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Isometric immersion of complete Riemannian manifolds
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Dedicated to Professor Béla Gyires on his 90th birthday

Abstract. Global isometric mappings ϕ of a Riemannian manifold Mn into a
euclidean space En+m were investigated under different additional conditions on Mn, ϕ
and m by a number of geometers. We mention here only the works of C. Tompkins [7],
S. S. Chern and C. C. Hsiung [1], S. S. Chern and N. H. Kuiper [2], H. Jaco-
bowitz [3].

Recently S. S. Yang [8] showed that in case of a compact Mn no euclidean ball

B(r) ⊂ En+m of radius r can contain ϕ(Mn), provided ‖H(ϕ(x)‖ < 1√
m r

, ∀x ∈ M ,

where H denotes the mean curvature vector of ϕ(Mn).
In this note we prove a similar theorem, replacing compactness of Mn by the

weaker condition of completeness. Our result is somewhat stronger even in the case of
compactness, if m > 1. Also isometric immersion ϕ : Mn → Sn+m−1 of a complete
Mn into a euclidean sphere Sn+m−1 not pinched by certain geodesic balls of Sn+m−1

is investigated. Corollary 1 concerns the diameter of ϕ(Mn), and Corollary 2 concerns
minimal submanifolds of the sphere.

1. Introduction

Global isometric mappings ϕ of a Riemannian manifold M into a eu-
clidean space E were investigated under different additional conditions on
M , ϕ and dim E by a number of geometers. In 1963 S. S. Chern and
C. C. Hsiung [1] showed that there exists no isometric minimal immer-
sion of a compact Riemannian manifold into a euclidean space. In 1998
S. S. Yang [8] proved the following
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Theorem (Yang [8]). Let ϕ : Mn → En+m be an isometric immer-
sion of a compact Riemannian manifold Mn into the euclidean En+m, H

the mean curvature vector of ϕ(Mn), and ‖H‖ the euclidean length of H.
Then in case of

‖H(ϕ(x)‖ <
1√
mr

∀x ∈ M

no euclidean ball B(r) of radius r can contain ϕ(Mn).

Chern and Hsiung’s above mentioned result is a consequence of this
theorem. Indeed, since Mn is compact, so is ϕ(Mn) ⊂ En+m. Hence
ϕ(Mn) is bounded, and therefore contained in a sufficiently big B(R). If
moreover ϕ(Mn) is a minimal surface, as in Chern and Hsiung’s theorem,
then ‖H‖ ≡ 0, and thus by Yang’s theorem no ball B(R) could contain
ϕ(Mn). This is a contradiction, what proves Chern and Hsiung’s above
cited result.

Yang concluded from the behaviour of ‖H‖ to the fact that ϕ(Mn) is
not pinched into (not contained in) certain balls B(r). However there are
results which lead to this conclusion from a restriction on the sectional cur-
vature. H. Jacobowitz [3] proved in 1973 that if the sectional curvature
of a compact Riemannian manifold Mn is everywhere less than 1

r2 , then
there exists no isometric immersion of Mn into a ball B(r) ⊂ E2n−1. This
is a generalization of a result of S. S. Chern and N. H. Kuiper [2] from
1952. This result ([2; Theorem 5]) says (in an appropriate formulation)
that a compact Riemannian manifold Mn with everywhere nonpositive
sectional curvature cannot be isometrically embedded in E2n−1. Also this
result contains as a corollary the old theorem of C. Tompkins [7] from
1939, according to which the flat n-dimensional torus cannot be embedded
isometrically in E2n−1.

In this note we want to prove a theorem similar to Yang’s theorem, re-
placing compactness of Mn by the weaker condition of completeness. Also
isometric immersion ϕ : Mn → Sn+m−1 of a complete Riemannian Mn

into a euclidean sphere not pinched by certain geodesic balls of Sn+m−1,
will be investigated.

2. Immersion into En+m

Theorem 1. Let Mn be a complete Riemannian manifold whose sec-

tional curvature K is bounded away from −∞, and ϕ : Mn → En+m an
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isometric immersion into a euclidean space En+m, such that ϕ(Mn) is a

submanifold of En+m. Let us denote by H the mean curvature vector of

ϕ(Mn), and by ‖H‖ the euclidean length of H.

Then ϕ(Mn) cannot be contained in any ball B(r) ⊂ En+m of radius r

satisfying

(1) lim sup
x∈M

‖H(ϕ(x))‖ <
1
r
,

i.e. (1) ⇒ ϕ(Mn) 6⊂ B(r).

Both Yang’s above result ([8; Theorem 1]) and our Theorem conclude
from ‖H‖ on the upper bound of the radii r of those B(r) which cannot
contain ϕ(Mn). However our assumption on Mn is completeness which is
weaker than compactness the assumption in Yang’s theorem. Moreover,
since 1

‖H‖ > 1√
m‖H‖ if m > 1, our result allows bigger balls not containing

ϕ(Mn), than the balls in Yang’s theorem. So our theorem deduces from a
weaker condition a stronger consequence.

We can achieve this by exploiting a result of H. Omori ([6] Theorem
A.), saying: for any smooth and bounded function φ on a complete con-
nected Riemannian manifold Q whose sectional curvatures K are bounded
away from −∞, and for any ε > 0 there exists a point p ∈ Q such that
‖(grad φ)(p)‖ < ε and at this p the Hessian Hφ of φ for any unit vector
X ∈ TpQ is smaller than ε : Hφ(X, X) < ε.

Proof of Theorem 1. Suppose that ϕ(Mn) ⊂ B(r). We want to
show that this assumption contradicts (1). – Without loss of generality we
can assume that the center of this ball B(r) is the origin O of the En+m.
Then, denoting the position vector

−−−−→
Oϕ(x) x ∈ M by F (x) and putting

ϕ(Mn) =: Q,

φ : ϕ(Mn) → R, φ(x) := ‖F (x)‖2

is a smooth function on Q bounded by r2.
We want to calculate the Hessian Hφ of φ. We know that Hφ has the

form

(2) Hφ(X, X)ϕ(x) = XXφ− (∇XX)φ, X ∈ X(Q),
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where ∇ denotes the Riemannian connection of Q induced on it by the
canonical euclidean connection ∇′ of the ambient space En+m. The rela-
tion

∇′XY = ∇XY + σ(X, Y ), X, Y ∈ X(Q)

between ∇ and ∇′, where σ denotes the second fundamental form belong-
ing to the applied embedding, is well known. Applying this for Hφ we
obtain

(3) Hφ(X, X) = XX〈F, F 〉 − (∇′XX)〈F, F 〉+ σ(X, X)〈F, F 〉,

where 〈 , 〉 denotes the euclidean scalar product. In our further calculation
we want to make use of two relations. First

(4) ∇′XF = X.

To see this we use in En+m Descartes coordinates yA A,B = 1, n + m.

Then F (x) =
−−−−→
Oϕ(x) = yA ∂

∂yA and Tϕ(x)Q 3 X =
∂yB

∂xi
λi(x) ∂

∂yB ≡ ξB ∂
∂yB ,

i = 1, n with arbitrary λi. Thus in En+m we have ∇′XF = XF =

ξB ∂yA

∂yB
∂

∂yA = X. – The second relation is well known:

(5) Z〈U, V 〉 = 〈∇′ZU, V 〉+ 〈U,∇′ZV 〉 , Z, U, V ∈ X(En+m).

Thus

X〈F, F 〉 (5)
= 2 〈∇′XF, F 〉 (4)

= 2〈X, F 〉(6)

and

X〈X, F 〉 (5)
= 〈∇′XX, F 〉+ 〈X,∇′XF 〉 ,

that is

〈∇′XX, F 〉 (4)
= X〈X, F 〉 − 〈X,X〉.(7)

By using these relations we also get

(8)
(∇′XX) 〈F, F 〉 (5)

= 2
〈
∇′∇′XXF, F

〉
(4)
= 2 〈∇′XX, F 〉

(7)
= 2X〈X,F 〉 − 2〈X, X〉.
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Hence, by (3) (6) and (8)

Hφ(X, X) = 2X〈X, F 〉 − 2X〈X,F 〉+ 2〈X, X〉+ 2〈σ(X, X), F 〉
= 2〈X,X〉+ 2〈σ(X, X), F 〉.

Let Ei(x) be an orthonormal base of Tϕ(x)Q. Then

n∑

i=1

Hφ(Ei, Ei) = 2n

(
1 +

〈
1
n

n∑

i=1

σ(Ei, Ei), F

〉)
= 2n(1 + 〈H,F 〉).

Now, applying Omori’s cited theorem, for any ε > 0 there exists a ϕ(x) =
p ∈ Q such that Hφ(X,X) < ε for any unit vector X ∈ TpQ. Thus
Hφ(Ei, Ei) < 2ε,

∑n
i=1Hφ(Ei, Ei) < 2nε, and

1 + 〈H,F 〉(p) < ε

ε− 1 > 〈H,F 〉 ≥ −‖H‖ ‖F‖

‖H‖ >
1− ε

‖F‖ .

According to our assumption ϕ(Mn) = Q ⊂ B(r); i.e. ‖F‖ < r. So

‖H‖ >
1− ε

r
, ∀ ε > 0.

Hence lim sup
x∈M

‖H(ϕ(x)‖ < 1
r . However this contradicts (1). Therefore in

the case of (1) our assumption ϕ(Mn) ⊂ B(r) cannot be true. ¤

We can use our result for an estimate of the diameter d of ϕ(Mn) ⊂
En+m.

An old result of H. E. Jung [4] says that: Each subset of En+m of
diameter not greater than d lies in a ball B(R) ⊂ En+m of radius

(9) R ≤
√

n + m

2(n + m) + 2
d.

Let now ϕ(Mn) of our Theorem 1 be this subset of En+m. Then
ϕ(Mn) ⊂ B(R) with an R satisfying (9). On the other hand, if Mn, ϕ
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and r satisfy the conditions of our Theorem 1, then ϕ(Mn) cannot be
contained in B(r) : ϕ(Mn) 6⊂ B(r). Hence

r < R ≤
√

n + m

2(n + m) + 2
d,

i.e. we obtain

Corollary 1. If Mn, ϕ and r satisfy the conditions of our Theorem 1,

then the diameter d of ϕ(Mn) is greater than
√

2(n+m)+2
n+m r:

d(ϕ(Mn)) ≥
√

2(n + m) + 2
n + m

r.

3. Immersion into Sn+m−1

We want to prove a similar theorem in the case of immersion into a
euclidean unit sphere Sn+m−1. We apply the notations of the previous
section.

Theorem 2. Let Mm be a complete Riemannian manifold whose sec-

tional curvature K is bounded away from −∞, and ϕ : Mn → Sn+m−1 an

isometric immersion such that ϕ(Mn) is a submanifold of Sn+m−1.

Then ϕ(Mn) cannot be contained in any geodesic ball B̃(r) of Sn+m−1

of radius r satisfying

(10) lim sup
x∈M

‖Hϕ(x)‖ <
cos r

2 sin r
2

.

Proof. The proof runs the same way as the previous theorem with
some minor differences.

Let ∇ and ∇̃ be the Levi–Civita connections on Mn and Sn+m−1(⊂
En+m) resp., and ∇′ the natural connection on En+m. Then

∇̃XY = ∇XY + σ(X, Y ), ∇′XY = ∇̃XY − 〈X, Y 〉N

and

(11) ∇XY = ∇′XY + 〈X,Y 〉N − σ(X,Y ) X, Y ∈ X(Q),
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where N is the outward unit normal vector of Sn+m−1 in En+m. Then for
the Hessian Hφ of a smooth function φ on Q we have (2), and by (11) we
obtain

Hφ(X, X) = (XX −∇′XX + 〈X, X〉N − σ(X,X)) φ.

Let A be the position vector of the center of a geodesic ball B̃(r) on Sn+m−1

and F (x) again the position vector
−−−−→
Oϕ(x). Then φ(x) := ‖F (x) − A‖2 is

a smooth and bounded function on ϕ(Mn) = Q ⊂ Sn+m−1. A calculation
using (3), (6), (8), the facts that N = F on Q ⊂ Sn+m−1 and ∇′XA = 0,
yields, similarly as in Section 2, that

Hφ(X, X) = 2(〈X,X〉 − 〈X,X〉〈F, F −A〉+ 〈σ(X, X), F −A〉).

For a unit vector X this gives

Hφ(X,X) = 2(1− 〈F, F −A〉+ 〈σ(X,X), F −A〉).

Let now again Ei(p) p = ϕ(x) be an orthonormal base of TpQ. Then

n∑

i=1

Hφ(Ei, Ei) = 2n

(
1 +

〈
1
n

n∑

i=1

σ(Ei, Ei), F −A

〉
− 〈F, F −A〉

)

= 2n(1 + 〈H, F −A〉 − 〈F, F −A〉).

Since φ is smooth and bounded, Q as the isometric immersion of Mn

is connected and complete, and its sectional curvature is bounded away
from −∞, we may apply Omori’s theorem, according to which we have a
ϕ(x) = p ∈ Q for any ε > 0 such that Hφ(Ei, Ei)(p) < 2ε. Hence

〈H(p), F −A〉+ 1− 〈F, F −A〉 = 〈H(p), F −A〉+ 1− 〈F, F 〉+ 〈F,A〉 < ε.

Taking into consideration that ‖F‖2 = 1, and denoting 〈F (ϕ(x), A〉 by
Θ(ϕ(x), we obtain

ε−Θ(p) > 〈H(p), F −A〉 ≥ −‖H(p)‖ · ‖F −A‖ = −‖H(p)‖2 sin
Θ(p)

2
.

Thus to any ε > 0 there exists a p ∈ Q, such that

‖H(p)‖ >
cosΘ(p)− ε

2 sin Θ(p)
2

p ∈ Q.
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Assume now that Q ⊂ B̃(r) (r < π). Then Θ(ϕ(x)) ≤ r and thus
sin Θ(ϕ(x))

2 ≤ sin r
2 and cosΘ(ϕ(x)) ≥ cos r. Hence

‖H(p)‖ >
cos r − ε

2 sin r
2

,

and thus

(12) lim sup
x∈M

‖H(ϕ(x))‖ ≥ cos r

2 sin r
2

.

However in case of (10), (12) cannot be true, and thus our assumption
cannot hold; i.e. in case of (10) there exists no B̃(r) containing ϕ(Mn) = Q.

¤

Finally we want still to show that an interesting result of S. B. Myers

is a consequence of a corollary of our last theorem.
First we remark that we have confined r in our Theorem 2 by π,

however, because of the inequality (9), it must be smaller even than π
2 .

Let now ϕ(Mn) be a complete and minimal (H = 0) submanifold of
Sn+m. Then by our Theorem 2 ϕ(Mn) cannot be contained in a ball B̃(r),
r < π

2 . So we obtain

Corollary 2. No complete minimal submanifold of a sphere can be

contained in an open hemisphere if K is bounded away from −∞.

If Mn is compact and m = 1, then this is a result of S. B. Myers ([5;
Theorem 4]).
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