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Semi-continuous mappings and
fixed point theorems in quasi metric spaces

By LJUBOMIR ĆIRIĆ (Belgrade)

Abstract. In this paper a class of selfmaps on quasi-metric spaces which sat-
isfy the contractive definition (A), or (B), or (C) below are investigated and general
common fixed and periodic point theorems are proved. These theorems generalize and
extend the fixed point theorem of Dowing and Kirk [7] and a great number of known
generalizations of Caristi’s Theorem [3]. Two examples are constructed to show the
generality of the given theorems.

1. Introduction

Let X be a non-void set and T : X → X a selfmap. A point x ∈ X is
called a periodic point for T if there exists a positive integer k such that
T kx = x. If k = 1, then x is called a fixed point for T . Suppose X and
Y are topological spaces and S : X → Y a mapping. S is said to be a
closed mapping if for {xn} ⊆ X the conditions xn → x and Sxn → y

imply Sx = y.
Let R+ denote the set of non-negative real numbers. D. Downing

and W. A. Kirk [7] proved and applied to non-linear mapping theory the
following theorem which reduces to the theorem of J. Caristi [3] in the
case that X = Y , S is the identity mapping, and c = 1.

Theorem (Downing–Kirk [7]). Let X and Y be complete metric spaces

and T : X → X an arbitrary mapping. Suppose there exists a closed
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mapping S : X → Y , a lower semi-continuous mapping Φ : S(X) → R+,

and a constant c > 0 such that for each x ∈ X,

(DK) max{d(x, Tx), c · d(Sx, STx)} ≤ ΦSx− ΦSTx.

Then T has a fixed point.

Caristi’s or Caristi–Kirk–Browder theorem is known to be essentially
equivalent to a theorem stated earlier by Ekeland [9]. On account of the
generality and applicability of Caristi’s fixed point theorem, many authors
established results which generalize or revise that result ([1], [4–7], [9–19],
[23–24], [26]).

The purpose of this paper is to investigate a class of selfmappings
on quasi-metric spaces which satisfy the contractive condition (A) below,
which is more general than the contractive condition (DK). We introduce
a concept of weak lower semi-continuity (definition 1 below) and apply this
concept to a governing function Φ, which appears in contractive definitions
of Caristi and Kirk type. First we prove a Lemma, which then is used
in fixed point and periodic point theorems. We prove common periodic
point and fixed point theorems for mappings which satisfy the contractive
definition (A), and a stationary theorem for set-valued (non-self) mappings
which satisfy the contractive definition (C) below. The results of this paper
generalize the results of Downing and Kirk [7] and a great number of
known generalizations or modifications of Caristi’s fixed point theorem
([6], [11–17], [19], [23]). Two examples are constructed to show that our
results are proper generalizations of these results.

There are many papers which are related to the proof of Caristi’s
Theorem ([14], [18], [24], [26]). Our method used in this note is somewhat
different from those.

2. Main results

Recall that a real valued function Φ, defined on a topological space X,
is said to be lower semi-continuous (l.s.c.) at x in X iff {xλ} is a net in X

and lim xλ = x implies Φx ≤ lim inf Φxλ. Now we shall slightly generalize
this concept.
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Definition 1. A real-valued function Φ defined on a topological space
X is said to be weak lower semi-continuous (w.l.s.c.) at x ∈ X, iff {xλ} is
a net in X and

limxλ = x implies Φx ≤ lim sup Φxλ.

A mapping Φ is said to be w.l.s.c. on X iff it is w.l.s.c. at every x ∈ X.

Clearly, l.s.c. functions are w.l.s.c., but the implication is not re-
versible.

Throughout this paper, N denotes the set of positive integers and R+

the set of non-negative real numbers. Since many (pathological) quasi-
metric spaces are not metrizable, all our main results are stated for quasi-
metric spaces.

A pair (X, d) of a set X and a mapping d from X × X into real
numbers is said to be a quasi-metric space iff for all x, y, z ∈ X:

1◦ d(x, y) ≥ 0 and d(x, y) = 0 iff x = y,

2◦ d(x, z) ≤ d(x, y) + d(y, z).

Let dx : X → [0,+∞) be defined by dx(y) = d(x, y).
A sequence {xn} in X is said to be a left k-Cauchy sequence if for

each k ∈ N there is an Nk such that d(xn, xm) < 1/k for all m ≥ n ≥ Nk.
A quasi-metric space is left k-sequentially complete if each left k-Cauchy
sequence is convergent (compare [20], [22], [25]).

We note that if a real-valued function G, defined on X by G(x) =
d(x, Tx), is (weak) lower semi-continuous, then any hypothesis of conti-
nuity of a function Φ in fixed point theorems of Caristi–Kirk type can be
omitted (see [1], [5]).

Now we are able to state the following

Lemma. Let (X, d) and (Y, ρ) be left k-sequentially complete quasi-

metric spaces such that for each x in X the mapping u → d(x, u) is con-

tinuous on X and for each y in Y the mapping v → ρ(y, v) is continuous

on Y . If there exists a closed mapping S : X → Y and a w.l.s.c. mapping

Φ : S(X) → R+, then for each x in X the set

P (x) = {z ∈ X | max{d(x, z), ρ(Sx, Sz)} ≤ ΦSx− ΦSz}
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has the following properties:

1◦. P (z) ⊆ P (x) for each z ∈ P (x),

2◦. P (p) = {p} for some p ∈ P (x).

Proof. The set P (x) is nonempty, as x ∈ P (x). Now we shall show
1◦. Let z ∈ P (x), and let y ∈ P (z). Then

max{d(x, z), ρ(Sx, Sz)} ≤ ΦSx− ΦSz,(1)

max{d(z, y), ρ(Sz, Sy)} ≤ ΦSz − ΦSy,(2)

Using the triangle inequality and (1) and (2) we get

(3) d(x, y) ≤ d(x, z)+d(z, y) ≤ (ΦSx−ΦSz)+(ΦSz−ΦSy) = ΦSx−ΦSy

and similarly,

(4) ρ(Sx, Sy) ≤ ΦSx− ΦSy.

From (3) and (4) we have y ∈ P (x). Therefore, we proved 1◦.
Now we show 2◦. For any x in X set

a(x) = inf{ΦSz : z ∈ P (x)}.

Let x in X be arbitrary. We shall choose a sequence {xn} in P (x) as
follows: when x = x1, x2, . . . , xn have been choosen, choose xn+1 ∈ P (xn)
such that ΦSxn+1 ≤ a(xn)+1/n. Thus, one obtains a sequence {xn} such
that

max{d(xn, xn+1), ρ(Sxn, Sxn+1)} ≤ ΦSxn − ΦSxn+1,(5)

ΦSxn+1 − 1/n ≤ a(xn) ≤ ΦSxn+1.(6)

By (5) {ΦSxn} is a non-increasing squence of reals and so it converges.
Therefore, by (6) there is some a ≥ 0 such that

(7) a = limn a(xn) = limn ΦSxn.
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Let now k ∈ N be arbitrary. By (7) there exists some Nk such that
ΦSxn < a + 1/k for all n ≥ Nk. Thus, by monotony of {ΦSxn}, for
m ≥ n ≥ Nk we have a ≤ ΦSxm ≤ Φxn < a + 1/k and hence

(8) ΦSxn − ΦSxm < 1/k for all m ≥ n ≥ Nk.

From the triangle inequality, (5) and (8) we get (for all m ≥ n ≥ Nk)

(9) d(xn, xm) ≤
m−1∑

i=n

d(xi, xi+1) ≤ ΦSxn − ΦSxm < 1/k.

Similarly,

(10) ρ(Sxn, Sxm) ≤
m−1∑

i=1

ρ(Sxi, Sxi+1) ≤ ΦSxn − ΦSxm < 1/k.

Therefore, {xn} is a left k-Cauchy sequence in X, and {Sxn} is a left k-
Cauchy sequence in Y . By completeness there exist p ∈ X and q ∈ Y such
that xn → p and Sxn → q. Since S is a closed mapping, Sp = q. Since Φ
is w.l.s.c., by (7) we have

(11) ΦSp ≤ limn supΦSxn = a.

From (9) and (10),

ΦSxm ≤ ΦSxn −max{d(xn, xm), ρ(Sxn, Sxm)}.

Since Φ is w.l.s.c. on SX and u → d(x, u) on X and v → d(y, v) on Y are
continuous, we have

ΦSp ≤ limm supΦSxm

≤ ΦSxn + limm sup[−max{d(xn, xm), ρ(Sxn, Sxm)}]
≤ ΦSxn − limm inf[max{d(xn, xm), ρ(Sxn, Sxm)}]
≤ ΦSxn −max{d(xn, p), ρ(Sxn, Sp)}.

Hence

(12) max{d(xn, p), ρ(Sxn, Sp)} ≤ ΦSxn − ΦSp.
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From (12) it follows that p ∈ P (xn) and hence

a(xn) ≤ ΦSp for every n ∈ N.

Taking the limit when n tends to infinity we have

(13) lim
n→∞

a(xn) ≤ ΦSp.

From (7), (11) and (13),

(14) ΦSp = a.

Since p ∈ P (xn) and xn ∈ P (x) for each n ∈ N, by property 1◦ we have
p ∈ P (x).

Suppose now that p1 ∈ P (p) and p1 6= p. Then ΦSp1 < ΦSp, or by
(14), ΦSp1 < a. Since p ∈ P (xn), by 1◦ we have P (p) ⊆ P (xn). Hence
p1 ∈ P (xn). Thus

a(xn) ≤ ΦSp1 for every n ∈ N.

Taking the limit when n tends to infinity we get

a ≤ ΦSp1.

This is in contradiction with ΦSp1 < p. Therefore, p1 = p which proves 2◦.
Now we shall use the Lemma to prove the following periodic point

and fixed point theorems.

Theorem 1. Let (X, d) and (Y, ρ) be complete left k-sequentially
quasi-metric spaces and F a family of arbitrary mappings T : X → X.
Suppose there exist a closed mapping S : X → Y and a w.l.s.c. mapping
Φ : S(X) → R+ such that for each x ∈ X and each T ∈ F :

(A) max{d(x, Tnx), ρ(Sx, STnx)} ≤ ΦSx− ΦSTnx,

where n = n(x, T ) is a positive integer. If for each x in X the mapping
u → d(x, u) on X is continuous, and for each y in Y the mapping v →
d(y, v) on Y is continuous, then F has a common periodic point.

Proof. Condition (A) means that for each x in X and T in F , Tnx
is in P (x). By the Lemma there exists some p in X such that P (p) = {p}.
So it follows from (A) with x = p that Tn(p,T )p ∈ P (p) = {p} for every
T ∈ F . Therefore, Tn(p,T )p = p for each T ∈ F , that is p is a common
periodic point of F . ¤
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Corollary 1. Theorem 1 holds with inequality (A’) below in the place

of inequality (A):

(A’) max{d(x, Tnx), ρ(Sx, STnx)} ≤ ΦSx− ΦSTx.

Proof. From (A’), ΦSTx ≤ ΦSx for each x ∈ X. Hence ΦST 2x ≤
ΦSTx, and so on. Therefore, {ΦSTnx}∞n=0 is a non-increasing sequence
of reals. Hence

ΦSx− ΦSTx ≤ ΦSx− ΦSTn(x,Tx)x.

Therefore, (A’) implies (A). ¤

Remark 1. Example 1 below shows that a periodic point in Theorem 1
need not be a fixed point. Therefore, one must add some hypotheses in
order to ensure that F possesses a common fixed point.

Theorem 2. A family F in Theorem 1 possesses a common fixed point

if in addition F satisfies the following condition: for any T ∈ F :

(15) x 6= Tx implies ΦST kx < ΦSx,

where k = k(x, T ) is a positive integer.

Proof. By Theorem 1 there is p in X such that Tn(p,T )p = p. Then
for any fixed T ∈ F the orbit O(p) = O(p, T ) is a finite set of points in X.
Let y ∈ O(p) be such that

(16) ΦSy = min{ΦSz : z ∈ O(p)}.

Assume that y 6= Ty. Since T ky ∈ O(p) for all k ∈ N , from (16) we
have that ΦST ky ≥ ΦSy for all k ∈ N , which contradicts (15). Therefore,
Ty = y. Hence p = y as p ∈ O(y, T ). ¤

Corollary 2. Let (X, d) and (Y, ρ) be left k-complete metric spaces

and F a family of arbitrary mappings T : X → X. Suppose there exist a

closed mapping S : X → Y , and a w.l.s.c. mapping Φ : S(X) → R+, such

that for each x ∈ X and T ∈ F the conditions (A) and (15) hold. Then F

has a common fixed point.
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Remark 2. We pointed out that if F = {T} is a singleton and T satis-
fies (A) with n(x, T ) = 1 for all x ∈ X, then (A) implies the condition (15)
with k(x, T ) = 1. Therefore Downing–Kirk’s Theorem [7] is a special
case of Corollary 2, if in that theorem Φy is replaced by max{c, 1/c}Φy.

Remark 3. Example 2 below shows that Corollary 2 is a proper gen-
eralization of Downing–Kirk’s Theorem [7].

Corollary 3. Let (X, d) be a complete metric space and T : X → X

a mapping. Suppose there exist a w.l.s.c. mapping Φ : X → R+ and

mappings n, k : X → N such that for each x ∈ X the conditions

(B) d
(
x, Tn(x)x

)
≤ Φx− ΦTn(x)x

and 15) hold. Then T has a fixed point.

Proof. Corollary 3 is a special case of Corollary 2 in the case that
Y = X, S is the identity mapping and F = {T} is a singleton. ¤

Corollary 4. Suppose that T : X → X and Φ : X → R+, where X is

a left k-complete quasi-metric space and Φ is w.l.s.c. If for each x ∈ X,

(B’) d(x, Tx) ≤ Φx− ΦTx

and a mapping u → d(x, u) on X is continuous, then T has a fixed point.

Proof. Corollary 4 is a special case of Theorem 2 in the case that
F = {T} is a singleton, Y = X, S is the identity mapping, n(x)=k(x) = 1.

¤

The following theorem is an extension of Downing–Kirk’s Theorem to
multi-valued mappings and contains the main theorems of [13], [17] and
[23] as corollaries.

Theorem 3. Let (X, d) and (Y, ρ) be left k-complete quasi-metric

spaces, A a closed subset of X and F : A → 2X a set-valued mappings

such that Fx is non-empty for all x ∈ X. Suppose that there exist a closed

mapping S : X → Y and a w.l.s.c. mapping Φ : SX → R+ such that for

each x ∈ A with {x} 6= Fx, there exists z = z(x) ∈ A \ {x} such that

(C) max{d(x, z), d(Sx, Sz)} ≤ ΦSx− ΦSz.
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If for each x ∈ X and y ∈ Y the mappings u → d(x, u) on X and v →
d(y, v) on Y are continuous, then F has a stationary point ξ ∈ A, that is,

Fξ = {ξ}.
Proof. Suppose {x} 6= Fx for each x ∈ A. Consider a choice

function T : A → A such that Tx = z, where z = z(x) satisfies (C).
Then T satisfies all assumptions of Theorem 2 in case F is a singleton
with n(x) = k(x) = 1. Consequently, there is some ξ ∈ A such that
Tξ = ξ. This implies that {ξ} = Fξ, for otherwise by hypothesis there
is z = z(ξ) ∈ A \ (ξ), such that Tξ = z(ξ) 6= ξ, contradicting Tξ = ξ.
Therefore Fξ = {ξ}, which completes the proof. ¤

Renmark 4. In [25] an example is presented to show that there are
quasi-metric spaces which are not metrizable, although y → d(x, y) is
continuous for each x ∈ X.

3. Examples

Example 1. Let X = [−3,−1] ∪ [1, 3] and Y = [1, 2] have the usual
metric and F = {T} be a singleton. Define T : X → X by Tx = −x and
S : X → Y by Sx = 1

2 + x
2 if x > 0 and Sx = 1

2 − x
2 if x < 0. Then T

satisfies (A) with n(x) = 2 for any (continuous) function Φ : Y → R+ but
T has no fixed point. Each point in X is a periodic point for T .

Example 2. Let X = {0} ∪ {±1/n : n = 1, 2, . . . } and Y = R have
the usual metric. Let F = {T} be a singleton and define T : X → X

by T (1/n) = −1/(n + 1), T (−1/n) = 1/(n + 1) and T (0) = 0. Define
S : X → Y by Sx = x

1+2|x| and Φ : Y → R+ by Φ(y) = 4
(
|y|+ |y|

1+|y|
)
.

Then for x = ± 1
n we have:

d(x, Tx) =
1
n

+
1

n + 1
; d(x, T 2x) =

1
n
− 1

n + 2
,

d(Sx, STx) =
1

n + 2
+

1
n + 3

; d(Sx, ST 2x) =
1

n + 2
− 1

n + 4
.

Hence
max{d(x, T 2x)d(Sx, ST 2x)} = d(x, T 2x),
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d(x, T 2x) =
1
n
− 1

n + 2
< 4

(
1

n + 2
+

1
n + 3

)
− 4

(
1

n + 4
+

1
n + 5

)

= Φ(Sx)− Φ(ST 2x).

Since ΦST 2x < ΦSx for each x 6= 0, we conclude that for every x ∈ X,
T satisfies (A) with n(x) = 2 and (15) with k(x) = 2. As X and Y are
complete metric spaces and Φ(y) = 4

(
|y|+ |y|

1+|y|
)

is continuous on Y , we
conclude that Corollary 2 can be applied and x = 0 is a fixed point.

To show that Downing–Kirk’s tehorem is not applicable, we establish
that there does not exist a function Φ : Y → R+ such that T satisfies
(A) with n(x) = 1 for all x ∈ X. Similarly as in [8] it can be shown that

such a function exists if and only if the series
∞∑

n=0
max{d(Tnx, Tn+1x),

d(STnx, STn+1x)} converges for all x ∈ X. Since in our example for any
fixed x = ±1/m0 we have

max{d(Tnx, Tn+1x), d(STnx, STn+1x)} = d(Tnx, Tn+1x),

d(Tnx, Tn+1x) =
1

n + m0
+

1
n + 3 + m0

>
2

n + 3 + m0
,

we conclude that the series diverges and hence there is no function
Φ : Y → R+ such that (A) holds with n(x) = 1 for any x 6= 0 in X.

We note that there are examples in which {n(x) : x ∈ X} must be
unbounded.
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