matrices similar to $A_{1} Z, A_{2} Z$ also belong to the set $K_{2} K_{2}$. It is known that each matrix of $G L(2, K)$ is similar to the matrix A_{1} or A_{2}. Thus in the group $P G L(2, K)$ each matrix is similar to the matrix $A_{1} Z$ or $A_{2} Z$. Therefore $P G L(2, K) \subseteq K_{2} K_{2} \subseteq P G L(2, K)$.

The Lemma 5 does not hold for $n \geq 3$.
Theorem 4. If $n \geq 3$, then $K_{2} K_{2} \neq P G L(n, K)$.
Proof. Let us consider all the possible cases: i) $|K|>3$, $|K| \neq G F(4)$, ii) $|K|=2$, iii) $|K|=3$, iv $)|K|=4$.

In the case i) let $A=\operatorname{diag}\left(u^{-1}, u, 1\right), B=\operatorname{diag}\left(1, u, u^{-1}\right) \in G L(3, K)$. In this case there is an element u such that $u^{3} \neq 1$. A calculation shows that if $\bar{A}=A Z, \bar{B}=B Z$, then $\bar{A}, \bar{B} \in K_{2} K_{2}$ but $\bar{A} \bar{B} \notin K_{2} K_{2}$ by Lemma 1. Therefore the matrices $\operatorname{diag}\left(A, E_{s}\right) Z$,
$\operatorname{diag}\left(B, E_{s}\right) Z \in M_{n \times n}(K), n=3+s$, belong to the set $K_{2} K_{2}$ but their product does not belong to the set $K_{2} K_{2}$. In the remaining cases we act similarly, namely in the case ii) we take

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

and in the case iii)

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 2 \\
0 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 2 & 2
\end{array}\right] .
$$

In the case iv) there exists an element u such that $u^{2} \neq 1$. A calculation shows that if $u^{2} \neq 1$, then the matrix $\bar{A}=A Z$ with $A=\operatorname{diag}\left(u^{2}, u^{2}, u\right)$ cannot be similar to $A^{-1} Z$ in the group $P G L(3, K)$. Hence from Lemma 1 follows that $\bar{A} \notin K_{2} K_{2}$. Therefore the matrix $\operatorname{diag}\left(A, E_{s}\right) Z \in M_{n \times n}(K), n=3+s$, does not belong to the set.

In the cases i), ii), iii) we proved more than stated in Theorem 4, namely

Corollary 4.1. If $n \geq 3, K \neq G F(4)$, then $K_{2} K_{2}$ is not a subgroup of $\operatorname{PGL}(n, K)$.

By the way we remark that if $n \geq 3$, then $K_{2} K_{2} \not \leq G L(n, K)$, $K_{2} K_{2} \not \leq S L(n, K)$ and $K_{2} K_{2} \not \leq P S L(n, K)$, (see [2]).

Theorem 5. If $K=G F\left(p^{s}\right), p>2$, then
i) $O_{3}^{+}=(K, f)=K_{2} K_{2}$,
ii) $\quad \Omega_{3}(k, f)=K_{2} K_{2}$, where -1 is a square,
iii) $\quad K_{2} K_{2} \not \leq \Omega_{3}(K, f)$, where -1 is not a square.

Proof. It is known (see [4] p.94) that $O_{3}^{+}(K, f) \simeq P G L(2, K)$ and $\Omega_{3}(K, f) \simeq \operatorname{PSL}(2, K)$. Now i) follows from Lemma 5 while ii) and iii) follow from the theorem 5 of [2].

Theorem 6. If $K=G F\left(p^{s}\right), p>2$, then $O_{3}(K, f)=K_{2} K_{2}$.
Proof. It is known (see [4] p.84) that $O_{3}(K, f)$ is a Cartesian product $E \times O_{3}^{+}(K, f)$. Let $(E, A) \in O_{3}(K, f)$. From Theorem 5 and Lemma 1 it follows that for each $A \in O_{3}^{+}(K, f)$ there exists $T_{A} \in K_{2} \subset O_{3}^{+}(K, f)$ such that $T_{A} \neq A$ and $T_{A} A T_{A}=A^{-1}$. Hence the matrix $T=\left(E, T_{A}\right)$ fulfils
conditions $T \neq(E, A), T^{2}=(E, E)$ and $T(E, A) T=(E, A)^{-1}$. Thus $(E, A) \in K_{2} K_{2} \subseteq O_{3}(K, f)$ by Lemma 1. Therefore $O_{3}(K, f) \subseteq K_{2} K_{2}$.

Theorem 7. If $K=G F\left(p^{s}\right), p>2$, then $O_{n}(K, f)=K_{2} K_{2}$.
Proof. Induct on n. Theorem is true for $n=2$, by Theorem 3 and Corollary 2.2, and for $n=3$, by Theorem 6. Suppose that the Theorem holds for $n-1$. Let $\operatorname{dim} V=n, A \in O_{n}(K, f)$. Since the determinant of f is different from zero, there exists $v \in V$ such that $A v \neq O$. Let us consider all possible cases.
i). If $A v=v$, then $V=[v] \oplus[v]^{\perp}$ and $A\left([v]^{\perp}\right)=[v]^{\perp}$. In the basis $\left(v, e_{2}, \ldots, e_{n}\right), e_{i} \in[v]^{\perp}$, the transformation has the matrix $A=$ $\left[\begin{array}{cc}1 & 0 \\ 0 & A_{1}\end{array}\right]$. The matrix A_{1} is an orthogonal $n-1$ by $n-1$ matrix. Hence $A_{1} \in K_{2} K_{2} \subseteq O_{n-1}\left(K, f^{\prime}\right)$ by the induction hypothesis. Therefore there exists $T_{1} \neq A_{1}$, by Lemma 1 , such that $T_{1} \in K_{2}$ and $T_{1} A_{1} T_{1}=A_{1}^{-1}$. The matrix $T=\left[\begin{array}{cc}1 & 0 \\ 0 & T_{1}\end{array}\right] \in O_{n}(K, f)$ fulfils all assumptions of Lemma 1 so $T A T=A^{-1}$. Hence $A \in K_{2} K_{2} \subseteq O_{n}(K, f)$.
ii) If $A v=-v$, then in the basis $\left(v, e_{2}, \ldots, e_{n}\right)$ the transformation A has the matrix $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & A_{2}\end{array}\right]$. The rest of the proof is similar to i).
iii) Now let $A v$ be without any conditions. Since char $K \neq 2$ and A is an orthogonal transformation, by simple calculation $f(v+A v)+f(-v+$ $A v)=4 f(v) \neq 0$. Hence $f(v+A v) \neq 0$ or $f(-v+A v) \neq 0$. If $f(v+A v) \neq 0$, then $V=[v+A v] \oplus[v+A v]^{\perp}$ and the transformation

$$
S_{v+A v} x=x-\frac{2 B(x, v+A v)}{f(v+A v)}(v+A v) \text { for all } x \in v
$$

is an orthogonal reflection with regard to $[v+A v]^{\perp}$, (see $[3]$ p.86). For $x=A v$ we have

$$
S_{v+A v}(A v)=A v-\frac{2 B(A v, v+A v)}{f(v+A v)}(v+A v)
$$

A simple calculation shows that $B(A v, v+A v)=\frac{1}{2} f(v+A v)$. Hence $S_{v+A v} A v=-v$ is an orthogonal transformation and as a result $A(v)=$ $-S_{v+A v}(v)$ for all $v \in V$, by $S_{v+A v}^{2}=E$. Therefore $A(v+A v)=$ $-S_{(v+A v)}(v+A v)=v+A v$, by a). Thus we obtain the case i). If $f(-v+$ $A v) \neq 0$, then the same calculation gives $A(-v+A v)=-(-V+A v)$ i.e. the case ii). By mathematical induction, the theorem holds for every n.

Theorem 8. In the unitary group $U_{n}(C, f), K_{2} K_{2} \neq U_{n}(C, f)$.
Proof. If $n \geq 3$, then the matrix $A=\varepsilon E \in U_{n}(C, f)$, where ε is a primary $n^{\text {th }}$ root of unity. There does not exist $T \in K_{2}$ such that $T^{-1} A T=A^{-1}$ because otherwise we receive $A^{2}=E$, a contradiction.

If $n=2$, the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ must fulfil the following conditions: $a \bar{a}=c \bar{c}=1, \quad b \bar{b}+d \bar{d}=0, \quad a \bar{b}+c \bar{d}=0, \quad a d-b c=1$.
Thus $A=\left[\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right], a \bar{a}+b \bar{b}=1$. A simple calculation shows that $A^{2}=E$ iff $A= \pm E$.

The same formal calculation as in the proof of Theorem 8 in the case $n=2$, shows that $K_{2} K_{2}=\{E\}$ is the group $S U\left(2, p^{2 k}\right)$. The definition of $S U\left(2, p^{2 k}\right)$ is given in [6] p. 194 .

For the investigation of automorphism of a quadratic form over $K=G F\left(2^{s}\right)$ we need a few more lemmas.

Lemma 6. Let G be a group, P a subset such that $P=P^{-1}$ and $G-P$ a subgroup of G. Then $G-P \leq P P$.

Proof. We have

$$
\begin{equation*}
b P \cap P \neq \emptyset \text { for each } b \in G-P . \tag{8}
\end{equation*}
$$

If not, there exists $c \in G-P$ such that $c P \subset G-P$. Hence there exists $p \in P$ such that $c p=g \in G-P$ and $p=C^{-1} g \in G-P$, a contradiction. Now (8) implies that for each $b \in G-P$ there exist p_{1}, p_{2} such that $b p_{1}=p_{2}$ i.e. $b=p_{2} p_{1}^{-1} \in P P$, by $P^{-1}=P$. Hence $G-P \subset P P$.

Lemma 7. Let G be a group, $H<G$. Then $(G-H)^{2} \unlhd G$, (see [1]).
From Lemmas 6 and 7 results
Theorem 9. Let G be a group, P a subset of G such that $P=P^{-1}$ and $G-P$ a subgroup of G. Then $G-P<P P \unlhd G$.

By Lemma 2 a quadratic form over $G F\left(2^{s}\right)$ is
a) $f=x_{1} x_{2}$,
b) $f=x_{1} x_{2}+\lambda\left(x_{1}^{2}+x_{2}^{2}\right), \lambda \neq 0$.

The following two theorems concern groups of automorphisms of forms a), b).

Theorem 10. In the group $O_{2}(K, f), K=G F\left(2^{s}\right)$ with $f=x_{1} x_{2}$, $K_{2} K_{2}=O_{2}^{+}(K, f) \neq O_{2}(K, f)$.

Proof. If $|K|=2$, then the theorem is evident because $K_{2}=\{E\}$. If $|K| \neq 2$, then

$$
\begin{aligned}
O_{2}(K, f) & =\left\{\left[\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right],\left[\begin{array}{cc}
0 & b \\
b^{-1} & 0
\end{array}\right], a, b \in K^{x}\right\}, \\
K_{2} & =\left\{\left[\begin{array}{cc}
0 & b \\
b^{-1} & 0
\end{array}\right] ; b \in K^{x}\right\}
\end{aligned}
$$

and $O_{2}^{+}(K, f)=O_{2}(K, f)-K_{2}$ is a subgroup of $O_{2}(K, f)$. From Theorem 9 for $P=K_{2}$ we have $O_{2}^{+}(K, f) \leq K_{2} K_{2} \triangleleft O_{2}(K, f)$. It is easy to see that $K_{2} K_{2} \subseteq O_{2}^{+}(K, f)$. Hence $K_{2} K_{2}=O_{2}^{+}(K, f)$.

Theorem 11. If $K=G F\left(2^{s}\right)$, then in the group $O_{2}(K, f)$ with

$$
\begin{aligned}
& f=x_{1} x_{2}+\lambda\left(x_{1}^{2}+x_{2}^{2}\right), \quad \lambda \neq 0, \\
& \quad O_{2}^{+}(K, f)=O_{2}(K, f)-K_{2}=K_{2} K_{2} \neq O_{2}(K, f) .
\end{aligned}
$$

Proof. The matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in O_{2}(K, f)$ must fulfil the conditions

$$
\begin{equation*}
a c \lambda^{-1}+a^{2}+c^{2}=1, \quad b d \lambda^{-1}+b^{2}+d^{2}=1, \quad a d+b c=1 . \tag{9}
\end{equation*}
$$

Thus matrices of group $O_{2}(K, f)$ have the form $\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]$ or $\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$ and

$$
K_{2}=\left\{\left[\begin{array}{ll}
a & b \\
c & a
\end{array}\right], \quad a \neq 1 \vee b \neq 0 \vee c \neq 0\right\} .
$$

The set

$$
O_{2}^{+}(K, f)=\left\{\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right], a \neq 1 \vee d \neq 0 \vee b \neq 1, \quad a+d=d \lambda^{-1}\right\}
$$

is a subgroup of $O_{2}(K, f)$, (see [4], p.105). From Theorem 9 results that

$$
\begin{equation*}
O_{2}^{+}(K, f) \leq K_{2} K_{2} \unlhd O_{2}(K, f) . \tag{10}
\end{equation*}
$$

By Lemma 1 and a simple calculation we see that $F=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \notin K_{2} K_{2}$.
Hence $K_{2} K_{2} \neq O_{2}(K, f)$. Let us observe that $K_{2} K_{2} \subseteq O_{2}^{+}(K, f)$. Indeed, we have

$$
\left[\begin{array}{ll}
a & b \\
c & a
\end{array}\right] \cdot\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & a_{1}
\end{array}\right]=\left[\begin{array}{ll}
a a_{1}+b c_{1}, & a b_{1}+b a_{1} \\
c a_{1}+a c_{1} & c b_{1}+a a_{1}
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]=C .
$$

From conditions (9) for $b_{1} \neq 0, b \neq 0$ we have $s=c_{11}+c_{22}=b c_{1}+c b_{1}=$ $b b_{1}^{-1}\left(a_{1}^{2}+1\right)+b_{1} b^{-1}\left(a^{2}+1\right)=b a_{1}+b_{1} a \lambda^{-1}=c_{12} \lambda^{-1}$. The proof is similar if $c \neq 0, c_{1} \neq 0$. Similarly it can be shown that $c_{21}=c_{12}$. Thus $C \in O_{2}(K, f)$. Therefore $K_{2} K_{2} \subseteq O_{2}^{+}(K, f)$ and $O_{2}^{+}(K, f)=K_{2} K_{2}$, by (10).

Lemma 8. If $K=G F\left(2^{s}\right)$, then $K_{2} K_{2} \neq O_{3}(K, f)$.
Proof. A calculation shows that K_{2} consists of matrices

$$
\begin{array}{lll}
A=\left[\begin{array}{ccc}
a & , a\left(a^{2}+1\right) b^{-2} & , 0 \\
b^{2} a^{-1} & , a & , 0 \\
b & , a b^{-1}(a+1) & , 1
\end{array}\right], & B=\left[\begin{array}{ccc}
1 & c^{2} & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right], \\
C=\left[\begin{array}{ccc}
0 & d & 0 \\
d^{-1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right], & & D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
e^{2} & 1 & 0 \\
e & 0 & 1
\end{array}\right] .
\end{array}
$$

We will show that $B \notin K_{2} K_{2}$. Suppose that there exists $T \in K_{2}$ such that $T \neq B$ and $T B T=B^{-1}$. The condition $T \neq B$ is fulfilled by matrices A, C, D. A simple calculation shows that the equalities $A B A=B, C B C=B, D B D=B$ do not hold. Thus $B \in K_{2} K_{2}$ by Lemma 1.

Theorem 12. If $K=G F\left(2^{s}\right)$, then $K_{2} K_{2} \neq O_{n}(K, f)$.
Proof. If n is even, then from Theorem 10,11 and Lemma 1 it results that there exists $A_{1} \in O_{2}(K, f)$ for wich there is no $T_{1} \in K_{2} \subset O_{2}(K, f)$ such that $T_{1} \neq A_{1}$ and $T^{-1} A_{1} T_{1}=A_{1}^{-1}$. Hence for $A=\operatorname{diag}\left(E_{m}, A_{1}\right) \in$ $O_{m+2}(K, f)$ (m-even, f-extension quadratic form f to $n=m+2$) there is no $T \in K_{2} \subset O_{m+2}\left(K, f^{\prime}\right)$ such that $T \neq A, T^{-1} A T=A^{-1}$. Therefore $A \notin K_{2} K_{2} \subset O_{m+2}\left(K, f^{\prime}\right)$, by Lemma 1 .

If n is odd, the proof is the same except that we use Lemma 8 , instead of Theorems 10, 11 .

References

[1] E. Ambrosiewicz, On the property W for modular groups, Demonstratio Mathematica, Vol XI, Nr 2 (1978).
[2] J. Ambrosiewicz, On the square of sets of linear groups, Rend. Sem. Mat. Univ. Padova, Vol 75 (1986).
[3] Н. БУрБАКИ, Группы и Алгебры Ли, Москва, 1972.
[4] Ж. Дьёдонне , Геометрия классических групп, Москва, 1974.
[5] L. E. Dickson, Linear groups, Berlin, Tubner, 1900.
[6] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin Heidelberg New York, 1967.
[7] F. Bachmann, Eine Kennzeichnung der Gruppe der gebrochen linearen Transformationen, Math. Annalen, Bd. 126.8 (1953), 79-92.

JAN AMBROSIEWICZ
INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY
OF BIAEYSTOK
15-351 BIAEYSTOK
UL. WIEJSKA 45 A
POLAND
(Received May 21, 1991)

