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On a sharp inequality
for the Laplacian of a polyharmonic function

By MIROSLAV PAVLOVIĆ (Belgrade)

Abstract. We give a short proof of the sharp inequality |∆f(0)|≤4d(m − 1)2

supB |f |, where f is a polyharmonic function of order m on the unit ball in the Euclidean
d-space.

Let Bd denote the unit ball in the Euclidean d-space, and let Hm(Bd)
(m = 1, 2, . . . ) denote the class of those functions f on Bd for which
∆mf = 0, where ∆m stands for the m-th power of the Laplacian. In [3]
Kounchev considered the inequality

(1) |∆kf(0)| ≤ C sup
Bd

|f |, f ∈ Hm(Bd),

and stated that the best constant is C = 2kT
(k)
m−1(1), where T

(k)
m−1 is the

k-th derivative of the Chebyshev polynomial Tm−1. However, elementary
examples show that C must depend on d. By Theorem 1 below, the best
constant in the case k = 1 is equal to 4d(m− 1)2.

For two integers n and k, 1 ≤ k ≤ n, let

A(n, k) = n2(n2 − 12) . . . (n2 − (k − 1)2)

and
A(n, k, d) = A(n, k)d(d + 2) . . . (d + 2k − 2)/(2k − 1) ! ! .

Thus A(n, k) = A(n, k, 1).
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Theorem 1. If 1 ≤ k ≤ m − 1 and d ≥ 1, then the best constant in

(1) is C = 4kA(m− 1, k, d).

We will deduce this theorem from the theorem of the Markov brothers
[1, p. 323], which we state as follows:

Theorem M. Let Pn(t) be a polynomial of degree n such that

|Pn(t)| ≤ 1 for all 0 ≤ t ≤ 1. Then

(2) |P (k)
n (0)| ≤ 2kT (k)

n (1)

for 1 ≤ k ≤ n.

Recall that Tn(t) = cos(n arccos t) and

T (k)
n (1) = A(n, k)/(2k − 1) ! ! .

Corollary. Let Q(t) = Pn(t2), where Pn is as above. Then

|Q2k(0)| ≤ 4kA(n, k).

Proof. This follows from Theorem M by using the formula

Q(2k)(0) = (2k) ! (k !)−1P (k)
n (0) = 2k(2k − 1) ! ! P (k)

n (0). ¤

Since T2n(t) = (−1)nTn(1− 2t2), we see that

(3) |T (2k)
2n (0)| = 4kA(n, k),

and therefore the corollary proves a particular case of Theorem 1. In the
general case we need a simple formula as well.

Lemma. Let uj(x) = |x|2j , x ∈ Bd. Then ∆kuj(0) = 0 for k 6= j and

∆kuk(0) = (2k) ! ! d(d + 2) . . . (d + 2k − 2).

Proof. By direct computation one shows that

∆uj(x) = 2j(2j − 2 + 2d)|x|2j−2
.

Successive applications of this formula yield the conclusion of the lemma.
¤
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Proof of Theorem 1. Let f ∈ Hm(Bd) and |f(x)| ≤ 1 for all x ∈ Bd.
Let u denote the radialization of f ,

(4) u(x) =
∫

f(Gx)dG,

where the integral is taken over the group of all orthogonal transforma-
tions of the d-space. Since the Laplacian commutes with the orthogonal
transformations, we have that u ∈ Hm(Bd), ∆ku(0) = ∆kf(0) as well
as |u(x)| ≤ 1 for all x ∈ Bd. And since u is a radial function, there is
a polynomial Pm−1(t), deg Pm−1 ≤ m − 1, such that u(x) = Pm−1(|x|2).
(This can be proved by induction or by using the Almansi theorem [2]).
By using the lemma we find that

(5) ∆ku(0) = Q(2k)(0)d(d + 2) . . . (d + 2k − 2)/(2k − 1) ! ! ,

where Q(t) = Pm−1(t2). Now we apply the Corollary to Theorem M to
obtain

|∆kf(0)| = |∆ku(0)| ≤ 4kA(m− 1, k, d).

Finally, to show that the constant is the best possible, let f(x) =
Tm−1(1 − 2|x|2) = (−1)m

T2m−2(|x|). Using the formulas (5) (u = f) and
(3) shows that ∆kf(0) = 4kA(m − 1, k, d), and this completes the proof.

¤

Remark 1. The best constant can be attained on non-radial functions.
As an example consider the case where d = 2, m = 2 and k = 1, and
identify the 2-space with the complex plane. Let

f(x) = −1 + 2(1− 2|x|2)u(x),

u(x) = <((1− ax2)−1)

for some a, |a| ≤ 1. Since 0 < u(x) ≤ (1− |x|2)−1 we have −1 ≤ f(x) ≤ 1
for all x ∈ B2, and −∆f(0) = 8u(0) = 8 = 4kA(m− 1, k, d).

Remark 2. A slight improvement of Theorem 1 follows from the proof.
Let

I(r, f) =
∫

S

f(ry)dσ(y), 0 < r < 1,
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where dσ is the normalized surface measure on S. Then there holds the
sharp inequality

(6) |∆kf(0)| ≤ 4kA(m− 1, k, d) sup
r<1

|I(r, f)|, f ∈ Hm(Bd).

It should be noted, however, that (6) is obtained by an application of (1)
to the function u defined by (4).

Remark 3. Only minor modifications of the proof of Theorem 1 are
needed to show the following: Let α > 0, 1 ≤ q ≤ ∞ and let Cq =
Cq(n, k, α) denote the best constant in the inequality

|P (k)
n (0)| ≤ Cq

(∫ 1

0

|Pn(t)|qtα−1dt

)1/q

.

Then there holds the sharp inequality

|∆kf(0)| ≤ Dq(m− 1, k, d/2)
(∫

Bd

|f |qdν

)1/q

,

for f ∈ Hm(Bd), where dν is the normalized measure on Bd and

Dn(n, k, α) = (2/d)1/q 2kd(d + 2) . . . (d + 2k − 2) Cq(n, k, α).
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