Publ. Math. Debrecen 54 / 3-4 (1999), 263–266

On a sharp inequality for the Laplacian of a polyharmonic function

By MIROSLAV PAVLOVIĆ (Belgrade)

Abstract. We give a short proof of the sharp inequality $|\Delta f(0)| \leq 4d(m-1)^2 \sup_{B} |f|$, where f is a polyharmonic function of order m on the unit ball in the Euclidean d-space.

Let \mathbf{B}^d denote the unit ball in the Euclidean *d*-space, and let $H_m(\mathbf{B}^d)$ (m = 1, 2, ...) denote the class of those functions f on \mathbf{B}^d for which $\Delta^m f = 0$, where Δ^m stands for the *m*-th power of the Laplacian. In [3] KOUNCHEV considered the inequality

(1)
$$|\Delta^k f(0)| \le C \sup_{\boldsymbol{B}^d} |f|, \quad f \in H_m(\boldsymbol{B}^d),$$

and stated that the best constant is $C = 2^k T_{m-1}^{(k)}(1)$, where $T_{m-1}^{(k)}$ is the *k*-th derivative of the Chebyshev polynomial T_{m-1} . However, elementary examples show that C must depend on d. By Theorem 1 below, the best constant in the case k = 1 is equal to $4d(m-1)^2$.

For two integers n and k, $1 \le k \le n$, let

$$A(n,k) = n^{2}(n^{2} - 1^{2}) \dots (n^{2} - (k-1)^{2})$$

and

$$A(n,k,d) = A(n,k)d(d+2)\dots(d+2k-2)/(2k-1)!!$$

Thus A(n, k) = A(n, k, 1).

Mathematics Subject Classification: 46B30.

Key words and phrases: polyharmonic functions, Markov inequality.

Theorem 1. If $1 \le k \le m-1$ and $d \ge 1$, then the best constant in (1) is $C = 4^k A(m-1,k,d)$.

We will deduce this theorem from the theorem of the Markov brothers [1, p. 323], which we state as follows:

Theorem M. Let $P_n(t)$ be a polynomial of degree n such that $|P_n(t)| \leq 1$ for all $0 \leq t \leq 1$. Then

(2)
$$|P_n^{(k)}(0)| \le 2^k T_n^{(k)}(1)$$

for $1 \leq k \leq n$.

Recall that $T_n(t) = \cos(n \arccos t)$ and

$$T_n^{(k)}(1) = A(n,k)/(2k-1)!!$$

Corollary. Let $Q(t) = P_n(t^2)$, where P_n is as above. Then

$$|Q^{2k}(0)| \le 4^k A(n,k).$$

PROOF. This follows from Theorem M by using the formula

$$Q^{(2k)}(0) = (2k)!(k!)^{-1}P_n^{(k)}(0) = 2^k(2k-1)!!P_n^{(k)}(0).$$

Since $T_{2n}(t) = (-1)^n T_n(1 - 2t^2)$, we see that

(3)
$$|T_{2n}^{(2k)}(0)| = 4^k A(n,k),$$

and therefore the corollary proves a particular case of Theorem 1. In the general case we need a simple formula as well.

Lemma. Let $u_j(x) = |x|^{2j}$, $x \in \mathbf{B}^d$. Then $\Delta^k u_j(0) = 0$ for $k \neq j$ and $\Delta^k u_k(0) = (2k) !! d(d+2) \dots (d+2k-2).$

PROOF. By direct computation one shows that

$$\Delta u_j(x) = 2j(2j - 2 + 2d)|x|^{2j-2}.$$

Successive applications of this formula yield the conclusion of the lemma.

264

On a sharp inequality for the Laplacian of a polyharmonic function

PROOF of Theorem 1. Let $f \in H_m(\mathbf{B}^d)$ and $|f(x)| \leq 1$ for all $x \in \mathbf{B}^d$. Let u denote the radialization of f,

(4)
$$u(x) = \int f(Gx) dG,$$

where the integral is taken over the group of all orthogonal transformations of the *d*-space. Since the Laplacian commutes with the orthogonal transformations, we have that $u \in H_m(\mathbf{B}^d)$, $\Delta^k u(0) = \Delta^k f(0)$ as well as $|u(x)| \leq 1$ for all $x \in \mathbf{B}^d$. And since *u* is a radial function, there is a polynomial $P_{m-1}(t)$, deg $P_{m-1} \leq m-1$, such that $u(x) = P_{m-1}(|x|^2)$. (This can be proved by induction or by using the Almansi theorem [2]). By using the lemma we find that

(5)
$$\Delta^k u(0) = Q^{(2k)}(0)d(d+2)\dots(d+2k-2)/(2k-1)!!,$$

where $Q(t) = P_{m-1}(t^2)$. Now we apply the Corollary to Theorem M to obtain

$$\Delta^k f(0) = |\Delta^k u(0)| \le 4^k A(m-1,k,d).$$

Finally, to show that the constant is the best possible, let $f(x) = T_{m-1}(1-2|x|^2) = (-1)^m T_{2m-2}(|x|)$. Using the formulas (5) (u = f) and (3) shows that $\Delta^k f(0) = 4^k A(m-1,k,d)$, and this completes the proof.

Remark 1. The best constant can be attained on non-radial functions. As an example consider the case where d = 2, m = 2 and k = 1, and identify the 2-space with the complex plane. Let

$$f(x) = -1 + 2(1 - 2|x|^2)u(x),$$
$$u(x) = \Re((1 - ax^2)^{-1})$$

for some $a, |a| \leq 1$. Since $0 < u(x) \leq (1 - |x|^2)^{-1}$ we have $-1 \leq f(x) \leq 1$ for all $x \in \mathbf{B}^2$, and $-\Delta f(0) = 8u(0) = 8 = 4^k A(m-1,k,d)$.

Remark 2. A slight improvement of Theorem 1 follows from the proof. Let

$$I(r, f) = \int_{S} f(ry) d\sigma(y), \quad 0 < r < 1,$$

where $d\sigma$ is the normalized surface measure on S. Then there holds the sharp inequality

(6)
$$|\Delta^k f(0)| \le 4^k A(m-1,k,d) \sup_{r<1} |I(r,f)|, \quad f \in H_m(\mathbf{B}^d).$$

It should be noted, however, that (6) is obtained by an application of (1) to the function u defined by (4).

Remark 3. Only minor modifications of the proof of Theorem 1 are needed to show the following: Let $\alpha > 0$, $1 \le q \le \infty$ and let $C_q = C_q(n,k,\alpha)$ denote the best constant in the inequality

$$|P_n^{(k)}(0)| \le C_q \left(\int_0^1 |P_n(t)|^q t^{\alpha - 1} dt \right)^{1/q}.$$

Then there holds the sharp inequality

$$|\Delta^k f(0)| \le D_q(m-1,k,d/2) \left(\int_{B^d} |f|^q d\nu \right)^{1/q},$$

for $f \in H_m(\mathbf{B}^d)$, where $d\nu$ is the normalized measure on \mathbf{B}^d and

$$D_n(n,k,\alpha) = (2/d)^{1/q} \, 2^k d(d+2) \dots (d+2k-2) \, C_q(n,k,\alpha).$$

References

- [1] N. I. AHIEZER, Lectures on approximation theory, *Nauka*, *Moscow*, 1965. (in *Russian*)
- [2] N. ARONSZAJN, T. M. CREESE and L. J. LIPKIN, Polyharmonic functions, Clarendon Press, Oxford, 1983.
- [3] O. KOUNCHEV, Sharp estimate for the Laplacian of a polyharmonic function and applications, Trans. Amer. Math. Soc. 332 (1992), 121–133.

MIROSLAV PAVLOVIĆ MATEMATIČKI FAKULTET STUDENTSKI TRG 16 11001 BELGRADE, PP 550 YUGOSLAVIA *E-mail:* pavlovic@matf.bg.ac.yu

man. purioricemut.bg.uc.yu

(Received September 9, 1996; file received April 14, 1998)