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CR structures on real hypersurfaces
of a complex space form

By JONG TAEK CHO (Kwangju)

Abstract. We define the generalized Tanaka connection for real hypersurfaces in
Kählerian manifolds, and further we classify a real hypersurface of a complex space form
whose shape operator field is parallel with respect to the generalized Tanaka connection.

0. Introduction

A complex n-dimensional Kählerian manifold of constant holomorphic
sectional curvature c is called a complex space form, which is denoted by
M̃n(c). A complete and simply connected complex space form is a com-
plex projective space PnC, a complex Euclidean space EnC or a complex
hyperbolic space HnC, according as c > 0, c = 0 or c < 0. By virtue of
Segre’s work [9] we know that real hypersurfaces of EnC with constant
principal curvatures must lie on an open part of a sphere or a hyperplane,
or a generalized cylinder. Takagi [11] classified the homogeneous real
hypersurfaces of PnC into six types. Cecil and Ryan [4] extensively in-
vestigated in [4] a real hypersurface whose structure vector ξ = −JN for
every unit normal vector N of the real hypersurface is a principal curva-
ture vector, which is realized as tubes over certain submanifolds in PnC,
by using its focal map. By making use of these results and the mentioned
work of Takagi, Kimura [5] proved the local classification theorem for
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real hypersurfaces of PnC whose all principal curvatures are constant and
ξ is a principal curvature vector. Also, Bernt [2] classified locally real
hypersurfaces with constant principal curvatures of HnC under the condi-
tion that ξ is a principal curvature vector, where the structure vector field
ξ is defined as in the case of PnC.

Let M be a real hypersurface of M̃n(c). Then M has an almost contact
metric structure (η, φ, g) induced from the Kählerian metric tensor g̃ and
complex structure tensor J of M̃n(c) (see Sections 1 and 2). We denote by
∇, A the Levi–Civita connection with respect to g and the shape operator
of M , respectively. It is well-known that there is no real hypersurface M

in M̃n(c), c 6= 0 with parallel shape operator field (∇A = 0).
In the present paper, we consider real hypersurfaces of Kählerian

manifolds with the CR structures associated with almost contact met-
ric structures. In general, real hypersurfaces in Kählerian manifolds have
an integrable CR structures associated with the almost contact metric
structures, but their associated Levi forms are not always hermitian and
non-degenerate. On the other hand, Tanaka ([13]) defined a canonical
affine connection on a pseudo-hermitian, non-degenerate, integrable CR
manifold. For contact metric manifolds, their associated CR structures are
pseudo-hermitian and strongly pseudo-convex, but they are not in general
integrable. In this situation, Tanno ([14]) defined the generalized Tanaka
connection for contact metric manifolds by relaxing the integrability con-
dition of their associated CR structures.

Now, for a non-zero real number k we define the generalized Tanaka
connection ∇̌(k) for real hypersurfaces in Kählerian manifolds by the nat-
urally extended one of Tanno’s generalized Tanaka connection (k = 1) for
contact metric manifolds. The generalized Tanaka connection ∇̌(k) coin-
cides with the Tanaka connection if real hypersurfaces satisfy φA + Aφ =
2kφ (see Proposition 3 in Section 2). In Section 3 we find that there are
real hypersurfaces M of M̃n(c) such that their almost contact metric struc-
tures are not contact metric structures, but their associated integrable CR
structures are pseudo-hermitian, strongly pseudo-convex. And further we
show that ∇̌(k) defined on those M for some k 6= 1 coincides with the
Tanaka connection (see Remark 1). The main purpose of the present pa-
per is to classify the real hypersurfaces of M̃n(c) whose shape operator
is parallel with respect to the generalized Tanaka connection ∇̌(k). More
specifically, in Section 4, we prove the
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Main Theorem. Let M be a real hypersurface of a complex space

form M̃n(c) with constant holomorphic sectional curvature c. If the shape

operator A of M in M̃n(c) is ∇̌(k)-parallel (∇̌(k)A = 0), then ξ is a principal

curvature vector. Furthermore,

(I) If M̃n(c) = PnC, then M is locally congruent to one of the following:

(1) a tube of radius r over a totally geodesic PmC (0 ≤ m ≤ n− 1),
where 0 < r < π

2 ,

(2) a tube of radius r over a complex quadric Qn−1,where 0 < r < π
4 .

(II) If M̃n(c) = HnC, then M is locally congruent to one of the following:

(1) a horosphere in HnC,

(2) a tube of radius r ∈ R+ over a totally geodesic HmC (0 ≤ m ≤
n− 1),

(3) a tube of radius r ∈ R+ over a totally real hyperbolic space HnR.

(III) If M̃n(c) = EnC, then M is locally congruent to one of the following:

(1) a sphere S2n−1(r) of radius r ∈ R+,

(2) a plane E2n−1,

(3) it a generalized cylinder Sp(r)× Eq of radius r ∈ R+, where p is

an odd number and p + q = 2n− 1.

In this paper, all manifolds are assumed to be connected and of class
C∞ and the real hypersurfaces are supposed to be oriented.

1. Almost contact metric structures and
the associated CR structures

First, we give a brief review of several fundamental concepts and for-
mulas which we will need later on. An odd-dimensional Riemannian man-
ifold M with metric tensor g is said to have an almost contact metric
structure if it admits a (1, 1)-tensor field φ, a vector field ξ and a 1-form
η satisfying

(1.1)
φ2X = −X + η(X)ξ, η(ξ) = 1,

g(φX, φY ) = g(X, Y )− η(X)η(Y ).

From (1.1) we get

(1.2) φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ).
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We call (η, φ, g) an almost contact metric structure of M and M =
(M ; η, φ, g) an almost contact metric manifold. The tangent space TpM of
M at each point p ∈ M is decomposed as TpM = Dp ⊕{ξ}p (direct sum),
where we denote Dp = {v ∈ TpM | η(v) = 0}. Then D : p → Dp defines
a distribution orthogonal to ξ. For an almost contact metric manifold
M = (M ; η, φ, g), one may define naturally an almost complex structure
on the product manifold M × R, where R denotes the real line. If the
almost complex structure is integrable, M is said to be normal. The in-
tegrability condition for the almost complex structure is the vanishing of
the tensor [φ, φ] + 2dη⊗ ξ, where [φ, φ] denotes the Nijenhuis torsion of φ.
Also, for an almost contact metric manifold M we define its fundamental
2-form Φ by Φ(X, Y ) = g(φX, Y ). If

(1.3) Φ = dη,

M is called a contact metric manifold. A normal contact metric manifold
is called a Sasakian manifold. For more details about the general theory
of almost contact metric manifolds, we refer to [3], [8], for example.

On the other hand, for an almost contact metric manifold M =
(M ; η, φ, g), the restriction φ̄ = φ|D of φ to D defines an almost com-
plex structure to D. If the associated Levi form L, defined by L(X, Y ) =
dη(X, φ̄Y ), X, Y ∈ D, is hermitian, then (η, φ̄) is called a pseudo-hermitian
CR structure and further, if its Levi form is non-degenerate (positive or
negative definite, resp.), then (η, φ̄) is called a non-degenerate (strongly
pseudo-convex, resp.) pseudo-hermitian CR structure. Moreover, if the
following conditions are satisfied:

[φ̄X, φ̄Y ]− [X,Y ] ∈ D(1.4)

and

[φ̄, φ̄](X, Y ) = 0(1.5)

for all X,Y ∈ D, where [φ̄, φ̄] is the Nijenhuis torsion of φ̄, then the
pair (η, φ̄) is called a pseudo-hermitian, non-degenerate (strongly pseudo-
convex, resp.), integrable CR structure associated with the almost contact
metric structure (η, φ, g). In particular, for a contact metric manifold its
associated CR structure is pseudo-hermitian, strongly pseudo-convex but
is not in general integrable. For further details about CR structures, we
refer for example to [1], [14].
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2. The generalized Tanaka connection for real hypersurfaces

Let M be a real hypersurface of a Kählerian manifold M̃ = (M̃ ;J, g̃)
and N a global unit normal vector on M . By ∇̃, A we denote the Levi–
Civita connection in M̃ and the shape operator with respect to N , respec-
tively. Then the Gauss and Weingarten formulas are given respectively
by

∇̃XY = ∇XY + g(AX, Y )N, ∇̃XN = −AX

for any vector fields X and Y tangent to M , where g denotes the Rie-
mannian metric of M induced from g̃. An eigenvector (resp. eigenvalue) of
the shape operator A is called a principal curvature vector (resp. principal
curvature). We denote by Vλ the eigenspace associated with an eigenvalue
λ. For any vector field X tangent to M , we put

(2.1) JX = φX + η(X)N, JN = −ξ.

We easily see that the structure (η, φ, g) is an almost contact metric struc-
ture on M . From the condition ∇̃J = 0, the relations (2.1) and by making
use of the Gauss and Weingarten formulas, we have

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ,(2.2)

∇Xξ = φAX.(2.3)

By using (2.2) and (2.3), we see that a real hypersurface in a Kähler
manifold always satisfies (1.4) and (1.5), the integrability condition of the
associated CR structure. From (1.3) and (2.3) we have

Proposition 2. Let M = (M ; η, φ, g) be a real hypersurface of a

Kählerian manifold. The almost contact metric structure of M is con-

tact metric if and only if φA + Aφ = ±2φ, where ± is determined by the

orientation.

The Tanaka connection ([13]) is the canonical affine connection defined
on non-degenerate integrable CR manifold. S. Tanno ([14]) defined the
generalized Tanaka connection for contact metric manifolds by the unique
linear connection which coincides with the Tanaka connection if the as-
sociated CR structure is integrable. We define the generalized Tanaka
connection for real hypersurfaces of Kählerian manifolds by the naturally
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extended one of S. Tanno’s generalized Tanaka connection for contact met-
ric manifolds.

Now we recall the generalized Tanaka connection ∇̌ for contact metric
manifolds;

∇̌XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY

for all vector fields X and Y .

Thus, by taking account of (2.3), the generalized Tanaka connection
∇̌(k) for real hypersurfaces of Kählerian manifolds is naturally defined by

(2.4) ∇̌(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY,

where k is a non-zero real number. We put FXY = g(φAX, Y )ξ − η(Y )
φAX − kη(X)φY . Then the torsion tensor Ť (k) is given by Ť (k)(X, Y ) =
FXY − FY X. Also, by using (1.2), (1.3), (2.2), (2.3) and (2.4) we can see
that

∇̌(k)η = 0, ∇̌(k)ξ = 0, ∇̌(k)g = 0, ∇̌(k)φ = 0.(2.5)

and

Ť (k)(X, Y ) = 2dη(X,Y )ξ, X, Y ∈ D.

We note that the associated Levi form is
L(X,Y ) = 1

2g
(
(φ̄Ā + Āφ̄)X, φ̄Y

)
, where we denote by Ā the restriction A

to D. If M satisfies φA + Aφ = 2kφ, then we see that the associated CR
structure is pseudo-hermitian, strongly pseudo-convex and further satisfies
Ť (k)(ξ, φY ) = −φŤ (k)(ξ, Y ), and hence the generalized Tanaka connection
∇̌ coincides with the Tanaka connection (see [14]). That is, we have

Proposition 3. Let M = (M ; η, φ, g) be a real hypersurface of a

Kählerian manifold. If M satisfies φA + Aφ = 2kφ, then the associated

CR-structure is pseudo-hermitian, strongly pseudo-convex, integrable, and

further the generalized Tanaka connection ∇̌(k) coincides with the Tanaka

connection.
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3. Real hypersurfaces of a complex space form

Let M̃ = M̃n(c) be a complex space form of constant holomorphic
sectional curvature c and M a real hypersurface of M̃ . Then we have the
following Gauss and Codazzi equations:

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X, Z)Y(3.1)

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ}
+ g(AY, Z)AX − g(AX, Z)AY,

(∇XA)Y − (∇Y A)X =
c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}(3.2)

for any tangent vector fields X, Y , Z on M .
We now suppose that ξ is a principal curvature vector, that is,

Aξ = αξ. Differentiating covariantly, and then by using (2.3) we have

(∇XA)ξ = (Xα)ξ + αφAX −AφAX,

and further by using (3.2) we obtain

(∇ξA)X =
c

4
φX + (Xα)ξ + αφAX −AφAX

for any vector field X on M . From this, we get Xα = (ξα)η(X), and
hence we have

2AφAX − c

2
φX = α(φA + Aφ)X.

Thus we have the following (see also [7])

Proposition 4. Let M be a real hypersurface of M̃n(c). If we assume

that ξ is a principal curvature vector and AX = λX for X orthogonal to

ξ, then (2λ− α)AφX = (αλ + c
2 )φX.

Proposition 4 and the results in [9], [10] and [15] produce

Theorem 2. Let M be a real hypersurface of M̃n(c). Suppose that

M satisfies φA + Aφ = 2kφ for some non-zero constant k.

(I) If M̃n(c) = PnC, then M is locally congruent to one of the following:

(1) a geodesic hypersphere, that is, a tube of radius r over Pn−1C,

where 0 < r < π
2 ,
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(2) a tube of radius r over a complex quadric Qn−1, where 0 < r < π
4 .

(II) If M̃n(c) = HnC, then M is locally congruent to one of the following:
(1) a horosphere in HnC,
(2) a geodesic hypersphere, that is, a tube of radius r ∈ R+ over a

totally geodesic Hn−1C,
(3) a tube of radius r ∈ R+ over a totally real hyperbolic space HnR.

(III) If M̃n(c) = EnC, then M is locally congruent to one of the following:
(1) a sphere S2n−1(r) of radius r ∈ R+,
(2) a generalized cylinder Sn−1(r)× En of radius r ∈ R+.

Remark 1. From Proposition 2, we see that the almost contact metric
structure of M appearing in Theorem 2 is a contact metric structure only
for the very special case which is determined by k = ±1, where ± depends
on the orientation. More precisely, with the help of the tables in [2] and
[12], we see that the almost contact metric structures are contact metric
only for a geodesic hypersphere of radius π

4 in PnC, for a horosphere in
HnC, for a unit sphere S2n−1(1) or a generalized cylinder Sn−1( 1

2 )×En in
EnC. Thus, together with Proposition 3, we see that the real hypersurfaces
appearing in Theorem 2, except those just mentioned, do not have contact
metric structures but their associated CR structures are pseudo-hermitian,
strongly pseudo-convex, integrable, and further the generalized Tanaka
connection ∇̌(k) defined on them coincides with the Tanaka connection.

The following Theorems 3 and 4 are very useful for the proof of our
Main Theorem in Section 4.

Theorem 3 ([6]). Let M be a real hypersurface of PnC. Then the
shape operator satisfies g((∇XA)Y,Z) = 0 for any tangent vectors X, Y
and Z which are orthogonal to ξ and ξ is a principal curvature vector if
and only if M is locally congruent to one of the following:

(1) a tube of radius r over a totally geodesic PmC (0 ≤ m ≤ n− 1), where
0 < r < π

2 ,

(2) a tube of radius r over a complex quadric Qn−1, where 0 < r < π
4 .

Theorem 4 ([10]). Let M be a real hypersurface of HnC. Then the
shape operator satisfies g((∇XA)Y,Z) = 0 for any tangent vectors X, Y
and Z which are orthogonal to ξ and ξ is a principal curvature vector if
and only if M is locally congruent to one of the following:

(1) a horosphere in HnC,

(2) a tube of radius r ∈ R+ over a totally geodesic HmC (0 ≤ m ≤ n−1),
(3) a tube of radius r ∈ R+ over a totally real hyperbolic space HnR.
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4. Proof of the Main Theorem

Let M be a real hypersurface of a complex space form M̃n(c), c 6= 0.
We define a vector field U on M by U = ∇ξξ. Then, from (1.2) and (2.3)
we easily observe that

(4.1)
g(U, ξ) = 0, g(U,Aξ) = 0,

‖ U ‖2= g(U,U) = β − α2,

where β = g(A2ξ, ξ). From (1.2), (2.3) and (4.1) we have at once the
following

Lemma 1. Aξ = αξ if and only if β − α2 = 0.

Taking account of (2.4), we have

(
∇̌(k)

X A
)

Y = ∇̌(k)
X AY −A∇̌(k)

X Y

= (∇XA)Y + FXAY −AFXY

= (∇XA)Y + g(φAX, AY )ξ(4.2)

− η(AY )φAX − kη(X)φAY

− g(φAX, Y )Aξ + η(Y )AφAX + kη(X)AφY

for any vector fields X and Y on M . First, we prove that ξ is a principal
curvature vector, i.e., Aξ = αξ. From (4.2) we see that the condition
∇̌(k)

ξ A = 0 implies that

(4.3)
(∇ξA)X = k(φAX −AφX) + η(AX)U

− g(AX, U)ξ + g(X, U)Aξ − η(X)AU,

for any vector field X on M . From (4.1) and (4.3) we easily see that
ξα = 0. The above equation (4.3) together with (3.2), yields

(∇XA)ξ = k(φAX −AφX)− c

4
φX(4.4)

− g(U,AX)ξ + η(AX)U − η(X)AU + g(U,X)Aξ.
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With U = φAξ and from (2.2), (2.3) and (4.4) we have

∇XU =
c

4
X + (α− k)AX − kφAφX + φAφAX(4.5)

− η(A2X)ξ + (α + k)η(AX)ξ − c

4
η(X)ξ − η(AX)Aξ

+ g(U,X)U − η(X)φAU.

Also, it follows from (4.2) and (∇̌(k)
X A)ξ = 0 that

(4.6) (∇XA)ξ = g(AX, U)ξ + αφAX + kη(X)U −AφAX

for any vector field X on M . By using (2.3) it follows that

Xα = g((∇XA)ξ, ξ)− 2g(AX, U),

Xβ = 2g((∇XA)ξ,Aξ)− 2g(AX, φA2ξ)

for any vector field X on M . Together with (4.6) we can show the following

Lemma 2. If M satisfies ∇̌(k)A = 0, then α (= g(Aξ, ξ)) and β (=
g(A2ξ, ξ)) are constant.

From (4.4) and (4.6) we get

kg(φAX, Y )− kg(AφX, Y )− c

4
g(φX, Y )− g(U,AX)η(Y )

+ η(AX)g(U, Y )− η(X)g(AU, Y ) + g(U,X)η(AY )(4.7)

= g(AX,U)η(Y ) + αg(φAX, Y )

+ kη(X)g(U, Y )− g(AφAX, Y )

for any vector fields X and Y on M . We put Y = ξ in (4.7) and by taking
account of (1.1) and (1.2), we have

(4.8) (α + k)g(X, U) = 3g(AX,U)

for any vector field X on M . The equation (4.8) yields that

(4.9) 3AU = (α + k)U.
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If we put X = U and Y = φU in (4.7), then by using (4.1) and (4.9) we
have

(4.10)
(

k2 − 3
4
c− 3β + 2α2

)
(β − α2) = −(α− 2k)g(AφU, φU).

Further, from (3.2) and (4.6) we get

(4.11) (∇ξA)X =
c

4
φX + g(AX, U)ξ + αφAX + kη(X)U −AφAX

for any vector field X on M . It follows from (4.11) that

(4.12)

c

2
g(φX, Y ) + g(AX,U)η(Y )− g(AY,U)η(X) + αg(φAX, Y )

− αg(φAY, X) + kη(X)g(U, Y )− kη(Y )g(U,X)

− g(AφAX, Y ) + g(AφAY,X) = 0,

for all vector fields X and Y on M . By putting X = Aξ and Y = U in
(4.12) and by taking account of (1.1), (1.2) and (4.9), we obtain

(4.13) (α− 2k)g(AφU, φU) = −
(

α2 + kα +
3
2
c

)
(β − α2).

Thus, from (4.10) and (4.13) we obtain

(4.14)
(

3β − α2 + kα− k2 +
9
4
c

)
(β − α2) = 0.

In view of Lemma 1 and Lemma 2, we now suppose that β − α2 6= 0.
Then from (4.14) we get

(4.15) 3(β − α2) = k2 − αk − 2α2 − 9
4
c.

From (4.15) we see that the inequality k2 − αk − 2α2 − 9
4c > 0 must hold

independently of k for a fixed α, hence we have α2 + c < 0. At the same
time, it must hold that −2α2 − kα + k2 − 9

4c > 0, for any α for a fixed k,
which yields k2 − 2c < 0. We have a contradiction. So, by Lemma 1 we
conclude that Aξ = αξ on M .
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Thus, we see that (4.12) is reduced to

(4.16)
c

2
φX + α(φA + Aφ)X − 2AφAX = 0.

The equation (4.2), together with Aξ = αξ, shows that

(4.17) g((∇XA)Y,Z) = 0

for any vector fields X, Y and Z orthogonal to ξ.
Now, we classify a real hypersurface of a complex space form M̃n(c)

which satisfying ∇̌(k)A = 0 according as c > 0, c < 0 or c = 0 respectively.

(I) M̃n(c) = PnC ;

By (4.17) and Theorem 3, we see that M is locally congruent to one of
real hypersurfaces (1) or (2) in Theorem 3. Conversely, by using (2.5) we
can see that a real hypersurface M of case (1) or (2) satisfies (∇̌(k)A)ξ = 0.
Further M satisfies (∇̌(k)

ξ A)X = 0 for any vector field X orthogonal to ξ.
In fact, from (4.2) and by taking account of (3.2) and Aξ = αξ, we get

(
∇̌(k)

ξ A
)

X = αφAX −AφAX +
c

4
φX − k(φAX −AφX)

for any vector field X orthogonal to ξ. Assume X ∈ Vλ. Then together
with (4.16) we have

(4.18)
(
∇̌(k)

ξ A
)

X =
α− 2k

2λ− α

(
λ2 − αλ− c

4

)
φX.

because of 2λ − α 6= 0. In view of the table in [12], we see that a real
hypersurface of case (1) satisfies λ2 − αλ− c

4 = 0. Also, we see that for a
real hypersurface of case (2) α(= 2 cot 2r) is non-zero constant. So, from
(4.18) we see that M of case (1) or (2) satisfies (∇̌(k)

ξ A)X = 0 for any
vector field X orthogonal to ξ.

(II) M̃n(c) = HnC ;

By (4.17) and Theorem 4, we see that M is locally congruent to one
of real hypersurfaces (1), (2) or (3) in Theorem 4. Conversely, by using
(2.5) we can see that a real hypersurface M of case (1), (2) or (3) satisfies
(∇̌(k)A)ξ = 0. Further M satisfies (∇̌(k)

ξ A)X = 0 for any vector field X
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orthogonal to ξ. In fact, from (4.2) taking account of (3.2) and Aξ = αξ,
we get

(4.19)
(
∇̌(k)

ξ A
)

X = αφAX −AφAX +
c

4
φX − k(φAX −AφX)

for any vector field X orthogonal to ξ. Assume X ∈ Vλ. If M is locally
congruent to (1) horosphere, then the table in [2] says that M has two
principal curvatures λ and α(= 2λ) with multiplicity 2n−2 and 1, respec-
tively. So, from (4.19) we see that M satisfies (∇̌(k)

ξ A)X = 0. If M is of
the case (2) or (3), then from the table in [2] we see that α 6= 2λ and from
(4.16) and (4.19) we have

(
∇̌(k)

ξ A
)

X =
α− 2k

2λ− α

(
λ2 − αλ− c

4

)
φX.

With the help of the table in [2], we see that a real hypersurface of case
(1) satisfies λ2 − αλ− c

4 = 0. Also, we see that for a real hypersurface of
case (2) α(= 2 tanh 2r) is non-zero constant. So, from (4.19) we see that a
real hypersurface of case (2) or (3) satisfies (∇̌(k)

ξ A)X = 0 for any vector
field X orthogonal to ξ.

(III) M̃n(c) = EnC ;

We know that Aξ = αξ and α is constant. Now, we fix a point
p ∈ M and we assume that in a sufficiently small neigborhood of p, AY =
λY , where λ is a smooth function and Y is a unit vector field which is
orthogonal to ξ. Then from (4.17) we see that Xλ = g((∇XA)Y, Y ) = 0
for any vector field X orthogonal to ξ, and further by using (2.3), (3.2)
and c = 0 we see that ξλ = g((∇ξA)Y, Y ) = g((∇Y A)ξ, Y ) = 0. Thus we
can see that all principal curvatures are constant, and by virtue of Segre’s
result ([9]) we see that M has at most two distinct principal curvatures,
say α and λ. Further, from (4.16) we see that

(4.20) λ(λ− α) = 0 or α(λ− α) = 0.

From (4.20), and by taking account of Proposition 4 and Segre’s work, we
can see that M is locally congruent to one of the following: (1) S2n−1,
(2) E2n−1, (3) Sn−1 × En or Sp × Eq, where p is an odd number and
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p + q = 2n − 1. On the other hand, from (4.2) and taking into account
(3.2) and Aξ = αξ, we get

(4.21)
(
∇̌(k)

ξ A
)

X = αφAX −AφAX − k(φAX −AφX),

for any vector field X orthogonal to ξ. We assume that X ∈ Vλ. If 2λ = α,
then from (4.16) we have λ = α = 0. Otherwise, 2λ 6= α, and in this case
we have

(4.22) (α− 2k)λ(λ− α) = 0.

Thus, since k 6= 0, together with (4.22) we conclude that M is locally
congruent to one of the following: (1) S2n−1, (2) E2n−1, (3) Sp × Eq,
where p is an odd number and p + q = 2n− 1. Furthermore, we easily see
that a real hypersurface of cases (1), (2) or (3) satisfies g((∇XA)Y, Z) = 0
for any vector fields X, Y and Z orthogonal to ξ.

Summing up all the cases, we have our Main Theorem.
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