On the equivalence of the rectangular and the rhombic functional equations

By HENRIK STETKÆR (Aarhus)

Abstract

We construct a bijection of the set of continuous solutions of a generalized rectangular functional equation onto the set of continuous solutions of a corresponding generalized rhombic functional equation.

1. Introduction

The rectangular functional equation

$$
\begin{align*}
f\left(x_{1}+y_{1}, x_{2}+y_{2}\right) & +f\left(x_{1}+y_{1}, x_{2}-y_{2}\right)+f\left(x_{1}-y_{1}, x_{2}+y_{2}\right) \\
& +f\left(x_{1}-y_{1}, x_{2}-y_{2}\right)=4 f\left(x_{1}, x_{2}\right) \tag{1.1}
\end{align*}
$$

for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ expresses that the value of the function f : $\mathbb{R}^{2} \rightarrow \mathbb{C}$ at the centre of any rectangle, the sides of which are parallel to the coordinate axes, equals its mean value over the four vertices. The related functional equation

$$
\begin{gather*}
f\left(x_{1}+y_{1}, x_{2}\right)+f\left(x_{1}-y_{1}, x_{2}\right) \\
+f\left(x_{1}, x_{2}+y_{2}\right)+f\left(x_{1}, x_{2}-y_{2}\right)=4 f\left(x_{1}, x_{2}\right) \tag{1.2}
\end{gather*}
$$

is for obvious geometric reasons called the rhombic functional equation. Aczél, Haruki, McKiernan and Sakovič [1] observed that (1.1) and (1.2) have the same set of solutions.

Mathematics Subject Classification: 39B32.
Key words and phrases: functional equation, rectangular, rhombic.

Chung, Ebanks, Ng, Sahoo and Zeng [2] generalized the domain \mathbb{R}^{2} of (1.1) and (1.2) to a product $G=G_{1} \times \cdots \times G_{n}$ of groups. Apart from normalizing factors their equations are

$$
\begin{equation*}
\frac{1}{2^{n}} \sum_{\sigma_{1}, \ldots, \sigma_{n}= \pm 1} f\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{n} y_{n}^{\sigma_{n}}\right)=f(x) h_{1}(y)+h_{2}(y), \tag{1.3}
\end{equation*}
$$

and

$$
\begin{gather*}
\sum_{i=1}^{n} \frac{1}{2} \sum_{\sigma_{i}= \pm 1} f\left(x_{1}, \ldots, x_{i-1}, x_{i} y_{i}^{\sigma_{i}}, x_{i+1}, \ldots, x_{n}\right) \tag{1.4}\\
=f(x) p(y)+q(y)
\end{gather*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in G$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in G$. They proved that the same set of f^{\prime} s occurs in the solutions of (1.3) and (1.4).

In this paper we generalize the left hand sides still further, keeping the right hand sides of (1.3) and (1.4) unchanged, so that we get a further generalized rectangular functional equation (2.1) and a generalized rhombic functional equation (2.2). We construct a bijection of the set of solutions of the generalized rectangular functional equation onto the set of solutions of the generalized rhombic functional equation. The bijection takes not just f, but also the other functions h_{1}, h_{2} and p, q of the solutions into account. The result reveals that it is not necessary that G_{1}, \ldots, G_{n} be groups.

The way we proceed is inspired by [2; Sections 4 and 5]. It should be pointed out that we work with complex valued solutions, while the solutions of [2] may take their values in any quadratically closed field of characteristic different from 2 .

2. The bijection

Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} be topological spaces and put $X=$ $X_{1} \times \cdots \times X_{n}$ and $Y=Y_{1} \times \cdots \times Y_{n}$. We let K_{1}, \ldots, K_{n} be compact spaces equipped with complex Borel measures μ_{1}, \ldots, μ_{n} such that $\mu_{1}\left(K_{1}\right)=$ $\cdots=\mu_{n}\left(K_{n}\right)=1$. We assume that the given continuous mappings ϕ_{i} : $X_{i} \times K_{i} \times Y_{i} \rightarrow X_{i}$ for $i=1, \ldots, n$, satisfy the following condition: For each $i=1, \ldots, n$ there exists an $e_{i} \in Y_{i}$ such that $\phi_{i}\left(x_{i}, k_{i}, e_{i}\right)=x_{i}$ for all
$x_{i} \in X_{i}$ and $k_{i} \in K_{i}$. If there are more than one possibility for the e_{i} 's we fix one for each $i=1, \ldots, n$.

Writing $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in Y$ we formulate the following version of the generalized rectangular functional equation

$$
\begin{gather*}
\int_{K_{1} \times \cdots \times K_{n}} f\left(\phi_{1}\left(x_{1}, k_{1}, y_{1}\right), \ldots, \phi_{n}\left(x_{n}, k_{n}, y_{n}\right)\right) d \mu_{1}\left(k_{1}\right) \ldots d \mu_{n}\left(k_{n}\right) \tag{2.1}\\
=f(x) h_{1}(y)+h_{2}(y), \quad x \in X, y \in Y
\end{gather*}
$$

and of the generalized rhombic functional equation

$$
\begin{align*}
& \sum_{i=1}^{n} \int_{K_{i}} F\left(x_{1}, \ldots, \phi_{i}\left(x_{i}, k_{i}, y_{i}\right), \ldots, x_{n}\right) d \mu_{i}\left(k_{i}\right) \tag{2.2}\\
& \quad=F(x) p(y)+q(y), \quad x \in X, y \in Y .
\end{align*}
$$

The functions to be determined are $f \in C(X)$ and $h_{1}, h_{2} \in C(Y)$, resp. $F \in C(X)$ and $p, q \in C(Y)$. We use the standard notation of $C(X)$ for the set of complex valued continuous functions on a topological space X.

Examples 2.1. 1. In [2] we have for $i=1, \ldots, n$ that $X_{i}=Y_{i}=G_{i}$, $K_{i}=\{ \pm 1\}, \mu_{i}(\{1\})=\mu_{i}(\{-1\})=\frac{1}{2}, \phi_{i}\left(x_{i}, k_{i}, y_{i}\right)=x_{i} y_{i}^{k_{i}}$ and e_{i} is the neutral element of the group G_{i}. If G_{i} is abelian then a more general instance is given by $\phi_{i}\left(x_{i},+1, y_{i}\right)=x_{i}+y_{i}, \phi_{i}\left(x_{i},-1, y_{i}\right)=x_{i}+\sigma_{i} y_{i}$ where $\sigma_{i}: G_{i} \rightarrow G_{i}$ is a continuous homomorphism such that $\sigma_{i} \circ \sigma_{i}$ equals the identity map (see [3]).
2. We get a more general example than the one in [2] as follows: For $i=1, \ldots, n$ we let K_{i} be a compact topological transformation group of a topological group G_{i} such that the map $x_{i} \rightarrow k_{i} \cdot x_{i}$ of G_{i} into G_{i} is either an automorphism or an anti-automorphism for each fixed $k_{i} \in K_{i}$. Furthermore we let $d k_{i}$ denote the normalized Haar measure on K_{i}. Then

$$
\int_{K_{1}} \cdots \int_{K_{n}} f\left(x_{1}\left(k_{1} \cdot y_{1}\right), \ldots, x_{n}\left(k_{n} \cdot y_{n}\right)\right) d k_{n} \ldots d k_{1}=f(x) h_{1}(y)+h_{2}(y)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in G_{1} \times \cdots \times G_{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in G_{1} \times$ $\cdots \times G_{n}$, is a generalized rectangular functional equation that satisfies our
requirements. We get Example 1 by taking $K_{i}=\mathbb{Z}_{2}$. Another choice of K_{i} can be $K_{i}=\mathbb{Z}_{N}$ acting on $X_{i}=\mathbb{C}$ as follows: $\mathbb{Z}_{N}=\left\{\omega^{n} \mid n=\right.$ $0,1, \ldots, N-1\}$ where $\omega=\exp (2 \pi i / N)$, and $\omega^{n} \cdot z=\omega^{n} z$ for $z \in \mathbb{C}$.

Theorem 2.2. Let the assumptions be as above. For any continuous solution $\left(f, h_{1}, h_{2}\right)$ of the generalized rectangular functional equation (2.1) we define

$$
\Phi\left(f, h_{1}, h_{2}\right):= \begin{cases}(f, p, q) & \text { if } f \text { is not a constant } \\ \left(f, n h_{1}, n h_{2}\right) & \text { if } f \text { is a constant }\end{cases}
$$

where

$$
p(y):=\sum_{i=1}^{n} h_{1}\left[y_{i}\right] \quad \text { and } \quad q(y)=\sum_{i=1}^{n} h_{2}\left[y_{i}\right] \quad \text { for } y \in Y
$$

with the notation $\left[y_{i}\right]:=\left(e_{1}, \ldots, e_{i-1}, y_{i}, e_{i+1}, \ldots, e_{n}\right) \in Y$ when $y_{i} \in Y_{i}$.
Then Φ is a bijection of the set of continuous solutions of the generalized rectangular functional equation (2.1) onto the set of continuous solutions of the generalized rhombic functional equation (2.2).

The inverse map Ψ is given by

$$
\Psi(f, p, q):= \begin{cases}\left(f, h_{1}, h_{2}\right) & \text { if } f \text { is not a constant } \\ (f, p / n, q / n) & \text { if } f \text { is a constant }\end{cases}
$$

where

$$
\begin{aligned}
& h_{1}(y):=\prod_{i=1}^{n}\left\{p\left[y_{i}\right]-(n-1)\right\}, \\
& h_{2}(y):=\sum_{k=1}^{n} q\left[y_{k}\right] \prod_{i=1}^{k-1}\left\{p\left[y_{i}\right]-(n-1)\right\}
\end{aligned}
$$

for $y=\left(y_{1}, \ldots, y_{n}\right) \in Y$.
Proof. The statements are easy to check if f is constant, so we may in the proof restrict our attention to solutions for which f is not constant. For brevity we write $d k_{i}=d \mu_{i}\left(k_{i}\right)$ for $i=1, \ldots, n, d k=d k_{1} \ldots d k_{n}$ and $K=K_{1} \times \cdots \times K_{n}$ in the proof. Let $\left(f, h_{1}, h_{2}\right)$ be a continuous solution of the generalized rectangular functional equation (2.1). Putting $y=\left[y_{i}\right]$
into it and using the conditions on the mappings $\phi_{1}, \ldots, \phi_{n}$ we find that

$$
\begin{align*}
f(x) & h_{1}\left[y_{i}\right]+h_{2}\left[y_{i}\right] \\
& =\int_{K} f\left(\phi_{1}\left(x_{1}, k_{1}, e_{1}\right), \ldots, \phi_{i}\left(x_{i}, k_{i}, y_{i}\right), \ldots, \phi_{n}\left(x_{n}, k_{n}, e_{n}\right)\right) d k \\
& =\int_{K} f\left(x_{1}, \ldots, \phi_{i}\left(x_{i}, k_{i}, y_{i}\right), \ldots, x_{n}\right) d k \tag{2.3}\\
& =\int_{K_{i}} f\left(x_{1}, \ldots, \phi_{i}\left(x_{i}, k_{i}, y_{i}\right) \ldots, x_{n}\right) d k_{i} .
\end{align*}
$$

Summing this over $i=1, \ldots, n$ we find that

$$
\sum_{i=1}^{n} \int_{K_{i}} f\left(x_{1}, \ldots, \phi_{i}\left(x_{i}, k_{i}, y_{i}\right), \ldots, x_{n}\right) d k_{i}=f(x) \sum_{i=1}^{n} h_{1}\left[y_{i}\right]+\sum_{i=1}^{n} h_{2}\left[y_{i}\right],
$$

which shows that (f, p, q) is a continuous solution of (2.2) with $p(y):=$ $\sum_{i=1}^{n} h_{1}\left[y_{i}\right]$ and $q(y)=\sum_{i=1}^{n} h_{2}\left[y_{i}\right]$.

We will next show that Φ is injective. Let $\left(f, h_{1}, h_{2}\right)$ and $\left(f^{\prime}, h_{1}^{\prime}, h_{2}^{\prime}\right)$ be two solutions such that $\Phi\left(f, h_{1}, h_{2}\right)=\Phi\left(f^{\prime}, h_{1}^{\prime}, h_{2}^{\prime}\right)$. Then obviously $f=f^{\prime}$. Now $f(x) h_{1}(y)+h_{2}(y)=f(x) h_{1}^{\prime}(y)+h_{2}^{\prime}(y)$ implies that $h_{1}=h_{1}^{\prime}$ and $h_{2}=h_{2}^{\prime}$ because f is not constant.

Let (F, p, q) be a continuous solution of (2.2). Putting $y=\left[y_{j}\right]$ in (2.2) we get that

$$
\begin{aligned}
& F(x) p\left[y_{j}\right]+q\left[y_{j}\right]=\sum_{i \neq j} \int_{K_{i}} F\left(x_{1}, \ldots, \phi_{i}\left(x_{i}, k_{i}, e_{i}\right), \ldots, x_{n}\right) d k_{i} \\
&+\int_{K_{i}} F\left(x_{1}, \ldots, \phi_{j}\left(x_{j}, k_{j}, y_{j}\right), \ldots, x_{n}\right) d k_{j} \\
&=(n-1) F(x)+\int_{K_{j}} F\left(x_{1}, \ldots, \phi_{j}\left(x_{j}, k_{j}, y_{j}\right) \ldots, x_{n}\right) d k_{j}
\end{aligned}
$$

so that

$$
\int_{K_{j}} F\left(x_{1}, \ldots, \phi_{j}\left(x_{j}, k_{j}, y_{j}\right), \ldots, x_{n}\right) d k_{j}=F(x)\left\{p\left[y_{j}\right]-(n-1)\right\}+q\left[y_{j}\right] .
$$

Using that we compute

$$
\begin{aligned}
& \quad \int_{K_{1} \times \cdots \times K_{n}} F\left(\phi_{1}\left(x_{1}, k_{1}, y_{1}\right), \ldots, \phi_{n}\left(x_{n}, k_{n}, y_{n}\right)\right) d k_{1} \ldots d k_{n} \\
& =\int_{K_{2} \times \cdots \times K_{n}}\left\{\int_{K_{1}} F\left(\phi_{1}\left(x_{1}, k_{1}, y_{1}\right), \phi_{2}\left(x_{2}, k_{2}, y_{2}\right), \ldots, \phi_{n}\left(x_{n}, k_{n}, y_{n}\right)\right) d k_{1}\right\} d k_{2} \ldots d k_{n} \\
& =\int_{K_{2} \times \cdots \times K_{n}}\left\{F\left(x_{1}, \phi_{2}\left(x_{2}, k_{2}, y_{2}\right), \ldots, \phi_{n}\left(x_{n}, k_{n}, y_{n}\right)\right)\left(\left[p\left[y_{1}\right]-(n-1)\right]+q\left[y_{1}\right]\right\} d k_{2} \ldots d k_{n}\right. \\
& =\int_{K_{2} \times \cdots \times K_{n}} F\left(x_{1}, \phi_{2}\left(x_{2}, k_{2}, y_{2}\right), \ldots, \phi_{n}\left(x_{n}, k_{n}, y_{n}\right)\right) d k_{2} \ldots d k_{n}\left[p\left[y_{1}\right]-(n-1)\right]+q\left[y_{1}\right] \\
& =\cdots=F(x) \prod_{i=1}^{n}\left\{p\left[y_{i}\right]-(n-1)\right\}+\sum_{k=1}^{n} q\left[y_{k}\right] \prod_{i=1}^{k-1}\left\{p\left[y_{i}\right]-(n-1)\right\} .
\end{aligned}
$$

We see that $\left(F, h_{1}, h_{2}\right)$ is a continuous solution of (2.1) where

$$
h_{1}(y):=\prod_{i=1}^{n}\left\{p\left[y_{i}\right]-(n-1)\right\}, \quad h_{2}(y):=\sum_{k=1}^{n} q\left[y_{k}\right] \prod_{i=1}^{k-1}\left\{p\left[y_{i}\right]-(n-1)\right\} .
$$

To see that Φ is surjective it suffices to consider a solution (F, p, q) of (2.2) for which F is not a constant. With the notation just applied we see that $\left(F, h_{1}, h_{2}\right)$ is a solution of (2.1). Now, $\Phi\left(F, h_{1}, h_{2}\right)=(F, P, Q)$ is a solution of (2.2), so we have two solutions with the same F. Thus $F(x) P(y)+Q(y)=F(x) p(y)+q(y)$. Since F is not a constant we get that $P=p$ and $Q=q$, so that $\Phi\left(F, h_{1}, h_{2}\right)=(F, p, q)$. This shows that Φ is surjective. It also shows that $\Phi \circ \Psi$ is the identity, thus verifying the claim about the inverse.

Corollary 2.3. The solutions $f \in C(X)$ of the following version of Jensen's functional equation

$$
\begin{gathered}
\int_{K_{1} \times \cdots \times K_{n}} f\left(\phi_{1}\left(x_{1}, k_{1}, y_{1}\right), \ldots, \phi_{n}\left(x_{n}, k_{n}, y_{n}\right)\right) d \mu_{1}\left(k_{1}\right) \ldots d \mu_{n}\left(k_{n}\right)=f(x), \\
x \in X, y \in Y
\end{gathered}
$$

are the same as the solutions $F \in C(X)$ of the following version of the rhombic functional equation

$$
\sum_{i=1}^{n} \int_{K_{i}} F\left(x_{1}, \ldots, \phi_{i}\left(x_{i}, k_{i}, y_{i}\right), \ldots, x_{n}\right) d \mu_{i}\left(k_{i}\right)=F(x), \quad x \in X, y \in Y
$$

The corollary was noted in $[1 ; \S 4]$ for the classical case of $X=\mathbb{R}^{2}$, and proved in [2] in the setup there.

Remark 2.4. In contrast to [2] we work with continuous solutions. This is because our integrals should make sense. However, if K_{1}, \ldots, K_{n} are finite sets then we may dispense with all assumptions about continuity by equipping X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} with the discrete topology. All maps are continuous with respect to the discrete topology, so in this case we work with solutions without assuming any regularity. The advantage of keeping the topology is that Theorem 2.2 and Corollary 2.3 have the same wording irrespective of the topologies involved. The discrete topology is just a special case that one can refer to if one is interested in solutions without prescribed regularity conditions like continuity.

References

[1] J. Aczél, H. Haruki, M. A. McKiernan and G. N. Sakovič, General and regular solutions of functional equations characterizing harmonic polynomials, Aequationes Math. 1 (1968), 37-53.
[2] J. K. Chung, (Zhong Jukang), B. R. Ebanks, C. T. Ng, P. K. Sahoo and W. B. ZENG, On generalized rectangular and rhombic functional equations, Publ. Math. (Debrecen) 47 (1995), 249-270.
[3] H. Stetker, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144-172.

```
HENRIK STETK&R
```

DEPARTMENT OF MATHEMATICS
AARHUS UNIVERSITY
NY MUNKEGADE
DK 8000 AARHUS C
DENMARK
E-mail: stetkaer@imf.au.dk
(Received August 29, 1997; file received November 4, 1998)

