On a sharp inequality for the Laplacian of a polyharmonic function

By MIROSLAV PAVLOVIĆ (Belgrade)

Abstract

We give a short proof of the sharp inequality $|\Delta f(0)| \leq 4 d(m-1)^{2}$ $\sup _{\boldsymbol{B}}|f|$, where f is a polyharmonic function of order m on the unit ball in the Euclidean d-space.

Let \boldsymbol{B}^{d} denote the unit ball in the Euclidean d-space, and let $H_{m}\left(\boldsymbol{B}^{d}\right)$ $(m=1,2, \ldots)$ denote the class of those functions f on \boldsymbol{B}^{d} for which $\Delta^{m} f=0$, where Δ^{m} stands for the m-th power of the Laplacian. In [3] Kounchev considered the inequality

$$
\begin{equation*}
\left|\Delta^{k} f(0)\right| \leq C \sup _{\boldsymbol{B}^{d}}|f|, \quad f \in H_{m}\left(\boldsymbol{B}^{d}\right), \tag{1}
\end{equation*}
$$

and stated that the best constant is $C=2^{k} T_{m-1}^{(k)}(1)$, where $T_{m-1}^{(k)}$ is the k-th derivative of the Chebyshev polynomial T_{m-1}. However, elementary examples show that C must depend on d. By Theorem 1 below, the best constant in the case $k=1$ is equal to $4 d(m-1)^{2}$.

For two integers n and $k, 1 \leq k \leq n$, let

$$
A(n, k)=n^{2}\left(n^{2}-1^{2}\right) \ldots\left(n^{2}-(k-1)^{2}\right)
$$

and

$$
A(n, k, d)=A(n, k) d(d+2) \ldots(d+2 k-2) /(2 k-1)!!.
$$

Thus $A(n, k)=A(n, k, 1)$.

Theorem 1. If $1 \leq k \leq m-1$ and $d \geq 1$, then the best constant in (1) is $C=4^{k} A(m-1, k, d)$.

We will deduce this theorem from the theorem of the Markov brothers [1, p. 323], which we state as follows:

Theorem M. Let $P_{n}(t)$ be a polynomial of degree n such that $\left|P_{n}(t)\right| \leq 1$ for all $0 \leq t \leq 1$. Then

$$
\begin{equation*}
\left|P_{n}^{(k)}(0)\right| \leq 2^{k} T_{n}^{(k)}(1) \tag{2}
\end{equation*}
$$

for $1 \leq k \leq n$.
Recall that $T_{n}(t)=\cos (n \arccos t)$ and

$$
T_{n}^{(k)}(1)=A(n, k) /(2 k-1)!!
$$

Corollary. Let $Q(t)=P_{n}\left(t^{2}\right)$, where P_{n} is as above. Then

$$
\left|Q^{2 k}(0)\right| \leq 4^{k} A(n, k)
$$

Proof. This follows from Theorem M by using the formula

$$
Q^{(2 k)}(0)=(2 k)!(k!)^{-1} P_{n}^{(k)}(0)=2^{k}(2 k-1)!!P_{n}^{(k)}(0)
$$

Since $T_{2 n}(t)=(-1)^{n} T_{n}\left(1-2 t^{2}\right)$, we see that

$$
\begin{equation*}
\left|T_{2 n}^{(2 k)}(0)\right|=4^{k} A(n, k) \tag{3}
\end{equation*}
$$

and therefore the corollary proves a particular case of Theorem 1. In the general case we need a simple formula as well.

Lemma. Let $u_{j}(x)=|x|^{2 j}, x \in \boldsymbol{B}^{d}$. Then $\Delta^{k} u_{j}(0)=0$ for $k \neq j$ and

$$
\Delta^{k} u_{k}(0)=(2 k)!!d(d+2) \ldots(d+2 k-2)
$$

Proof. By direct computation one shows that

$$
\Delta u_{j}(x)=2 j(2 j-2+2 d)|x|^{2 j-2}
$$

Successive applications of this formula yield the conclusion of the lemma.

Proof of Theorem 1. Let $f \in H_{m}\left(\boldsymbol{B}^{d}\right)$ and $|f(x)| \leq 1$ for all $x \in \boldsymbol{B}^{d}$. Let u denote the radialization of f,

$$
\begin{equation*}
u(x)=\int f(G x) d G \tag{4}
\end{equation*}
$$

where the integral is taken over the group of all orthogonal transformations of the d-space. Since the Laplacian commutes with the orthogonal transformations, we have that $u \in H_{m}\left(\boldsymbol{B}^{d}\right), \Delta^{k} u(0)=\Delta^{k} f(0)$ as well as $|u(x)| \leq 1$ for all $x \in \boldsymbol{B}^{d}$. And since u is a radial function, there is a polynomial $P_{m-1}(t), \operatorname{deg} P_{m-1} \leq m-1$, such that $u(x)=P_{m-1}\left(|x|^{2}\right)$. (This can be proved by induction or by using the Almansi theorem [2]). By using the lemma we find that

$$
\begin{equation*}
\Delta^{k} u(0)=Q^{(2 k)}(0) d(d+2) \ldots(d+2 k-2) /(2 k-1)!!, \tag{5}
\end{equation*}
$$

where $Q(t)=P_{m-1}\left(t^{2}\right)$. Now we apply the Corollary to Theorem M to obtain

$$
\left|\Delta^{k} f(0)\right|=\left|\Delta^{k} u(0)\right| \leq 4^{k} A(m-1, k, d)
$$

Finally, to show that the constant is the best possible, let $f(x)=$ $T_{m-1}\left(1-2|x|^{2}\right)=(-1)^{m} T_{2 m-2}(|x|)$. Using the formulas (5) $(u=f)$ and (3) shows that $\Delta^{k} f(0)=4^{k} A(m-1, k, d)$, and this completes the proof.

Remark 1. The best constant can be attained on non-radial functions. As an example consider the case where $d=2, m=2$ and $k=1$, and identify the 2 -space with the complex plane. Let

$$
\begin{aligned}
& f(x)=-1+2\left(1-2|x|^{2}\right) u(x), \\
& u(x)=\Re\left(\left(1-a x^{2}\right)^{-1}\right)
\end{aligned}
$$

for some $a,|a| \leq 1$. Since $0<u(x) \leq\left(1-|x|^{2}\right)^{-1}$ we have $-1 \leq f(x) \leq 1$ for all $x \in \boldsymbol{B}^{2}$, and $-\Delta f(0)=8 u(0)=8=4^{k} A(m-1, k, d)$.

Remark 2. A slight improvement of Theorem 1 follows from the proof. Let

$$
I(r, f)=\int_{S} f(r y) d \sigma(y), \quad 0<r<1
$$

where $d \sigma$ is the normalized surface measure on S. Then there holds the sharp inequality

$$
\begin{equation*}
\left|\Delta^{k} f(0)\right| \leq 4^{k} A(m-1, k, d) \sup _{r<1}|I(r, f)|, \quad f \in H_{m}\left(\boldsymbol{B}^{d}\right) . \tag{6}
\end{equation*}
$$

It should be noted, however, that (6) is obtained by an application of (1) to the function u defined by (4).

Remark 3. Only minor modifications of the proof of Theorem 1 are needed to show the following: Let $\alpha>0,1 \leq q \leq \infty$ and let $C_{q}=$ $C_{q}(n, k, \alpha)$ denote the best constant in the inequality

$$
\left|P_{n}^{(k)}(0)\right| \leq C_{q}\left(\int_{0}^{1}\left|P_{n}(t)\right|^{q} t^{\alpha-1} d t\right)^{1 / q}
$$

Then there holds the sharp inequality

$$
\left|\Delta^{k} f(0)\right| \leq D_{q}(m-1, k, d / 2)\left(\int_{B^{d}}|f|^{q} d \nu\right)^{1 / q}
$$

for $f \in H_{m}\left(\boldsymbol{B}^{d}\right)$, where $d \nu$ is the normalized measure on \boldsymbol{B}^{d} and

$$
D_{n}(n, k, \alpha)=(2 / d)^{1 / q} 2^{k} d(d+2) \ldots(d+2 k-2) C_{q}(n, k, \alpha) .
$$

References

[1] N. I. Ahiezer, Lectures on approximation theory, Nauka, Moscow, 1965. (in Russian)
[2] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic functions, Clarendon Press, Oxford, 1983.
[3] O. Kounchev, Sharp estimate for the Laplacian of a polyharmonic function and applications, Trans. Amer. Math. Soc. 332 (1992), 121-133.

MIROSLAV PAVLOVIĆ
MATEMATIČKI FAKULTET
STUDENTSKI TRG 16
11001 BELGRADE, PP 550
YUGOSLAVIA
E-mail: pavlovic@matf.bg.ac.yu
(Received September 9, 1996; file received April 14, 1998)

