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On the stability of the homogeneous equation

By WOJCIECH JABÃLOŃSKI (Rzeszów)

Abstract. Let f be a function defined on a subset U(R0U ⊂ U) of the real linear
space X with the values in the sequentially complete locally convex linear topological
Hausdorff space Y . We will show that if there exist a bounded subset V ⊂ Y , a non-
empty subset A ⊂ R0, δ : A → [0,∞), K : U → [0,∞) such that for all α ∈ A, x ∈ U
the condition α−1f(αx) − f(x) ∈ δ(α)K(x)V holds, then, under certain assumpitons
on A and K, there exists a unique homogeneous mapping F : U → Y such that the
difference F (x)− f(x) is suitably bounded on U .

0. Introduction

Józef Tabor proved in [4] that every mapping from a real vector
space X into a normed space Y satisfying

(1) ‖α−1f(αx)− f(x)‖ ≤ ε for α ∈ R \ {0}, x ∈ X,

where ε ≥ 0 is given, is homogeneous. This result has next been generalized
successively in a different directions.

Zygfryd Kominek and Janusz Matkowski investigated in [2] the
condition

(2) α−1f(αx)− f(x) ∈ V, for α ∈ A, x ∈ S,

for the mapping f from a cone S ⊂ X into a sequentially complete lo-
cally convex linear topological Hausdorff space Y over R and a subset
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A ⊂ (1,∞). This result has been generalized in [3]. J. Schwaiger has
examined the condition

(3) f(αx)− φ(α)f(x) ∈ V (α), for α ∈ A, x ∈ X,

where

– G is a semigroup with unit acting on the non-empty set X;

– Y is a sequentially complete locally convex linear topological Haus-
dorff space Y over K ∈ {R,C};

– A ⊂ G generates G as a semigroup;

– φ : G → K is a function;

– V : G → B(Y ) is a mapping from G into the set B(Y ) of bounded
subsets of Y .

It is proved there that if functions f and φ satisfy (3) and f(X) is
unbounded, then φ is a multiplicative function and there is a function
F : X → Y satisfying

F (αx) = φ(α)F (x) for α ∈ G, x ∈ X,

(we say then that F is φ-homogeneous) and such that the difference F − f

is suitably bounded on X.
On the other hand, in [1] and [5] it has been investigated the inequality

‖f (αx)− αvf(x)‖ ≤ g(α, x), α ∈ R \ {0}, x ∈ X,

with a constant v ∈ R \ {0} and a function g mapping R×X into R.
In this paper we investigate the stability condition

α−1f(αx)− f(x) ∈ δ(α)K(x)V, α ∈ A ⊂ R \ {0}, x ∈ U,

and on this way we will unite together two mentioned above generaliza-
tions.

1. Main result

Through this paper the letters N, N0, R, R+, R0 stand for natural
numbers, non-negative integers, reals, non-negative reals, and reals differ-
ent from zero, respectively. From now on X stands for a real linear space
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and Y – for a sequentially complete locally convex linear topological Haus-
dorff space. The sequentially closure of V will be denoted by seq cl V . By
conv V we will denote the convex hull of V . The subset V ⊂ Y is said to
be bounded if for each neighbourhood W of zero there exists an r ∈ R0

such that rV ⊂ W . By 〈A〉 we denote a multiplicative group generated by
the set A ⊂ R0.

We start with the following

Lemma 1. Let V ⊂ Y and 0 ≤ λ ≤ 1. Then λV ⊂ conv(V ∪ {0}).
Moreover, if V is symmetric with respect to 0, then λV ⊂ conv V .

Proof. The above assertions follow from the following conditions

λV 3 λx = λx + (1− λ)0 ∈ conv(V ∪ {0})

and

λV 3 λx = λx +
(1− λ)

2
(−x) +

(1− λ)
2

(x) ∈ conv V. ¤

The simply conclusion from Lemma 1 is

Corollary 1. Let V ⊂ Y and 0 ≤ α ≤ β. Then αV ⊂ β conv(V ∪{0}).
Moreover, if V is symmetric with respect to 0, then αV ⊂ β conv V .

We have the following

Lemma 2. Let V ⊂ Y be a convex set. Then the set seq cl V is

convex.

Now we can formulate

Theorem 1. Let ∅ 6= U ⊂ X be such that R0U ⊂ U . Let a set A ⊂ R0

contain at least one element α such that |α| 6= 1, and let δ : A → R+ be a

mapping. Assume that the function K : U → R+ satisfies

(4) K(αx) ≤ |α|pK(x) for α ∈ R0, x ∈ U,

with some p ∈ R \ {1}. Let V ⊂ Y be a bounded set and let f : U → Y

satisfy

(5) α−1f(αx)− f(x) ∈ δ(α)K(x)V for α ∈ A, x ∈ U.
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Then there exists a unique function F : U → Y satisfying

F (αx) = αF (x) for all α ∈ 〈A \ {−1}〉, x ∈ U,

and such that

F (x)− f(x) ∈ c K(x) seq cl conv(V ∪ (−V )), x ∈ U,

where

c := min
(

inf
α∈Ap

δ(α)
1− |α|p−1

, inf
α∈Ap

δ(α)
|α|p−1 − 1

)
,

Ap := {α ∈ A : |α|p−1 < 1}, Ap := {α ∈ A : |α|p−1 > 1},

(by inf ∅ we mean +∞).

Proof. Let us fix an α ∈ A such that |α| 6= 1. Consider two cases
1) |α|p−1 < 1,
2) |α|p−1 > 1.

In the first case, for all m, n ∈ N0 and x ∈ U , we have

α−(m+n)f(αm+nx)− α−mf(αmx)

=
n∑

k=1

α−(m+k−1)[α−1f(α αm+k−1x)− f(αm+k−1x)]

∈
n∑

k=1

α−(m+k−1) δ(α)K(αm+k−1x)V,

but from (4), by Corollary (1), we get

n∑

k=1

α−(m+k−1) δ(α)K(αm+k−1x)V

⊂
n∑

k=1

|α|−(m+k−1) δ(α)|αm+k−1|pK(x) conv(V ∪ (−V ))

= |α|m(p−1) δ(α)K(x)
1− |α|p−1

(
1− |α|n(p−1)

)
conv(V ∪ (−V ))

⊂ |α|m(p−1) δ(α)K(x)
1− |α|p−1

conv(V ∪ (−V )).
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Then

(6)
α−(m+n)f(αm+nx)− α−mf(αmx)

∈ |α|m(p−1) δ(α) K(x)
1− |α|p−1

conv(V ∪ (−V )),

and (α−nf(αnx) : n ∈ N) is the Cauchy sequence for each x ∈ U . Thus
we may define a function Fα : U → Y ,

Fα(x) := lim
n→∞

α−nf(αnx),

which satisfies

(7) Fα(αx) = lim
n→∞

α−nf(αn+1x) = α lim
n→∞

α−(n+1)f(αn+1x) = αFα(x)

for every x ∈ U . From (6), with m = 0, we obtain

α−nf(αnx)− f(x) ∈ δ(α)K(x)
1− |α|p−1

conv(V ∪ (−V )),

so

Fα(x)− f(x) ∈ δ(α)K(x)
1− |α|p−1

seq cl conv(V ∪ (−V )) for x ∈ U.(8)

Consider the second case. Replacing in (5) x by α−1x we get

α−1f(x)− f(α−1x) ∈ δ(α)K(α−1x)V,

and so, from (4) and Corollary 1

(9)
αf(α−1x)− f(x)

∈ δ(α)|α|1−pK(x) conv(V ∪ (−V )) for α ∈ A, x ∈ U.

Then, similarly as in the first case, one can show that

(10)
αm+nf(α−(m+n)x)− αmf(α−mx)

∈ |α|m(1−p) δ(α)K(x)
|α|p−1 − 1

conv(V ∪ (−V )),
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and (αnf (α−nx) : n ∈ N) is the Cauchy sequence for every x ∈ U . The
function Fα : U → Y given by

Fα(x) := lim
n→∞

αnf(α−nx)

is well defined and satisfies

(11) Fα(αx) = αFα(x) for every x ∈ U.

From (10), with m = 0, we get

αnf(α−nx)− f(x) ∈ δ(α)K(x)
|α|p−1 − 1

conv(V ∪ (−V )),

so

Fα(x)− f(x) ∈ δ(α) K(x)
|α|p−1 − 1

seq cl conv(V ∪ (−V )) for x ∈ U.(12)

Let us notice then from (7) and (11) it follows

(13) Fα(αnx) = αnFα(x) for α ∈ A \ {−1, 1}, x ∈ U, n ∈ N,

or equivalently, since R0U ⊂ U ,

(14) Fα(α−nx) = α−nFα(x) for α ∈ A \ {−1, 1}, x ∈ U, n ∈ N.

We prove that Fα = Fβ for α, β ∈ A \ {−1, 1}. In this purpose we
consider three cases:

1) |α|p−1 < 1 and |β|p−1 < 1;

2) |α|p−1 < 1 and |β|p−1 > 1;

3) |α|p−1 > 1 and |β|p−1 > 1;

1) For an arbitrary x ∈ U , from (8), by Corollary 1 and Lemma 2
we get

β−nFα(βnx)− β−nf(βnx) ∈ δ(α) K(βnx)
|β|n(1− |α|p−1)

seq cl conv(V ∪ (−V ))

⊂ |β|n(p−1) δ(α)K(x)
1− |α|p−1

seq cl conv(V ∪ (−V )).
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Hence

(15) lim
n→∞

β−nFα(βnx) = Fβ(x) for each x ∈ U.

By (8) and (13) we get

α−nFβ(αnx)− β−nFα(βnx) = (αβ)−n[βnFβ(αnx)− αnFα(βnx)]

= (αβ)−n[Fβ(αnβnx)− f(αnβnx) + f(αnβnx)− Fα(αnβnx)]

∈ |αβ|n(p−1)

(
δ(β)

1− |β|p−1
+

δ(α)
1− |α|p−1

)
K(x) seq cl conv(V ∪ (−V )),

so, from (15)

Fα(x)− Fβ(x) = lim
n→∞

(
α−nFβ(αnx)− β−nFα(βnx)

)
= 0 for every x ∈ U.

2) Let |α|p−1 < 1 and |β|p−1 > 1. For an arbitrary x ∈ U , as above,
from (8), we get

βnFα(β−nx)− βnf(β−nx) ∈ |β|n δ(α) K(β−nx)
1− |α|p−1

seq cl conv(V ∪ (−V ))

⊂ |β|n(p−1) δ(α)K(x)
1− |α|p−1

seq cl conv(V ∪ (−V )),

and therefore

(16) lim
n→∞

βnFα(β−nx) = Fβ(x) for x ∈ U.

On the other hand, by (12), we obtain

α−nFβ(αnx)− α−nf(αnx) ∈ δ(β)K(αnx)
|α|n(|β|p−1 − 1)

seq cl conv(V ∪ (−V ))

⊂ |α|n(p−1) δ(β)K(x)
|β|p−1 − 1

seq cl conv(V ∪ (−V )),

so

(17) lim
n→∞

α−nFβ(αnx) = Fα(x) for each x ∈ U.
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Thus by (8), (12), (13) and (14) we have

α−nFβ(αnx)− βnFα(β−nx) =
(

β

α

)n

[β−nFβ(αnx)− αnFα(β−nx)]

=
(

β

α

)n

[Fβ(αnβ−nx)− f(αnβ−nx) + f(αnβ−nx)− Fα(αnβ−nx)]

∈
∣∣∣∣
β

α

∣∣∣∣
n(1−p) (

δ(β)
|β|p−1 − 1

+
δ(α)

1− |α|p−1

)
K(x) seq cl conv(V ∪ (−V )),

and consequently, by (16) and (17)

Fα(x)− Fβ(x) = lim
n→∞

(
α−nFβ(αnx)− βnFα(β−nx)

)
= 0 for x ∈ U.

3) Let |α|p−1 > 1 and |β|p−1 > 1. For an arbitrary x ∈ U , as above,
from (12) we obtain

βnFα(β−nx)− βnf(β−nx) ∈ |β|n δ(α) K(β−nx)
|α|p−1 − 1

seq cl conv(V ∪ (−V ))

⊂ |β|n(1−p) δ(α)K(x)
|α|p−1 − 1

seq cl conv(V ∪ (−V )),

so

(18) lim
n→∞

βnFα(β−nx) = Fβ(x) for each x ∈ U.

Then, by (14)

αnFβ(α−nx)− βnFα(β−nx) = (αβ)n[β−nFβ(α−nx)− α−nFα(β−nx)]

= (αβ)n[Fβ(α−nβ−nx)−f(α−nβ−nx)+f(α−nβ−nx)−Fα(α−nβ−nx)]

∈ |αβ|n(1−p)

(
δ(β)

|β|p−1 − 1
+

δ(α)
|α|p−1 − 1

)
K(x) seq cl conv(V ∪ (−V )),

and from (18)

Fα(x)−Fβ(x) = lim
n→∞

(
αnFβ(α−nx)− βnFα(β−nx)

)
= 0 for each x ∈ U.

Thus we may define

F := Fβ , β ∈ A \ {−1, 1},
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which satisfies

F (αx) = αF (x) for all α ∈ A \ {−1}, x ∈ U.

One can show, by induction, that

F (λ1 · · ·λnµ−1
1 · · ·µ−1

m x) = λ1 · · ·λnµ−1
1 · · ·µ−1

m F (x)

for all λ1, . . . , λn, µ1, . . . , µm ∈ A \ {−1} and each x ∈ U , so

(19) F (αx) = αF (x) for α ∈ 〈A \ {−1}〉, x ∈ U.

From (8) and (12) we have

F (x)− f(x) ∈ cK(x) seq cl conv(V ∪ (−V )) for every x ∈ U,

where

c := min
(

inf
α∈Ap

δ(α)
1− |α|p−1

, inf
α∈Ap

δ(α)
|α|p−1 − 1

)
.

To prove the uniquenes of F let us suppose that F and F ′ satisfy (19)
and there exist non-negative real constants c and c′ such that

F (x)− f(x) ∈ cK(x) seq cl conv(V ∪ (−V )), x ∈ U,

F ′(x)− f(x) ∈ c′K(x) seq cl conv(V ∪ (−V )), x ∈ U.

Consider two cases:
1) there exists an α ∈ A such that |α|p−1 < 1. Then, for an arbitrary
x ∈ U ,

F (x)− F ′(x) = α−nF (αnx)− α−nf(αnx) + α−nf(αnx)− α−nF ′(αnx)

∈ c + c′

|α|n K(αnx) seq cl conv(V ∪ (−V ))

⊂ |α|n(p−1)(c + c′) K(x) seq cl conv(V ∪ (−V ))

for every n ∈ N, so F (x)− F ′(x) = 0 for each x ∈ U ;
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2) there exists an α ∈ A such that |α|p−1 > 1. Then, for an arbitrary
x ∈ U ,

F (x)− F ′(x) = αnF (α−nx)− αnf(α−nx) + αnf(α−nx)− αnF ′(α−nx)

∈ |α|n(c + c′)K(α−nx) seq cl conv(V ∪ (−V ))

⊂ |α|n(1−p)(c + c′) K(x) seq cl conv(V ∪ (−V ))

for every n ∈ N, so F (x)− F ′(x) = 0 for each x ∈ U , which completes the
proof. ¤

Remark 1. If 0 ∈ U , then, as it is easilly seen, from (19) we obtain
F (0) = 0, so F satisfies

F (αx) = αF (x) for all α ∈ 〈A \ {−1}〉 ∪ {0}, x ∈ U.

Then in the case 〈A \ {−1}〉 = R0, the function F is homogeneous. If
moreover c = 0, then the function f is homogeneous.

Example 1. Let f : R→ R be defined by

f(x) =





x + 2 for x ∈ 〈2〉
x− 2 for x ∈ −〈2〉
0 for x ∈ R \ 〈{−2, 2}〉.

One can check that f satisfies (5) with A = {−2, 2}, δ ≡ 1, K ≡ 1, p = 0,
V = [−1, 1]. The function

F (x) = lim
n→∞

f(2nx)
2n

=
{

x for x ∈ 〈{−2, 2}〉
0 for x ∈ R \ 〈{−2, 2}〉.

satisfies

F (αx) = αF (x) for α ∈ 〈{−2, 2}〉 ∪ {0}, x ∈ R,

and moreover

F (x)− f(x) =





−2 for x ∈ 〈2〉
2 for x ∈ −〈2〉
0 for x ∈ R \ 〈{−2, 2}〉.
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On the other hand

A0 = {−2, 2}, A0 = ∅,
so

c =
1

1− 2−1
= 2.

Thus
F (x)− f(x) ∈ [−2, 2] = 2 · [−1, 1],

which shows that the estimation obtained in the above theorem is the best
one.

The following result may be proved in much the same way as Theo-
rem 1.

Theorem 2. Let S ⊂ X be a cone (tS ⊂ S for t > 0) and let B ⊂
(0,∞) contain at least one element α 6= 1. Let δ : A → R+ be a mapping.
Assume that the function K : S → R+ satisfies

K(αx) ≤ αpK(x) for α ∈ (0,∞), x ∈ S,

with a certain p ∈ R\{1}. Let V ⊂ Y be a bounded set and let f : S → Y
satisfy

α−1f(αx)− f(x) ∈ δ(α) K(x) V for α ∈ B, x ∈ S.

Then there exists a unique function F : S → Y satisfying

F (αx) = αF (x) for all α ∈ 〈B〉, x ∈ S,

and such that

F (x)− f(x) ∈ cK(x) seq cl conv(V ∪ (−V )), for x ∈ S,

where

c := min
(

inf
α∈Bp

δ(α)
1− αp−1

, inf
α∈Bp

δ(α)
αp−1 − 1

)
,

with the sets Bp and Bp are defined as these ones for the set A.

Remark 2. Taking in Theorem 2

δ = 0, K = 1, p = 0, B ⊂ (1,∞), intB 6= ∅, (then 〈B〉 = (0,∞))

we obtain Theorem 1 from [2], that is Theorem 2 generalizes Theorem 1
from [2].
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2. Corollaries

The condition (15) can be considered, in a special case, for a normed
space Y . For this purpose we rewrite it in a different from. We take

V = {y ∈ Y : ‖y‖ ≤ 1}.

Then (5) can be writen as

(20) ‖α−1f(αx)− f(x)‖ ≤ δ(α)K(x) for α ∈ A, x ∈ U.

From Theorem 1 and Remark 1 we obtain

Theorem 3. Let X, U , A, δ and K be as in Theorem 1. Let Y be

a Banach space, 〈A \ {−1}〉 = R0 and 0 ∈ U . If a function f : U → Y

satisfies (20), then there exists a unique homogeneous function F : U → Y

such that

‖F (x)− f(x)‖ ≤ cK(x) for x ∈ U,

where c is defined as in Theorem 1. If moreover c = 0, then the function

f is homogeneous.

Jacek Tabor and Józef Tabor have examined in [5] the condition

(21) ‖f(αx)− αf(x)‖ ≤ |α|qK(x) for α ∈ K, x ∈ X,

for a vector space X and a normed space Y over a real or complex field
K, with a function K : X → R+ satisfying (4) with a constant p, where
p, q ∈ R+, p 6= q. They have proved that every function f : X → Y

satisfying (21) is homogeneous
We rewrite (21) in the following form

(22) ‖α−1f(αx)− f(x)‖ ≤ |α|q−1K(x).

From Theorem 3 (the details are left to the reader) we obtain

Corollary 2. Let X, Y , K be as in Theorem 3. Let p, q ∈ R and

let A ⊂ R0 be such that 〈A \ {−1}〉 = R0. If there exists a sequence

(αn : n ∈ N) ⊂ A such that αn → 0 whenever

p > 1 and q > 1 or p < 1 and q > p,



On the stability of the homogeneous equation 45

or, if there exists a sequence (βn : n ∈ N) ⊂ A such that |βn| → ∞ when-
ever

p < 1 and q < 1 or p > 1 and q < p,

then every mapping f : X → Y satisfying the condition (22) for α ∈ A,
x ∈ X is homogeneous.

Moreover, one can deduce from above Corollary the following

Corollary 3. Every function f : X → Y satisfying

(23) ‖α−1f(αx)− f(x)‖ ≤ ε for α ∈ (−γ, 0), x ∈ X,

with some positive real constant γ, is homogeneous.

Remark 3. As far as it is for the author known, in the case p = 1, the
problem of the stability of the homogeneous equation is open.

Remark 4. As one can see, the result of this paper is incomparable
with those ones given by J. Schwaiger in [3]. On the one hand, the men-
tioned results are proved in more general setting, on the other, the bound
in considered there conditions (beside the result being a generalization of
the one from [5]) does not depend on the variable x from the set X.

Acknowlegement. The author wishes to express his gratitude to Pro-
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this paper.
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