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Almost sure versions of some analogues
of the invariance principle

By ALEXEY CHUPRUNOV (Kazan) and ISTVÁN FAZEKAS (Debrecen)

Abstract. Almost sure versions of some functional limit theorems for random
step lines and random broken lines defined by sums of independent identically dis-
tributed random variables with replacements are obtained.

1. Introduction

The almost sure (a.s.) versions of the invariance principle have been
studied in several papers (see, for example, Lacey and Philipp [1], Ber-

kes and Dehling [14], Ibragimov [2], Rodzik and Rychlik [3]).
This paper deals with random step lines processes and random broken

line processes defined by sums of independent identically distributed (i.i.d.)
random variables multiplied by values of independent indicators defined on
another probability space. These processes describe some models in which
random variables are replaced with other ones. We prove a.s. versions of
functional limit theorems in which these processes converge in distribution
to p-stable random processes with independent increments or sums of such
processes in Skorohod spaces and in spaces of continuous functions.

We have three different types of replacements:
1) summands are replaced randomly by zeros;
2) summands are replaced randomly by nonzero random variables;
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3) in each step we delete on average m summands and add nonran-
domly m new summands.

In each case the result of the consecutive replacements is denoted by a
sequence of random variables X

(in)
k , i ∈ {1, 2, 3}. Using X

(in)
k we construct

a step line random process Z
(i)
n (x). From Z

(i)
n (x) we construct a measure

Q
(i)
n (ω1, ω), where ω ∈ Ω and ω1 ∈ Ω are considered as parameters. (Here

Ω is the space where the initial random variables are defined, and Ω1 is the
space where the indicators are defined.) Our main results state that for
almost all ω1 and ω, the measures Q

(i)
n (ω1, ω), i ∈ {1, 2, 3}, converge weakly

to certain probability measures defined by some stochastic processes on
the Skorohod space (Theorems 1, 2, and 5). Moreover, from the sequence
of random variables X

(in)
k we shall also construct a broken line process.

This broken line process will be denoted by Z̃
(i)
n (x) and the corresponding

measure by Q̃
(i)
n (ω1, ω), i ∈ {1, 2, 3}. We prove that for almost all ω1 and

ω, the measures Q̃
(i)
n (ω1, ω), i ∈ {1, 2, 3}, converge weakly in the space

of continuous functions to some probability measures defined by Wiener
processes (Theorems 3, 4, and 6). To illustrate our theorems we shall list
three special probabilities of replacements (Examples 1, 2, and 3).

The methods of the proofs of our theorems are the same as those of
Lacey and Philipp [1]. The same method was used in Ibragimov [2]
to prove an a.s. invariance principle in the case of the convergence to p-
stable homogeneous random processes. We also apply particular cases
of the functional limit theorems from Chuprunov [4]. Functional limit
theorems in Chuprunov [4] are generalizations of the ones in Fazekas

and Chuprunov [5]. We mention that in Rusakov [6], another type
of replacement was considered and a functional limit theorem with an
Ornstein–Uhlenbeck limit process was proved.

2. Results

Notation. We will denote by d−→ the convergence in distribution and
by w−→ the weak convergence of measures. If it does not make any confusion
we will use the same designation for a random process and for the random
element defined by it.

N is the set of positive integers, R+ = [0,∞) and R = (−∞,∞).
[c] and {c} denote the integer part and the fractional part of the real
number c.
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Let (Ω,A,P) and (Ω1, A1,P1) be probability spaces. Let E and E1

be the expectations with respect to P and P1, respectively. Let IA denote
the indicator of the event A. Let δ(x) be the point mass at x ∈ R.

Let D[0, 1] and D(R+) be the Skorohod spaces of functions defined
on [0, 1] and R+, respectively. Let Cb(R+) be the space of the bounded
continuous functions defined on R+ and let Cc(R+) be the subspace of
Cb(R+) which contains functions having limit at infinity.

Observe that D(R+) is embedded into D[0, 1] by the following bi-
jective mapping. Let g : [0, 1) → R+ be a continuous increasing one
to one function. Then x ∈ D(R+) corresponds x ◦ g ∈ D[0, 1], where
x ◦ g(t) = x(g(t)), t ∈ [0, 1). The metric on D(R+) we define as the
preimage of the metric on D[0, 1] with respect to this embedding.

Throughout the paper, Aij = Aij(n) ∈ A1, i, j, n ∈ N, will be events
which are independent for each fixed n ∈ N, and P1(Aij(n)) = pj(n) = pj

for all n, i ∈ N. Let Iij = Iij(n) = IAij(n)(ω1), ω1 ∈ Ω1. We will suppose
that

(A)
lim

n→∞
E1Ii1(n)Ii2(n) . . . Ii[nx](n)

= lim
n→∞

p1(n)p2(n) . . . p[nx](n) = f(x), for all x ∈ R+,

and f is a continuous function.
So (A) implies f(0) = 1 and f is decreasing.
To define and study our processes we need the following notation and

conditions:

(Y) Let 1 < p ≤ 2 and let Y , Yi, i ∈ N, be i.i.d. random variables
defined on (Ω,A,P).

Suppose that

(S)
1
an

n∑

i=1

Yi
d−→ γp, n →∞,

where an →∞, n →∞, and γp is a symmetric p-stable random variable.
(That is the characteristic function of γp is of the form

φp(t) = e−|at|p , t ∈ R,

where a > 0.) Let Wp(x), x ∈ R+, be a homogeneous p-stable random
process with independent increments such that Wp(1) = γp.
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Replacement by 0, convergence in D(R+). First we will consider
the case of replacement by 0. We start with the normalized sum X

(1n)
0 =

1
an

∑n
i=1 Yi of the random variables Y1, . . . , Yn. In each step we randomly

replace summands by 0. In the k-th step we obtain

(X1) X
(1n)
k =

1
an

n∑

i=1

Ii1(n)Ii2(n) · · · Iik(n)Yi, k = 1, 2, . . . .

We will consider sequences of random processes and measures. As we
shall use the same type of construction in several cases, (Zi) and (Qi)
will denote that the process Z

(i)
n and the measure Q

(i)
n are defined by the

random variables X
(in)
k , i ∈ {1, 2, 3}. For i ∈ {1, 2} let

(Zi) Z(i)
n (x) = X

(in)
[nx] , x ∈ R+, n ∈ N.

The process Z
(i)
n depends on ω ∈ Ω and ω1 ∈ Ω1 and for fixed ω ∈ Ω

and ω1 ∈ Ω1 we will denote by Z
(i)
n (ω1, ω) ∈ D(R+) the trajectory of this

process. For i ∈ {1, 2} let

(Qi) Q(i)
n (ω1, ω) =

1
ln(n)

n∑

k=1

1
k

δ
(Z

(i)
k (ω1,ω))

, ω1 ∈ Ω1, ω ∈ Ω, n ∈ N.

Theorem 1. Suppose that (Y), (S) and (A) are satisfied. Then for

the measures defined by (X1), (Z1) and (Q1) for almost all ω1 ∈ Ω1 it

holds

Q(1)
n (ω1, ω) w−→ W (1), n →∞, in D(R+)

for almost all ω ∈ Ω, where W (1)(x) = Wp

(
f(x)

)
, x ∈ R+.

Replacement by nonzero, convergence in D(R+). To examine the
case of the replacement by nonzero random variables, we need the following
notation and conditions:

(Y’) Let Y ′, Y ′
i , i ∈ N, be i.i.d. random variables defined on (Ω, A,P)

such that Y ′
i , Yi, i ∈ N, are independent random variables.

Suppose that

(S’)
1
an

n∑

i=1

Y ′
i

d−→ γ′p, n →∞,
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where the sequence (an)∞n=1 is from condition (S) and γ′p is a p-stable
random variable with characteristic function

φ′p(t) = e−|a
′t|p , t ∈ R,

where 0 ≤ a′. Let W ′
p(x), x ∈ R+, be a homogeneous p-stable random

process with independent increments such that W ′
p(1) = γ′p. Suppose that

the random processes Wp and W ′
p are independent.

We start with the summands Yi, 1 ≤ i ≤ n. Let X
(2n)
0 = 1

an

∑n
i=1 Yi.

In each step we randomly change Yi to Y ′
i . At the k-th step we get

X
(2n)
k(X2)

=
1
an

(
n∑

i=1

Ii1(n)Ii2(n) · · · Iik(n)Yi +
n∑

i=1

(1− Ii1(n)Ii2(n) · · · Iik(n))Y ′
i

)
,

k = 1, 2, . . . . We will consider the random processes Z
(2)
n and the measures

Q
(2)
n defined by (Z2) and (Q2), respectively.

Theorem 2. Suppose that (Y), (S), (Y’), (S’) and (A) are satisfied.

Then for the measures defined by (X2), (Z2) and (Q2) for almost all ω1 ∈
Ω1 one has

Q(2)
n (ω1, ω) w−→ W (2), n →∞, in D(R+)

for almost all ω ∈ Ω, where W (2)(x) = Wp(f(x)) + W ′
p(1) − W ′

p(f(x)),
x ∈ R+.

Convergence in Cc(R+). We will consider analogues to Theorem 1
and Theorem 2 in Cc(R+). We will assume that p = 2 and

(G)
1
an

n∑

i=1

Yi
d−→ γ(σ), n →∞,

and

(G’)
1
an

n∑

i=1

Y ′
i

d−→ γ(σ′), n →∞,
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where γ(σ) and γ(σ′) are centered Gaussian random variables with vari-
ances σ2 and σ′2, respectively. Denote by W and W ′ independent standard
Wiener processes. We will consider the following random processes:

(Z̃i) Z̃(i)
n (x) = X

(in)
[nx] + {nx}

(
X

(in)
[nx]+1 −X

(in)
[nx]

)
, x ∈ R+,

and the following measures:

(Q̃i) Q̃(i)
n (ω1, ω) =

1
ln(n)

n∑

k=1

1
k

δ
(Z̃

(i)
k (ω1,ω))

, ω1 ∈ Ω1, ω ∈ Ω,

n ∈ N, i ∈ {1, 2}.
Theorem 3. Suppose that (Y), (A), and (G) are satisfied. Then for

the measures defined by (X1), (Z̃1) and (Q̃1) for almost all ω1 ∈ Ω1 one
has

Q̃(1)
n (ω1, ω) w−→ W̃ (1), n →∞, in Cc(R+)

for almost all ω ∈ Ω, where W̃ (1)(x) = σW (f(x)), x ∈ R+.

Theorem 4. Suppose that (Y), (Y’), (G), (G’), and (A) are satisfied.
Then for the measures defined by (X2), (Z̃2), and (Q̃2) for almost all
ω1 ∈ Ω1 one has

Q̃(2)
n (ω1, ω) w−→ W̃ (2), n →∞, in Cc(R+)

for almost all ω ∈ Ω, where W̃ (2)(x) = σW (f(x))+σ′(W ′(1)−W ′(f(x))),
x ∈ R+.

3. Preliminary results

Our proofs are based on the following particular cases of Theorems 1–4
from Chuprunov [4].

Proposition 1. Suppose that (Y), (S) and (A) are satisfied. Then for
the random processes defined by (X1) and (Z1) for almost all ω1 ∈ Ω1 it

holds Z
(1)
n

d−→ W (1), n →∞, in D(R+).

Proposition 2. Suppose that (Y), (S), (Y’), (S’) and (A) are satisfied.
Then for the random processes defined by (X2) and (Z2) for almost all

ω1 ∈ Ω1 one has Z
(2)
n

d−→ W (2), n →∞, in D(R+).
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Proposition 3. Suppose that (Y), (G), and (A) are satisfied. Then

for the random processes defined by (X1) and (Z̃1) for almost all ω1 ∈ Ω1

one has Z̃
(1)
n

d−→ W̃ (1), n →∞, in Cc(R+).

Proposition 4. Suppose that (Y), (G), (Y’), (G’), and (A) are satis-

fied. Then for the random processes defined by (X2) and (Z̃2) for almost

all ω1 ∈ Ω1 one has Z̃
(2)
n

d−→ W̃ (2), n →∞, in Cc(R+).

In [4], Proposition 3 and Proposition 4 were proved for Cb(R+) instead
of Cc(R+). However, one can obtain the above propositions with minor
modifications in the proofs presented in [4].

We will use the following law of large numbers (see, for example,
Móri [8]).

Lemma 1. Let ξi, i ∈ N, be centered second order random variables

with the property: there are C > 0 and β > 0 such that |Eξlξk| < C
(

l
k

)β

for all l, k ∈ N, l ≤ k. Then it holds

1
ln(n)

n∑

k=1

1
k

ξk → 0, n →∞, a.s.

Recall some results from the theory of measures on metric spaces. Let
(B, ρ) be a separable complete metric space and BL(B) be the space of the
continuous bounded functions g : B → R with ‖f‖BL = ‖g‖∞+‖g‖L < ∞.
Here

‖g‖L = sup
x6=y

|g(x)− g(y)|
ρ(x, y)

.

We will use the following known lemma in the case B = D(R+) or
B = Cc(R+).

Lemma 2. Let µ be a finite Borel measure on B. There exists a

countable set M ⊂ BL(B) (depending from µ) such that for all finite

Borel measures µn, n ∈ N, on B we have: µn
w−→ µ, n → ∞, in B, if and

only if for all g ∈ M

(1)
∫

B

g(x)dµn(x) →
∫

B

g(x)dµ(x), n →∞.

The proof of Lemma 2 follows from that of Theorem 11.3.3 in Dud-

ley [9].
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We will use the following inequalities.
From the definition of the metric in D[0, 1] (see Billingsley, [10]) it

follows that

ρD[0,1](x, y) ≤ ‖x− y‖∞, x, y ∈ D[0, 1],

and

ρD(R+)(x, y) ≤ ‖x− y‖∞, x, y ∈ D(R+).(2)

Let η, ηi, i ∈ N, be independent identically distributed random vari-
ables.

Let η, ηi be such that E|η| < ∞. Then for all n ∈ N (see Shorack

and Wellner [11, p. 858]) we have

(3) E
(

max
j≤n

∣∣∣
∑j

i=1
ηi

∣∣∣
)
≤ 8E

∣∣∣
∑n

i=1
ηi

∣∣∣, n ∈ N.

Let η be such that 1
an

∑n
i=1 ηi

d−→ γp, n → ∞. Then there exist
constants C1(η) > 0 and β > 0, depending on η and (an) only, such that

(4)
E|∑l

i=1 ηi|
|an| ≤ C1(η)

(
l

n

)β

, l ≤ n, l, n ∈ N.

To prove (4) observe the following. Let l ≤ n. By Araujo and Giné [12,
p. 91],

E
|∑n

i=1 ηi|
|an| → E|γp|, n →∞.

Therefore,

E
|∑l

i=1 ηi|
|an| ≤ sup

j∈N

E|∑j
i=1 ηi|
|aj |

|al|
|an| = Cp

|al|
|an| ,

where Cp < ∞. Since an = n1/ph(n), n ∈ N, where h is a slowly varying
function (see Araujo and Giné [12, p. 90]), for any ε > 0 there exists
Cε > 0 such that |al|/|an| < Cε (l/n)1/p−ε, l, n ∈ N, l ≤ n (to prove it one
can use Lemma 1.3 in Seneta [13]). So (4) is valid with C1(η) = CpCε

and β = 1/p− ε, where 0 < ε < 1/p.
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Let k, l ∈ N, l < k. Consider the random processes

r
(1)
kl (x) =

1
ak

k∑

i=l+1

Ii1(k)Ii2(k) · · · Ii[kx](k)Yi,

r
(2)
kl (x) =

1
ak

(
k∑

i=l+1

Ii1(k)Ii2(k) · · · Ii[kx](k)Yi

+
k∑

i=l+1

(
1− Ii1(k)Ii2(k) · · · Ii[kx](k)

)
Y ′

i

)
,

and

r̃
(i)
kl (x) = r

(i)
kl (x) + {kx}

(
r
(i)
kl (x + 1/k)− r

(i)
kl (x)

)
.

x ∈ R+, i ∈ {1, 2}.
Lemma 3. Let i ∈ {1, 2}, l < k. Let the conditions of Theorem i be

valid. Then there exist C∗ > 0 and β > 0 depending on i, Y , Y ′, and (an)
only, such that

(5) E
∥∥∥Z

(i)
k − r

(i)
kl

∥∥∥
∞
≤ C∗

(
l

k

)β

,

for all ω1 ∈ Ω1. Inequality (5) is valid for Z̃
(i)
k and r̃

(i)
kl , too.

Proof. Let i = 1. Using (3) and (4) we obtain

(6)

E
∥∥∥Z

(1)
k − r

(1)
kl

∥∥∥
∞

=
1
|ak|E

(
sup

x∈R+

∣∣∣
l∑

i=1

Ii1Ii2 . . . Ii[kx]Yi

∣∣∣
)

≤ 1
|ak|E

(
max
j≤l

∣∣∣
j∑

i=1

Yi

∣∣∣
)
≤ 8

1
|ak|E

∣∣∣
l∑

i=1

Yi

∣∣∣ ≤ 8C1(Y )
(

l

k

)β

.

Therefore (5) is proved for i = 1. Let i = 2. Using (3), (4) and (6) we
obtain

E
∥∥∥Z

(2)
k − r

(2)
kl

∥∥∥
∞
≤ E

∥∥∥Z
(1)
k − r

(1)
kl

∥∥∥
∞

+
1
ak

E
∣∣∣

l∑

i=1

Y ′
i

∣∣∣
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+
1
ak

E
(

sup
x∈R+

∣∣∣
l∑

i=1

Ii1Ii2 · · · Ii[kx]Y
′
i

∣∣∣
)

≤ 8C1(Y )
(

l

k

)β

+C1(Y ′)
(

l

k

)β

+8C1(Y ′)
(

l

k

)β

≤ C∗
(

l

k

)β

.

In the case i = 2 inequality (5) is proved.
Now observe that E‖Z̃(i)

k − r̃
(i)
kl ‖∞ ≤ 3E‖Z(i)

k − r
(i)
kl ‖∞, i ∈ {1, 2}.

Therefore the second assertion follows from the first one.

4. Proofs

We will prove our theorems simultaneously. Let i ∈ {1, 2}. First we
will suppose that B = D(R+).

Proof of Theorem i. Let Ω′ be a subset of Ω1 such that for all
ω1 ∈ Ω′ Z

(i)
n

d−→ W (i), n →∞. By Proposition i, P1(Ω′) = 1. Let ω1 ∈ Ω′.
Let M be the set from Lemma 2 and g ∈ M .

Consider the random variables ξk = g(Z(i)
k ) − Eg(Z(i)

k ), k ∈ N. Let
k, l ∈ N, l < k. Using (2), (3) and the independence of r

(i)
kl and ξl, we have

|Eξkξl| =
∣∣∣E

(
g

(
Z

(i)
k

)
−Eg

(
Z

(i)
k

)) (
g

(
Z

(i)
l

)
−Eg

(
Z

(i)
l

))∣∣∣

=
∣∣∣E

(
g

(
Z

(i)
k

)
− g

(
r
(i)
kl

))(
g

(
Z

(i)
l

)
−Eg

(
Z

(i)
l

))

+E
(
g

(
r
(i)
kl

)
−Eg

(
Z

(i)
k

)) (
g

(
Z

(i)
l

)
−Eg

(
Z

(i)
l

))∣∣∣

=
∣∣∣E

(
g

(
Z

(i)
k

)
− g

(
r
(i)
kl

))(
g

(
Z

(i)
l

)
−Eg

(
Z

(i)
l

))∣∣∣

≤ 2‖g‖BL

∣∣∣E
(
g

(
Z

(i)
k

)
− g

(
r
(i)
kl

))∣∣∣

≤ 2‖g‖2BLE
∥∥∥Z

(i)
k − r

(i)
kl

∥∥∥
∞
≤ 2C∗‖g‖2BL

(
l

k

)β

.

Also observe, that

E(ξk)2 = E
(
g

(
Z

(i)
k

)
−Eg

(
Z

(i)
k

))2

≤ 4‖g‖2BL, k ∈ N.
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So by Lemma 1, it holds

1
ln(n)

n∑

k=1

1
k

∫

B

g(x)dδ
(Z

(i)
k (ω1,ω))

(x)− 1
ln(n)

n∑

k=1

1
k
Eg

(
Z

(i)
k

)

=
1

ln(n)

n∑

k=1

1
k

ξk → 0, n →∞,

for almost all ω ∈ Ω. Observe that Eg(Z(i)
n ) → Eg(W (i)), n →∞. There-

fore, 1
ln(n)

n∑
k=1

1
kEg(Z(i)

k ) → Eg(W (i)), n → ∞. The set M is countable.

Thus, for almost all ω ∈ Ω, for all g ∈ M

1
ln(n)

n∑

k=1

1
k

∫

D(R+)

g(x)dδ
(Z

(i)
k (ω1,ω))

(x) → Eg(W (i)), n →∞.

By Lemma 2, this implies Theorem i. The proof is complete.

The proofs of Theorems 3–4 are the same as those of Theorem i,
i ∈ {1, 2}.

5. Examples and additional results

Examples. Let m ∈ N be fixed. We will suppose that one of the
following three conditions is valid.

P(Aij(n)) = 1− m

n
for all i, j ∈ N (n > m).(A1)

P(Aij(n)) = 1− m

n + (j − 1)m
for all i, j ∈ N (n > m).(A2)

P(Aij(n)) = 1− m

n− (j − 1)m
, if n > jm,(A3)

P(Aij(n)) = 0 if n ≤ jm, i, j ∈ N.

We mention the meaning of conditions (A1) and (A3). Condition (A1)
corresponds to the case when at the l-th step we replace m summands in
the sums X

(1n)
l−1 by zero regardless of whether a summand equals zero or

not. On the other hand, under (A3), after each replacement, the number
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of Yi in X
(1n)
l−1 decreases by about m elements. So (A3) corresponds to the

case when at the l-th step we replace about m nonzero summands in X
(1n)
l−1

by zero.

Example 1. Let (A1) be valid. Then for all x ∈ R+ it holds

p1(n)p2(n) · · · p[nx](n) =
(

1− m

n

)[xn]

→ e−mx, n →∞.

So, Theorems 1–4 are valid with f(x) = e−mx.

Example 2. Let (A2) be valid. Then for all x ∈ R+ it holds

p1(n)p2(n) · · · p[nx](n) =
n + ([nx]− 2)m
n + ([nx]− 1)m

n + ([nx]− 3)m
n + ([nx]− 2)m

. . .
n−m

n

=
n−m

n + ([nx]− 1)m
→ 1

1 + mx
, n →∞.

So, Theorems 1–4 are valid with f(x) = 1
1+mx .

Example 3. Let (A3) be valid. Let 0 ≤ x < 1
m . Then we obtain

p1(n)p2(n) · · · p[nx](n) =
n− [nx]m

n− ([nx]− 1)m
n− ([nx]− 1)m
n− ([nx]− 2)m

. . .
n−m

n

=
n− [nx]m

n
→ 1−mx, n →∞, x <

1
m

.

So, Theorems 1–4 are valid with f(x) = (1−mx)I[0, 1
m )(x).

Additional results. Now, we shall consider third method of replace-
ment. Let X

(3n)
0 = 1

an

∑n
i=1 Yi. At the k-th step we randomly delete

summands from X
(3n)
k−1 and add nonrandomly m new summands. Thus,

we obtain

X
(3n)
k =

1
an

( n∑

i=1

Ii1(n)Ii2(n) · · · Iik(n)Yi(X3)

+
k−1∑

j=1

n+jm∑

i=n+(j−1)m+1

Ii(j+1)(n)Ii(j+2)(n) · · · Iik(n)Y ′
i +

n+km∑

i=n+(k−1)m+1

Y ′
i

)
,

k = 1, 2, . . . . There are n + (l − 1)m summands in X
(3n)
l−1 . So, (A2)

corresponds to the case when at the l-th step we replace m summands
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in X
(3n)
l−1 by new Y ′

i regardless of whether a summand equals zero or not.
Condition (A1) corresponds to the case when at the l-th step we replace
m nonzero summands in X

(3n)
l−1 by new Y ′

i .
We will consider the following random processes

(Z3) Z(3)
n (x) = X

(3n)
[nx] , x ∈ [0, 1],

and

Z̃(3)
n (x) = X

(3n)
[nx] + {nx}

(
X

(3n)
[nx]+1 −X

(3n)
[nx]

)
, x ∈ [0, 1),(Z̃3)

Z̃(3)
n (1) = X(3n)

n , n ∈ N.

Theorem 5. Suppose that (Y), (Y’), (S), and (S’) are satisfied.
(1) Let (A1) be valid. Then for the measures defined by (X3), (Z3),

and (Q3) for almost all ω1 ∈ Ω1 one has

Q(3)
n (ω1, ω) w−→ W (31), n →∞, in D[0, 1]

for almost all ω ∈ Ω, where W (31)(x) = Wp

(
e−mx) + W ′

p(1 − e−mx
)
,

x ∈ [0, 1].
(2) Let (A2) be valid. Then for the measures defined by (X3), (Z3)

and (Q3) for almost all ω1 ∈ Ω1 one has

Q(3)
n (ω1, ω1)

w−→ W (32), n →∞, in D[0, 1]

for almost all ω ∈ Ω , where W (32)(x) = Wp

(
1

1+mx

)
+ W ′

p

(
1
2

(1+mx)2−1
1+mx

)
,

x ∈ [0, 1].

Theorem 6. Suppose that (Y), (Y’), (G) and (G’) are satisfied.
(1) Let (A1) be valid. Then for the measures defined by (X3), (Z̃3)

and (Q̃3) for almost all ω1 ∈ Ω1 one has

Q̃(3)
n (ω1, ω) w−→ W̃ (31), n →∞, in C[0, 1]

for almost all ω ∈ Ω, where W̃ (31)(x) = σW (e−mx) + σ′W ′(1 − e−mx),
x ∈ [0, 1].

(2) Let (A2) be valid. Then for the measures defined by (X3), (Z̃3)
and (Q̃3) for almost all ω1 ∈ Ω1 one has

Q̃(3)
n (ω1, ω) w−→ W̃ (32), n →∞, in C[0, 1]



470 A. Chuprunov and I. Fazekas

for almost all ω ∈ Ω, where W̃ (32)(x)=σW
(

1
1+mx

)
+σ′W ′

(
1
2

(1+mx)2−1
1+mx

)
,

x ∈ [0, 1].

The proofs of Theorem 5 and Theorem 6 are the same as the ones of
Theorems 1–4 (see Chuprunov and Fazekas [7]).

Remark 1. Consider the case when the basic probability spaces co-
incide. Let Iij(n), Yi and Y ′

i be defined on the same probability space
(Ω,A,P) and for each fixed n ∈ N, let Iij(n), Yi, Y ′

i , i, j ∈ N, be indepen-
dent random variables. Then Theorems 1–6 hold. Of course, in this case
the phrase “for almost all ω1 ∈ Ω1” should be omitted. For details see
Chuprunov and Fazekas [7].
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Annales Univ. Sci. Budapest. R. Eötvös Nom., Sect. Math. 36 (1993), 35–47.

[9] R. M. Dudley, Real Analysis and Probability, Wadsworth & Brooks/Cole, Pacific

Grove, CA, 1989.

[10] P. Billingsley, Convergence of probability measures, John Wiley & Sons, New

York, London, Sidney, Toronto, 1968.

[11] G. R. Shorack and J. A. Wellner, Empirical Processes with Applications to

Statistics, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singa-

pore, 1986.



Almost sure versions of some analogues of the invariance principle 471

[12] A. Araujo and E. Gin�e, The Central Limit Theorem for Real and Banach Valued
Random Variables, John Wiley & Sons, New York, Chichester, Brisbane, Toronto,
1980.

[13] E. Seneta, Regularly Varying Functions, Lecture Notes in Mathematics, 508,
Springer-Verlag, Berlin, Heidelberg, New York, 1976.

[14] I. Berkes and H. Dehling, Some limit theorems in log density, Ann. Probab. 21
(1993), 1640–1670.

ALEXEY CHUPRUNOV
DEPARTMENT OF MATH. STAT. AND PROBABILITY
CHEBOTAREV INST. OF MATHEMATICS AND MECHANICS
KAZAN STATE UNIVERSITY
UNIVERSITETSKAYA 17
420008 KAZAN
RUSSIA

E-mail: alexey.chuprunov@ksu.ru
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