On $(0 ; 1)$ Pál-type interpolation with boundary conditions

By MARGIT LÉNÁRD (Kuwait)

Abstract. Let the set of the knots

$$
-1=x_{n}<x_{n}^{*}<x_{n-1}<x_{n-1}^{*}<\cdots<x_{1}<x_{1}^{*}<x_{0}=1 \quad(n \geq 2)
$$

be given on the interval $[-1,1]$. Find a polynomial $Q_{m}(x)$ of minimal degree satisfying the $(0 ; 1)$ interpolation properties

$$
\begin{aligned}
& Q_{m}\left(x_{i}\right)=y_{i} \\
& Q_{m}^{\prime}\left(x_{i}^{*}\right)=y_{i}^{\prime} \\
&(i=1, \ldots, n-1), \\
&
\end{aligned}
$$

with the boundary conditions

$$
\begin{aligned}
Q_{m}^{(j)}(1) & =\alpha_{j} \\
Q_{m}^{(j)}(-1) & =\beta_{j}
\end{aligned} \quad(j=0, \ldots, k), ~(j=0, \ldots, l), ~ t
$$

where $y_{i}, y_{i}^{\prime}, \alpha_{j}, \beta_{j}$ are given real numbers, and k, l are fixed non-negative integers.
In this paper the existence and uniqueness of the polynomial $Q_{m}(x)$ is proved if the inner nodal points $\left\{x_{i}\right\}_{i=1}^{n-1}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n}$ are the roots of the Jacobi polynomials $P_{n-1}^{(k+1, l)}(x)$ and $P_{n}^{(k, l-1)}(x)$, respectively. Explicit formulae for the fundamental polynomials of interpolation are given. Convergence and approximation theorems are also proved.

Recently many authors investigated the Pál-type interpolation, in which the nodal points $\left\{x_{i}\right\}_{i=0}^{n}$ are the roots of $\omega_{n+1}(x)$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n}$ are the roots of $\omega_{n+1}^{\prime}(x)$. The polynomial $Q_{m}(x)$ will be a modified Pál-type interpolational polynomial, because the knots $x_{0}, x_{1}, \ldots, x_{n}$ are the roots of $\omega(x)=(1-x)^{k+1}(1+x)^{l} P_{n-1}^{(k+1, l)}(x)$, and the knots $x_{0}^{*}, x_{1}^{*}, \ldots, x_{n}^{*}, x_{n+1}^{*},\left(x_{0}^{*}=-1, x_{n+1}^{*}=1\right)$ are the roots of $\omega^{\prime}(x)$.

Mathematics Subject Classification: 41A05.
Key words and phrases: Birkhoff interpolation, Pál-type interpolation.
Research work supported by Kuwait University Grant SM-127.

1. Introduction

In 1975 L. G. PÁL [9] has introduced a modification of the HermiteFejér interpolation, in which the function values and the first derivatives are prescribed on two interscaled systems of nodal points $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n-1}$, that is

$$
\begin{equation*}
-\infty<x_{1}<x_{1}^{*}<x_{2}<\cdots<x_{n-1}<x_{n-1}^{*}<x_{n}<+\infty \tag{1.1}
\end{equation*}
$$

where

$$
\omega_{n}(x)=\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) \quad \text { and } \quad \omega_{n}^{\prime}(x)=n\left(x-x_{1}^{*}\right) \ldots\left(x-x_{n-1}^{*}\right)
$$

He proved that for any given systems of real numbers

$$
\left\{y_{k}\right\}_{k=1}^{n} \quad \text { and } \quad\left\{y_{k}^{\prime}\right\}_{k=1}^{n-1}
$$

there exists a polynomial $Q_{2 n-1}(x)$ of minimal degree $(2 n-1)$ satisfying the following interpolational properties

$$
\begin{array}{ll}
Q_{2 n-1}\left(x_{k}\right)=y_{k} & (k=1, \ldots, n) \\
Q_{2 n-1}^{\prime}\left(x_{k}^{*}\right)=y_{k}^{\prime} & (k=1, \ldots, n-1) \tag{1.2}
\end{array}
$$

This interpolational polynomial is not uniquely determined, hence for the uniqueness an additional condition is recommended. Introducing the additional condition $Q_{2 n-1}\left(x_{0}\right)=0$ at an additional knot $x_{0} \neq x_{k}$ $(k=1, \ldots, n)$ Pál proved the uniqueness and gave an explicit formula for it.

Following Pál's idea many authors investigated this kind of interpolation and they called it Pál-type interpolation. In 1992 XIE [17] presented a new explicit formula of Pál-type interpolation on the interval $[-1,1]$ with the additional knot x_{n}^{*}, where x_{n}^{*} is equal to one of the nodal points x_{k} $(k=1, \ldots, n)$. Earlier, in 1985 EnEdUANYA [1] investigated the special case when

$$
\begin{equation*}
\omega_{n}(x)=-n(n-1) \int_{-1}^{x} P_{n-1}(t) d t=\left(1-x^{2}\right) P_{n-1}^{\prime}(x) \tag{1.3}
\end{equation*}
$$

where $P_{n}(x)$ is the Legendre polynomial of degree n with the usual normalization $P_{n}(1)=1$. For the uniqueness Eneduanya used also the additional
nodal point $x_{n}^{*}=-1$. SziLi [15] investigated the Pál-type interpolation on the roots of the Hermite-polynomials with the additional point $x_{0}=0$. Both Eneduanya and Szili gave explicit formulae and proved approximation theorems. Joó and Szabó [6] gave a common generalization of the classical Fejér interpolation [2] and Pál interpolation. Szili [14] studied the inverse Pál interpolational problem on the roots of the integrated Legendre polynomials. Recently Joó and PÁL ([4], [5]) investigated the lacunary $(0 ; 0,1)$ interpolation on the roots of Jacobi polynomials and their derivatives, respectively. Sebestyén ([10], [11]) studied the same problem on the roots of Hermite polynomials and gave a completion of the Pál-type $(0 ; 0,1)$ lacunary interpolation.

In this paper the following problem is investigated:
Let the set of the knots

$$
\begin{equation*}
-1=x_{n}<x_{n}^{*}<x_{n-1}<x_{n-1}^{*}<\cdots<x_{1}<x_{1}^{*}<x_{0}=1 \quad(n \geq 1) \tag{1.4}
\end{equation*}
$$

be given on the interval $[-1,1]$. Find a polynomial $Q_{m}(x)$ of minimal degree satisfying the $(0 ; 1)$ interpolation properties

$$
\begin{align*}
Q_{m}\left(x_{i}\right)=y_{i} & (i=1, \ldots, n-1), \\
Q_{m}^{\prime}\left(x_{i}^{*}\right)=y_{i}^{\prime} & (i=1, \ldots, n), \tag{1.5}
\end{align*}
$$

with the boundary conditions

$$
\begin{array}{ll}
Q_{m}^{(j)}\left(x_{0}\right)=Q_{m}^{(j)}(1)=\alpha_{j} & (j=0, \ldots, k), \tag{1.6}\\
Q_{m}^{(j)}\left(x_{n}\right)=Q_{m}^{(j)}(-1)=\beta_{j} & (j=0, \ldots, l),
\end{array}
$$

where $y_{i}, y_{i}^{\prime}, \alpha_{j}, \beta_{j}$ are given real numbers, and k, l are fixed non-negative integers.

As the polynomial $Q_{m}(x)$ satisfies $2 n+k+l+1$ conditions due to (1.5) and (1.6), so the expected minimal degree is $m=2 n+k+l$.

In Section 2 we give explicit formulae for the fundamental polynomials of interpolation and prove an existence and uniqueness theorem. In Section 2 we give an estimate for $\left|f(x)-Q_{m}(x)\right|$ on $[-1,1]$, if $f \in C^{r}[-1,1]$ and the knots (1.4) are the roots of appropriate ultraspherical polynomials. As the Legendre polynomial $P_{n}(x)\left(P_{n}(1)=1\right)$ is an ultraspherical polynomial with the parameter $\alpha=0$, the interpolation on the knots (1.3)
investigated by Eneduanya is a special case of our interpolational procedure with $k=0, l=1$. Eneduanya [1] proved that for $f \in C^{r}[-1,1]$, $x \in[-1,1]$

$$
\left|f(x)-Q_{2 n+1}(f ; x)\right|=O(1) n^{-r+\frac{3}{2}} \log n \omega\left(f^{(r)} ; \frac{1}{n}\right)
$$

where $O(1)$ is independent of n and x. XIE [16] improved this result: for $f \in C^{r}[-1,1], x \in[-1,1]$

$$
\left|f(x)-Q_{2 n+1}(f ; x)\right|=O(1) n^{-r+1} \omega\left(f^{(r)} ; \frac{1}{n}\right)
$$

which implies the uniform convergence if $f(x)$ is continuously differentiable on $[-1,1]$. Now we can prove the uniform convergence of the interpolational procedure on $[-1,1]$ if $f \in C^{k+1}[-1,1]$ for $k \geqq 1$.

2. The existence and uniqueness

In what follows, we will use the notations: for fixed integers $k \geqq 0$, $l>0$ let

$$
\begin{equation*}
\omega_{n}^{*}(x)=P_{n}^{(k, l-1)}(x) \quad \text { and } \quad \omega_{n-1}(x)=\omega_{n}^{* \prime}(x), \tag{2.1}
\end{equation*}
$$

where $P_{n}^{(k, l-1)}(x)$ is the Jacobi polynomial of degree n with the normalization $P_{n}^{(k, l-1)}(1)=\binom{n+k}{n}$, and let

$$
\begin{equation*}
\varrho(x)=(1-x)^{k+1}(1+x)^{l} . \tag{2.2}
\end{equation*}
$$

It is known that (see [13])

$$
\begin{equation*}
P_{n}^{(k, l-1)^{\prime}}(x)=\frac{n+k+l}{2} P_{n-1}^{(k+1, l)}(x) \tag{2.3}
\end{equation*}
$$

and $P_{n}^{(k, l-1)}(x)$ satisfies the differential equation

$$
\begin{gather*}
\left(1-x^{2}\right) P_{n}^{(k, l-1)^{\prime \prime}}(x)+[l-k-1-(k+l+1) x] P_{n}^{(k, l-1)^{\prime}}(x) \tag{2.4}\\
+n(n+k+l) P_{n}^{(k, l-1)}(x)=0 .
\end{gather*}
$$

Let the set of the knots be given by
(2.5) $-1=x_{n}<x_{n}^{*}<x_{n-1}<x_{n-1}^{*}<\cdots<x_{1}<x_{1}^{*}<x_{0}=1 \quad(n \geq 1)$,
where $\left\{x_{i}\right\}_{i=1}^{n-1}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n}$ are the roots of $\omega_{n-1}(x)$ and $\omega_{n}^{*}(x)$, respectively.

By the differential equation (2.4) we get

$$
\left[\varrho(x) \omega_{n-1}(x)\right]^{\prime}=-n(n+k+l)(1-x)^{k}(1+x)^{l-1} \omega_{n}^{*}(x)
$$

and for any function $q(x)$, differentiable at x_{i}^{*}

$$
\begin{equation*}
\left[\varrho(x) \omega_{n-1}(x) q(x)\right]_{x=x_{i}^{*}}^{\prime}=\varrho\left(x_{i}^{*}\right) \omega_{n-1}\left(x_{i}^{*}\right) q^{\prime}\left(x_{i}^{*}\right) . \tag{2.6}
\end{equation*}
$$

We will denote by $l_{j}(x)$ and $l_{j}^{*}(x)$ the fundamental polynomials of Lagrange interpolation on the knots $\left\{x_{i}\right\}_{i=1}^{n-1}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n}$, respectively, that is

$$
\begin{equation*}
l_{j}(x)=\frac{\omega_{n-1}(x)}{\omega_{n-1}^{\prime}\left(x_{j}\right)\left(x-x_{j}\right)}, \quad \text { and } \quad l_{j}^{*}(x)=\frac{\omega_{n}^{*}(x)}{\omega_{n}^{* \prime}\left(x_{j}^{*}\right)\left(x-x_{j}^{*}\right)} . \tag{2.7}
\end{equation*}
$$

Lemma 2.1. On the knots in (2.5) the fundamental polynomials of interpolation are

$$
\begin{align*}
& A_{j}(x)= \frac{\varrho(x)}{\varrho\left(x_{j}\right)\left(1+x_{j}\right) \omega_{n}^{*}\left(x_{j}\right)} \\
& \times\left[(1+x) \omega_{n}^{*}(x) l_{j}(x)-\omega_{n-1}(x) \int_{-1}^{x}(1+t) l_{j}(t) d t\right] \tag{2.8}\\
&(j=1, \ldots, n-1) ; \tag{2.9}
\end{align*}
$$

$$
\begin{align*}
C_{j}(x)= & (1-x)^{j}(1+x)^{l+1} \omega_{n-1}(x) \omega_{n}^{*}(x) p_{j}(x) \\
& +\varrho(x) \omega_{n-1}(x) \int_{-1}^{x} \frac{-(1+t) \omega_{n-1}(t) p_{j}(t)+q_{j}(t) \omega_{n}^{*}(t)}{(1-t)^{k+1-j}} d t \tag{2.10}
\end{align*}
$$

$(j=0, \ldots, k)$, where $p_{j}(x)$ and $q_{j}(x)$ are uniquely determined polynomials of degree $\leqq k-j$;

$$
\begin{align*}
D_{j}(x)= & (1-x)^{k+1}(1+x)^{j} \omega_{n-1}(x) \omega_{n}^{*}(x) \tilde{p}_{j}(x) \\
& +\varrho(x) \omega_{n-1}(x) \int_{-1}^{x} \frac{-\omega_{n-1}(t) \tilde{p}_{j}(t)+\tilde{q}_{j}(t) \omega_{n}^{*}(t)}{(1+t)^{l-j}} d t \tag{2.11}
\end{align*}
$$

$(j=0, \ldots, l)$, where $\tilde{p}_{j}(x)$ and $\tilde{q}_{j}(x)$ are uniquely determined polynomials of degree $\leqq l-j$ and $l-j-1$, respectively. The polynomials $A_{j}(x), B_{j}(x)$, $C_{j}(x)$ and $D_{j}(x)$ are of degree at most $2 n+k+l$.

Proof. By the definition of the functions $A_{j}(x), B_{j}(x), C_{j}(x)$ and $D_{j}(x)$ it is clear that they are polynomials of degree $2 n+k+l$.

Using $l_{j}\left(x_{i}\right)=\delta_{i, j}$ and $l_{j}^{*}\left(x_{i}^{*}\right)=\delta_{i, j}$ and (2.6), it is easy to verify that

$$
\begin{array}{llll}
A_{j}\left(x_{i}\right)=\delta_{j, i} & (i=1, \ldots, n-1), & A_{j}^{\prime}\left(x_{i}^{*}\right)=0 & (i=1, \ldots, n), \\
A_{j}^{(s)}(1)=0 & (s=0, \ldots, k), & A_{j}^{(s)}(-1)=0 & (s=0, \ldots, l),
\end{array}
$$

for $j=1, \ldots, n-1$;

$$
\begin{array}{rlll}
B_{j}\left(x_{i}\right)=0 & (i=1, \ldots, n-1), & B_{j}^{\prime}\left(x_{i}^{*}\right)=\delta_{i, j} & (i=1, \ldots, n), \\
B_{j}^{(s)}(1)=0 & (s=0, \ldots, k), & B_{j}^{(s)}(-1)=0 & (s=0, \ldots, l),
\end{array}
$$

for $j=1, \ldots, n$;

$$
\begin{array}{rllll}
C_{j}\left(x_{i}\right)=0 & (i=1, \ldots, n-1), & C_{j}^{\prime}\left(x_{i}^{*}\right)=0 & (i=1, \ldots, n), \\
C_{j}^{(s)}(1)=\delta_{j, s} & (s=0, \ldots, j-1), & C_{j}^{(s)}(-1)=0 & (s=0, \ldots, l),
\end{array}
$$

for $j=0, \ldots, k$. Now let us write the polynomial $p_{j}(x)$ from (2.10) in the form

$$
p_{j}(x)=a_{0}^{(j)}+a_{1}^{(j)}(1-x)+\cdots+a_{k-j}^{(j)}(1-x)^{k-j} .
$$

From the equations

$$
\left\{\begin{array}{l}
C_{j}^{(j)}(1)=1 \\
C_{j}^{(s)}(1)=0 \quad(s=j+1, \ldots, k)
\end{array}\right.
$$

the coefficients of $p_{j}(x)$ can be determined easily and uniquely. The integrand in (2.10) is a polynomial, if for $s=0, \ldots, k-j$

$$
\frac{d^{s}}{d x^{s}}\left[(1+x) \omega_{n-1}(x) p_{j}(x)-q_{j}(x) \omega_{n}^{*}(x)\right]_{x=1}=0 .
$$

As the coefficients of the polynomial $p_{j}(x)$ have already been determined, the unknown coefficients of the polynomial $q_{j}(x)$ can also be determined uniquely from these equations.

In a similar way it can be shown that for $j=0, \ldots, l$

$$
\begin{array}{llll}
D_{j}\left(x_{i}\right)=0 & (i=1, \ldots, n-1), & D_{j}^{\prime}\left(x_{i}^{*}\right)=0 & (i=1, \ldots, n), \\
D_{j}^{(s)}(1)=0 & (s=0, \ldots, k), & D_{j}^{(s)}(-1)=\delta_{j, s} & (s=0, \ldots, l)
\end{array}
$$

Theorem 1 (Existence and uniqueness). If $\left\{y_{i}\right\}_{i=1}^{n-1},\left\{y_{i}^{\prime}\right\}_{i=1}^{n},\left\{\alpha_{j}\right\}_{j=0}^{k}$, $\left\{\beta_{j}\right\}_{j=0}^{l}$ are given real numbers, $k \geq 0, l>0$ are arbitrary fixed integers, then on the nodal points (2.5) there exists a unique polynomial $Q_{m}(x)$ of degree at most $m=2 n+k+l$ satisfying the equations (1.5) and (1.6).

The polynomial $Q_{m}(x)$ can be written in the form

$$
\begin{equation*}
Q_{m}(x)=\sum_{i=1}^{n-1} y_{i} A_{i}(x)+\sum_{i=1}^{n} y_{i}^{\prime} B_{i}(x)+\sum_{j=0}^{k} \alpha_{j} C_{j}(x)+\sum_{j=0}^{l} \beta_{j} D_{j}(x), \tag{2.12}
\end{equation*}
$$

where $A_{i}(x), B_{i}(x), C_{j}(x)$ and $D_{j}(x)$ are defined in Lemma 2.1.
Proof. By Lemma 2.1 it is clear that the polynomial (2.12) satisfies the conditions of the theorem, which proves the existence of interpolational polynomial $Q_{m}(x)$.

For the uniqueness we assume that there is another polynomial $Q_{m}^{*}(x)$ of degree $\leqq m$ which also satisfies the equations (1.5) and (1.6). Then the polynomial

$$
R_{m}(x)=Q_{m}(x)-Q_{m}^{*}(x)
$$

satisfies the equations $R_{m}\left(x_{i}\right)=0(i=1, \ldots, n-1)$ and

$$
R_{m}^{(s)}(1)=0 \quad(s=0, \ldots, k), \quad R_{m}^{(s)}(-1)=0 \quad(s=0, \ldots, l-1),
$$

so it can be written in the form

$$
R_{m}(x)=\varrho(x) \omega_{n-1}(x) g_{n}(x),
$$

where $g_{n}(x)$ is a polynomial of degree at most n. Furthermore, from the equations $R_{m}^{\prime}\left(x_{i}^{*}\right)=0(i=1, \ldots, n)$ we get by (2.6)

$$
R_{m}^{\prime}\left(x_{i}^{*}\right)=\varrho\left(x_{i}^{*}\right) \omega_{n-1}\left(x_{i}^{*}\right) g_{n}^{\prime}\left(x_{i}^{*}\right)=0,
$$

that is $g_{n}^{\prime}\left(x_{i}^{*}\right)=0$ for $i=1, \ldots, n$. It is possible only in the case $g_{n}^{\prime}(x) \equiv 0$, that is $g_{n}(x) \equiv c$ constant, hence

$$
R_{m}(x)=c \varrho(x) \omega_{n}(x)
$$

But also the equation $R_{m}^{(l)}(-1)=0$ is to be satisfied, so the constant $c=0$, that is $R_{m}(x) \equiv 0$, which proves the uniqueness.

3. The convergence

In this section we will prove the convergence of the interpolational procedure, if $k=l-1 \geqq 0$, that is the knots $\left\{x_{i}\right\}_{i=1}^{n-1}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n}$ are the roots of the ultraspherical polynomials $P_{n-1}^{(k+1)}(x)$ and $P_{n}^{(k)}(x)$, respectively.

We will need the following results and estimates on the ultraspherical polynomials $P_{n}^{(\alpha)}(x)=P_{n}^{(\alpha, \alpha)}(x)(\alpha>-1, n \geqq 1)$ (see [13]):

$$
\begin{equation*}
P_{n}^{(\alpha)}(x)=(-1)^{n} P_{n}^{(\alpha)}(-x) \tag{3.1}
\end{equation*}
$$

from (2.4)
(3.2) $\quad\left(1-x^{2}\right) P_{n}^{(\alpha)^{\prime \prime}}(x)-2(\alpha+1) x P_{n}^{(\alpha)^{\prime}}(x)+n(n+2 \alpha+1) P_{n}^{(\alpha)}(x)=0 ;$
and

$$
\begin{array}{rlr}
\left|P_{n}^{(\alpha)}(x)\right| & =O\left(n^{\alpha}\right) & x \in[-1,1] \\
\left(1-x^{2}\right)^{\frac{\alpha}{2}+\frac{1}{4}}\left|P_{n}^{(\alpha)}(x)\right| & =O\left(\frac{1}{\sqrt{n}}\right) & x \in[-1,1] \tag{3.4}
\end{array}
$$

where $O(n)$ is independent of x.
If ξ_{1}, \ldots, ξ_{n} are the roots of $P_{n}^{(\alpha)}(x)$ then we have the asymptotical relations

$$
\begin{align*}
1-\xi_{j}^{2} & \sim \begin{cases}\frac{j^{2}}{n^{2}} & \left(\xi_{j} \geqq 0\right) \\
\frac{(n-j)^{2}}{n^{2}} & \left(\xi_{j}<0\right)\end{cases} \tag{3.5}\\
\left|P_{n}^{(\alpha)^{\prime}}\left(\xi_{j}\right)\right| & \sim \begin{cases}\frac{n^{\alpha+2}}{j^{\alpha+\frac{3}{2}}} & \left(\xi_{j} \geqq 0\right) \\
\frac{n^{\alpha+2}}{(n-j)^{\alpha+\frac{3}{2}}} & \left(\xi_{j}<0\right)\end{cases} \tag{3.6}
\end{align*}
$$

where $a_{n} \sim b_{n}$ means that $\left|a_{n}\right|=O\left(b_{n}\right)$ and $\left|b_{n}\right|=O\left(a_{n}\right)$. If $\ell_{j}(x)$ denotes the fundamental polynomial of Lagrange interpolation on the knots ξ_{1}, \ldots, ξ_{n} which corresponds to the knot ξ_{j}, then (see [13], [7])

$$
\begin{align*}
\ell_{j}(x) & =\frac{P_{n}^{(\alpha)}(x)}{P_{n}^{(\alpha)^{\prime}}\left(\xi_{j}\right)\left(x-\xi_{j}\right)} \tag{3.7}\\
& =W_{n}^{(\alpha)} \cdot \frac{1}{\left(1-\xi_{j}^{2}\right)\left[P_{n}^{(\alpha)^{\prime}}\left(\xi_{j}\right)\right]^{2}} \sum_{\nu=0}^{n-1} \frac{1}{h_{\nu}^{(\alpha)}} P_{\nu}^{(\alpha)}\left(\xi_{j}\right) P_{\nu}^{(\alpha)}(x)
\end{align*}
$$

where

$$
\begin{gather*}
W_{n}^{(\alpha)}=2^{2 \alpha} \frac{\Gamma^{2}(n+\alpha+1)}{\Gamma(n+1) \Gamma(n+2 \alpha+1)} \sim C_{1} \tag{3.8}\\
h_{\nu}^{(\alpha)}=\frac{2^{2 \alpha+1}}{2 \nu+2 \alpha+1} \frac{\Gamma^{2}(\nu+\alpha+1)}{\Gamma(\nu+1) \Gamma(\nu+2 \alpha+1)} \begin{cases}\sim \frac{1}{\nu} & (\nu>0) \\
=C_{2} & (\nu=0)\end{cases} \tag{3.9}
\end{gather*}
$$

where the constants C_{1}, C_{2} depend only on α.
Lemma 3.1. For the ultraspherical polynomial $P_{n}^{(\alpha)}(x)(\alpha>-1$, $n \geqq 1$) on the interval $[-1,1]$

$$
\begin{gather*}
\left(1-x^{2}\right)^{\frac{\alpha}{2}+\frac{1}{4}}\left|\int_{-1}^{x} P_{n}^{(\alpha)}(t) d t\right|=O\left(n^{\alpha-2}+n^{-\frac{3}{2}}\right) \tag{3.10}\\
\left(1-x^{2}\right)^{\frac{\alpha}{2}+\frac{1}{4}}\left|\int_{-1}^{x}(1+t) P_{n}^{(\alpha+1)}(t) d t\right|=O\left(n^{-\frac{3}{2}}+n^{\alpha-3}\right) \tag{3.11}
\end{gather*}
$$

where $O(n)$ is independent of x.
Proof. Integrating the differential equation (3.2) we get

$$
\begin{aligned}
\int_{-1}^{x} P_{n}^{(\alpha)}(t) d t= & \frac{1}{n(n+2 \alpha+1)+2 \alpha} \\
& \times\left[2 \alpha x P_{n}^{(\alpha)}(x)-\left(1-x^{2}\right) P_{n}^{(\alpha)^{\prime}}(x)+2 \alpha P_{n}^{(\alpha)}(-1)\right],
\end{aligned}
$$

and applying the estimates (3.3), (3.4) and

$$
P_{n}^{(\alpha)^{\prime}}(x)=\frac{n+2 \alpha+1}{2} P_{n-1}^{(\alpha+1)}(x)
$$

we get (3.10).
Integrating the second integral by parts we get

$$
\begin{gathered}
\left(1-x^{2}\right)^{\frac{\alpha}{2}+\frac{1}{4}} \int_{-1}^{x}(1+t) P_{n}^{(\alpha+1)}(t) d t \\
=\frac{2}{n+2 \alpha+2}\left[(1+x)\left(1-x^{2}\right)^{\frac{\alpha}{2}+\frac{1}{4}} P_{n+1}^{(\alpha)}(x)-\left(1-x^{2}\right)^{\frac{\alpha}{2}+\frac{1}{4}} \int_{-1}^{x} P_{n+1}^{(\alpha)}(t) d t\right] .
\end{gathered}
$$

Now applying (3.4) and (3.10) we get the estimate (3.11).
Lemma 3.2. If $k=l-1 \geqq 1, n \geqq 2$ the Lebesgue function of the first kind fundamental polynomials (2.8) satisfies

$$
\sum_{j=1}^{n-1}\left(1-x_{j}^{2}\right)\left|A_{j}(x)\right|= \begin{cases}O(n \log n) & (k=1) \tag{3.12}\\ O\left(n^{k-\frac{1}{2}}\right) & (k \geqq 2)\end{cases}
$$

for all $x \in[-1,1]$ where $O(n)$ is independent of x.
Proof. If $k=l-1$, substituting (2.1), (2.2) and (2.3) into (2.8) we get for $j=1, \ldots, n-1$

$$
\begin{aligned}
A_{j}(x)= & \frac{\left(1-x^{2}\right)^{k+1}(1+x) P_{n}^{(k)}(x)}{\left(1-x_{j}^{2}\right)^{k+1}\left(1+x_{j}\right) P_{n}^{(k)}\left(x_{j}\right)} l_{j}(x) \\
& -\frac{(n+2 k+1)\left(1-x^{2}\right)^{k+1} P_{n-1}^{(k+1)}(x)}{2\left(1-x_{j}^{2}\right)^{k+1}\left(1+x_{j}\right) P_{n}^{(k)}\left(x_{j}\right)} \int_{-1}^{x}(1+t) l_{j}(t) d t \\
= & A_{j, 1}(x)+A_{j, 2}(x)
\end{aligned}
$$

From (3.2) with $\alpha=k$ and by (2.3)

$$
P_{n}^{(k)}\left(x_{j}\right)=-\frac{1-x_{j}^{2}}{2 n} P_{n-1}^{(k+1)^{\prime}}\left(x_{j}\right),
$$

hence applying (3.7) with $\alpha=k+1$ we get

$$
\begin{align*}
& \left(1-x_{j}^{2}\right) A_{j, 1}(x)=-2 n \frac{\left(1-x_{j}\right)(1+x)\left(1-x^{2}\right)^{\frac{k}{2}+\frac{1}{4}} P_{n}^{(k)}(x)}{\left(1-x_{j}^{2}\right)^{\frac{3 k}{2}+\frac{15}{4}}\left[P_{n-1}^{(k+1)^{\prime}}\left(x_{j}\right)\right]^{3}} W_{n-1}^{(k+1)} \\
& \quad \times \sum_{\nu=0}^{n-2} \frac{1}{h_{\nu}^{(k+1)}}\left(1-x_{j}^{2}\right)^{\frac{k}{2}+\frac{3}{4}} P_{\nu}^{(k+1)}\left(x_{j}\right)\left(1-x^{2}\right)^{\frac{k}{2}+\frac{3}{4}} P_{\nu}^{(k+1)}(x), \tag{3.13}
\end{align*}
$$

and in a similar way

$$
\begin{align*}
& \left(1-x_{j}^{2}\right) A_{j, 2}(x)=\frac{n(n+2 k+1)\left(1-x_{j}\right)\left(1-x^{2}\right)^{\frac{k}{2}+\frac{3}{4}} P_{n-1}^{(k+1)}(x)}{\left(1-x_{j}^{2}\right)^{\frac{3 k}{2}+\frac{15}{4}}\left[P_{n-1}^{(k+1)^{\prime}}\left(x_{j}\right)\right]^{3}} W_{n-1}^{(k+1)} \\
& \quad \times \sum_{\nu=0}^{n-2} \frac{1}{h_{\nu}^{(k+1)}}\left(1-x_{j}^{2}\right)^{\frac{k}{2}+\frac{3}{4}} P_{\nu}^{(k+1)}\left(x_{j}\right)\left(1-x^{2}\right)^{\frac{k}{2}+\frac{1}{4}} \tag{3.14}\\
& \quad \times \int_{-1}^{x}(1+t) P_{\nu}^{(k+1)}(t) d t
\end{align*}
$$

where we applied again (3.7) with $\alpha=k+1$. Using (3.5) and (3.6) with $P_{n-1}^{(k+1)}(x)$ we get

$$
\begin{equation*}
\frac{1}{\left(1-x_{j}^{2}\right)^{\frac{3 k}{2}+\frac{15}{4}}\left|P_{n-1}^{(k+1)^{\prime}}\left(x_{j}\right)\right|^{3}}=O\left(n^{-\frac{3}{2}}\right) \quad(n \geqq 2) \tag{3.15}
\end{equation*}
$$

hence for $k \geqq 1$ applying (3.4), (3.11) and (3.15)

$$
\left(1-x_{j}^{2}\right)\left|A_{j, 1}(x)\right|=O(1) n \frac{1}{\sqrt{n}} n^{-\frac{3}{2}}\left(C_{1}+\sum_{\nu=1}^{n-2} \nu \frac{1}{\sqrt{\nu}} \frac{1}{\sqrt{\nu}}\right)=O(1)
$$

and

$$
\begin{aligned}
\left(1-x_{j}^{2}\right)\left|A_{j, 2}(x)\right| & =O(1) n^{2} \frac{1}{\sqrt{n}} n^{-\frac{3}{2}}\left(C_{2}+\sum_{\nu=1}^{n-2} \nu \frac{1}{\sqrt{\nu}}\left(\nu^{-\frac{3}{2}}+\nu^{k-3}\right)\right) \\
& = \begin{cases}O(\log n) & (k=1) \\
O\left(n^{k-\frac{3}{2}}\right) & (k \geqq 2)\end{cases}
\end{aligned}
$$

where the constants C_{1}, C_{2} are independent of x, n. Taking the sum for j we get the statement of the lemma.

Lemma 3.3. If $k=l-1 \geqq 1, n \geqq 2$, the Lebesgue function of the second kind fundamental polynomials (2.9) satisfies for all $x \in[-1,1]$

$$
\begin{equation*}
\sum_{j=1}^{n}\left|B_{j}(x)\right|=O\left(n^{k-\frac{1}{2}}\right) \quad(k \geqq 1) \tag{3.16}
\end{equation*}
$$

where $O(n)$ is independent of x.

Proof. For $k=l-1$ using (2.3) and (3.7) we can write (2.9) in the following form

$$
\begin{aligned}
B_{j}(x)= & \frac{\left(1-x^{2}\right)^{k+1} \omega_{n-1}(x)}{\left(1-x_{j}^{* 2}\right)^{k+1} \omega_{n-1}\left(x_{j}^{*}\right)} \int_{-1}^{x} l_{j}^{*}(t) d t \\
= & \frac{n+2 k+1}{2} \frac{\left(1-x^{2}\right)^{\frac{k}{2}+\frac{3}{4}} P_{n-1}^{(k+1)}(x)}{\left(1-x_{j}^{* 2}\right)^{\frac{3 k}{2}+\frac{9}{4}}\left[P_{n}^{(k)^{\prime}}\left(x_{j}^{*}\right)\right]^{3}} \cdot W_{n}^{(k)} \\
& \times \sum_{\nu=0}^{n-1} \frac{1}{h_{\nu}^{(k)}}\left(1-x_{j}^{* 2}\right)^{\frac{k}{2}+\frac{1}{4}} P_{\nu}^{(k)}\left(x_{j}^{*}\right)\left(1-x^{2}\right)^{\frac{k}{2}+\frac{1}{4}} \int_{-1}^{x} P_{\nu}^{(k)}(t) d t .
\end{aligned}
$$

Using (3.5) and (3.6) with $P_{n}^{(k)}(x)$ we get

$$
\frac{1}{\left(1-x_{j}^{* 2}\right)^{\frac{3 k}{2}+\frac{9}{4}}\left|P_{n}^{(k)^{\prime}}\left(x_{j}^{*}\right)\right|^{3}}=O\left(n^{-\frac{3}{2}}\right),
$$

and applying (3.4), (3.8), (3.9) and Lemma 3.1 in a similar way as in Lemma 3.2 we get the estimates

$$
\left|B_{j}(x)\right|=O\left(n^{k-\frac{3}{2}}\right) \quad(k \geqq 1)
$$

Finally, taking the sum for $j=1, \ldots, n$ our statement is proved.
Theorem 2. Let $k \geqq 0$ be a fixed integer, $m=2 n+2 k+1$, and let the knots $\left\{x_{i}\right\}_{i=1}^{n-1}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n}$ be the roots of the ultraspherical polynomials $P_{n-1}^{(k+1)}(x)$ and $P_{n}^{(k)}(x)$, respectively. If $f \in C^{r}[-1,1](r \geqq k+1, n \geqq$ $2 r-k+2)$, then the interpolational polynomial

$$
\begin{align*}
Q_{m}(x ; f)= & \sum_{i=1}^{n-1} f\left(x_{i}\right) A_{i}(x)+\sum_{i=1}^{n} f^{\prime}\left(x_{i}^{*}\right) B_{i}(x) \\
& +\sum_{j=0}^{k} f^{(j)}(1) C_{j}(x)+\sum_{j=0}^{k+1} f^{(j)}(-1) D_{j}(x) \tag{3.17}
\end{align*}
$$

with the fundamental polynomials given in Lemma 2.1 satisfies

$$
\left|f(x)-Q_{m}(x ; f)\right|=\omega\left(f^{(r)} ; \frac{1}{n}\right) \begin{cases}O\left(n^{-r+1}\right) & (k=0) \\ O\left(n^{k-r+\frac{1}{2}}\right) & (k \geqq 1)\end{cases}
$$

for $x \in[-1,1]$.

Proof. For $k=0$ we refer to the proof of the theorem of Xie [16] and we prove the statement for $k \geqq 1$. Let $f \in C^{r}[-1,1]$, then by the theorem of Gopengauz [3] for every $m \geqq 4 r+5$ there exists a polynomial $p_{m}(x)$ of degree at most m such that for $j=0, \ldots, r$

$$
\left|f^{(j)}(x)-p_{m}^{(j)}(x)\right| \leqq M_{r, j}\left(\frac{\sqrt{1-x^{2}}}{m}\right)^{r-j} \omega\left(f^{(r)} ; \frac{\sqrt{1-x^{2}}}{m}\right)
$$

where $\omega\left(f^{(r)} ; \cdot\right)$ denotes the modulus of continuity of the function $f^{(r)}(x)$ and the constants $M_{r, j}$ depend only on r and j. Moreover,

$$
f^{(j)}(\pm 1)=p_{m}^{(j)}(\pm 1) \quad(j=0, \ldots, r)
$$

Hence for $x \in[-1,1]$

$$
\begin{aligned}
\mid f(x)- & Q_{m}(x ; f)\left|\leqq\left|f(x)-p_{m}(x)\right|+\left|p_{m}(x)-Q_{m}(x ; f)\right| \leqq\left|f(x)-p_{m}(x)\right|\right. \\
& \quad+\sum_{i=1}^{n-1}\left|f\left(x_{i}\right)-p_{m}\left(x_{i}\right)\right|\left|A_{i}(x)\right|+\sum_{i=1}^{n}\left|f^{\prime}\left(x_{i}^{*}\right)-p_{m}^{\prime}\left(x_{i}^{*}\right)\right|\left|B_{i}(x)\right| \\
\leqq & M_{r, 0} \frac{1}{n^{r}} \omega\left(f^{(r)} ; \frac{1}{n}\right)\left(1+\sum_{i=1}^{n-1}\left(1-x_{i}^{2}\right)\left|A_{i}(x)\right|\right) \\
& +M_{r, 1} \frac{1}{n^{r-1}} \omega\left(f^{(r)} ; \frac{1}{n}\right) \sum_{i=1}^{n}\left|B_{i}(x)\right|
\end{aligned}
$$

Applying (3.12) and (3.16) we get

$$
\left|f(x)-Q_{m}(x ; f)\right|=O(1) \frac{1}{n^{r}}\left(1+\alpha_{n}+n^{k-1-\frac{1}{2}}\right) \omega\left(f^{(r)} ; \frac{1}{n}\right)
$$

where $\alpha_{n}=n \log n$ or $n^{k-\frac{1}{2}}$, according to $k=1$ and $k \geqq 2$, which completes the proof for $k \geqq 1$.

As a corollary of Theorem 2 we can state the following convergence theorem:

Theorem 3. Let $k \geqq 0$ be a fixed integer, $m=2 n+2 k+1, n \geqq k+4$, and let the knots $\left\{x_{i}\right\}_{i=1}^{n-1}$ and $\left\{x_{i}^{*}\right\}_{i=1}^{n}$ be the roots of the ultraspherical polynomials $P_{n-1}^{(k+1)}(x)$ and $P_{n}^{(k)}(x)$, respectively. If $f \in C^{k+1}[-1,1]$, then $Q_{m}(x ; f)$ described in (3.17) uniformly converges to $f(x)$ on $[-1,1]$ as $n \rightarrow \infty$.

References

[1] S. A. Eneduanya, On the convergence of interpolation polynomials, Analysis Math. 11 (1985), 13-22.
[2] L. Fejér, Über Interpolation, Göttinger Nachrichten, 1916, 66-91.
[3] I. E. Gopengauz, A theorem of A. F. Timan on the approximation of functions by polynomials on a finite segment, Math. Zametki 1 (1967), 163-172. (in Russian)
[4] I. Joó and L. G. Pál, Lacunary $(0 ; 0,1)$ interpolation on the roots of Jacobi polynomials and their derivatives, respectively, I (Existence, explicit formulae, unicity), Analysis Math. 22 (1996), 289-298.
[5] I. Joó and L. G. PÁL, Lacunary ($0 ; 0,1$) interpolation on the roots of Jacobi polynomials and their derivatives, respectively, II (Convergence), Analysis Math. (to appear).
[6] I. Joó and V. E. S. Szabó, A generalization of Pál interpolation process, Acta Sci. Math. (Szeged) 60 (1995), 429-438.
[7] I. Joó and L. Szili, Weighted (0,2)-interpolation on the roots of Jacobi polynomials, Acta Math. Hungar. 66 (1-2) (1995), 25-50.
[8] I. P. Natanson, Constructive Function Theory, Frederick Ungar. Publ., New York, 1965.
[9] L. G. PÁl, A new modification of the Hermite-Fejér interpolation, Analysis Math. 1 (1975), 197-205.
[10] Z. F. Sebestyén, Supplement to the original Pál-type $(0 ; 0,1)$ lacunary interpolation, Analysis Math. (to appear).
[11] Z. F. Sebestyén, Pál-type interpolation on the roots of Hermite polynomials, Pure Math. and Appl. (PUMA) (to appear).
[12] X. H. Sun and T. F. Xie, A generalization of Pál-type interpolation, Analysis Math. 21 (1995), 137-146.
[13] G. SzeGő, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ., vol. 23, New York, 1939, (Fourth edition in 1975).
[14] L. Szili, An interpolation process on the roots of integrated Legendre polynomials, Analysis Math. 9 (1983), 235-245.
[15] L. Szili, A convergence theorem for the Pál method of interpolation on the roots of Hermite polynomials, Analysis Math. 11 (1985), 75-84.
[16] T. F. Xie, On convergence of Pál-type interpolation polynomials, Chinese Ann. Math. 9B (1988), 315-321.
[17] T. F. Xie, On the Pál's problem, Chinese Quart J. Math. 7 (1992), 48-54.

```
mARGit lénárd
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
KUWAIT UNIVERSITY
P.O. BOX 5969 13060 SAFAT
KUWAIT
E-mail: lenard@math-1.sci.kuniv.edu.kw
```

(Received May 14, 1998; revised December 18, 1998)

