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Homomorphisms from C� into GLn(C)

By MATJAŽ OMLADIČ (Ljubljana), HEYDAR RADJAVI (Halifax)

and PETER ŠEMRL (Ljubljana)

Abstract. We determine all homomorphisms of the multiplicative group C∗ into
GLn(C). As a consequence we get a complete description of homomorphisms of GLn(C)
into GLm(C), m < n. We also obtain the general form of multiplicative maps g : C→
Mn(C).

1. Introduction

Let F be any field. The theory of endomorphisms of the group GLn(F )
is highly non-trivial, but well known. Our work is motivated by two re-
sults that can be proved in an elementary way. Motivated by a prob-
lem concerning homogeneous linear geometric objects of type (m,n, 1)
M. Kucharzewski and A. Zajtz [4] determined all homomorphisms of
GLn(R) into GLm(R). Here, m ≤ n. If m < n then every homomorphism
φ : GLn(R) → GLm(R) is of the form

(1) φ(A) = g(detA)

where g : R∗ → GLm(R) is a group homomorphism. For m = n, φ either
has the form (1) with g being multiplicative, or

φ(A) = f(det A)TAT−1

or
φ(A) = f(det A)T

(
A−1

)tr
T−1
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where T is an invertible real n × n matrix and f is an endomorphism of
the multiplicative group R∗. The general form of such functions f is well
known [1]. So, in order to understand the structure of homomorphisms
from GLn(R) into GLm(R) completely, one has to solve the functional
equation g(ts) = g(t)g(s), where g maps R∗ into GLm(R). The special
case m = 3 has been completely solved by M. Kuczma and A. Zajtz [5].
Even in this low dimensional case the description of the general form of
such maps is quite complicated. For the solution of this problem under
the additional measurability hypothesis see [6] and [8].

Djoković [3] observed that the case m < n can be extended to
division rings of characteristic 6= 2. More precisely, he proved that if K

is a division ring, char K 6= 2, m < n, and φ : GLn(K) → GLm(K) is a
homomorphism, then there exists a homomorphism g : K∗/C → GLm(K)
such that φ(A) = g(det A). Here, C denotes the commutator subgroup of
K∗ and det A is Dieudonne’s determinant.

The above results motivate the study of homomorphisms from a mul-
tiplicative group of nonzero elements of a given field to the general linear
group over this field. As the real 3 by 3 case shows [5] this problem might
be very difficult in general.

When studying the multiplicative Cauchy functional equation g(ts) =
g(t)g(s) for real functions a possible approach is to transform this equation
into the logarithmic Cauchy equation f(ts) = f(t) + f(s). Let A be
any finite-dimensional algebra over the field F . Comparing the functional
equations g(ts) = g(t)g(s) and f(ts) = f(t) + f(s) for mappings f, g :
F ∗ → A we notice that the second one is much easier to solve. Namely, let
{a1, . . . , am} be a basis of A. Then for every t ∈ F ∗ there exist uniquely
determined k1(t), . . . , km(t) ∈ F such that

f(t) = k1(t)a1 + · · ·+ km(t)am.

Obviously, the functions ki : F ∗ → F , i = 1, . . . , m, satisfy the logarith-
mic Cauchy functional equation. So, it is enough to know the structure
of logarithmic functions on the field in order to get the general form of
logarithmic mappings f : F ∗ → A. Therefore, one possible approach to
our problem would be to reduce it to the problem of describing the set of
all logarithmic functions from F ∗ into the set of all n×n matrices over F .
We will show that this approach works in the complex case.
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2. The complex case

For the proof of our main result we will need the following simple
lemma. We denote by Mn(C) the algebra of all n× n complex matrices.

Lemma 2.1. Let m be a positive integer and let φ : C∗ → Mm(C) be

a mapping satisfying the functional equation

φ(λµ) = φ(λ) + φ(µ), λ, µ ∈ C∗.

Assume also that φ(λ) is nilpotent for every nonzero λ and that φ(λ) and

φ(µ) commute for all λ, µ ∈ C∗. Then there exist pairwise commutative

m ×m nilpotents N1, . . . , Nl, and additive functions h1, . . . , hl : C → C
satisfying hr(2πi) = 0, r = 1, . . . , l, such that

φ(λ) = h1(log λ)N1 + · · ·+ hl(log λ)Nl

for every nonzero λ.

Remark. Note that hr(log λ), 1 ≤ r ≤ l, is well defined because of the
requirement hr(2πi) = 0.

Proof. Let {N1, . . . , Nl} be a maximal linearly independent subset
of {φ(λ) : λ ∈ C∗}. Then for every nonzero complex number λ there exist
uniquely determined complex numbers q1(λ), . . . , ql(λ) such that

φ(λ) = q1(λ)N1 + . . . + ql(λ)Nl.

Obviously,
qr(λµ) = qr(λ) + qr(µ)

for every λ, µ ∈ C∗ and every r, 1 ≤ r ≤ l. If we define hr : C→ C by

hr(λ) = qr(eλ), λ ∈ C,

then clearly each hr, 1 ≤ r ≤ l, is additive with hr(2πi) = 0. Hence,

φ(λ) = h1(log λ)N1 + . . . + hl(log λ)Nl.

This completes the proof. ¤
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Theorem 2.2. Let n be a positive integer and let g : C∗ → GLn(C)
be a map satisfying g(λµ) = g(λ)g(µ) for all nonzero complex numbers λ

and µ. Then there exist an integer k ≥ 1 and an invertible n × n matrix

T such that

(2) g(λ) = T




f1(λ)eφ1(λ) 0 . . . 0
0 f2(λ)eφ2(λ) . . . 0
...

...
. . .

...

0 0 . . . fk(λ)eφk(λ)


 T−1, λ ∈ C∗.

Here, φp : C∗ → Mnp , 1 ≤ p ≤ k, is a mapping as in Lemma 2.1, n =
n1 + . . . + nk, and fp : C∗ → C∗ is a multiplicative function, 1 ≤ p ≤ k.

Proof. First we will prove by induction on n that there exist an
integer k ≥ 1 and an invertible n× n matrix T such that

g(λ) = T




ρ1(λ) 0 . . . 0
0 ρ2(λ) . . . 0
...

...
. . .

...
0 0 . . . ρk(λ)


 T−1, λ ∈ C∗,

where for every λ ∈ C∗ and every integer p, 1 ≤ p ≤ k, ρp(λ) is an
invertible np × np matrix having only one eigenvalue. In the case that
n = 1 there is nothing to prove. So, assume that n > 1 and that our
statement holds true for all positive integers smaller than n. If every g(λ),
λ ∈ C∗, has only one eigenvalue, then we are done. So, let λ0 be a nonzero
complex number such that g(λ0) has at least two eigenvalues. Applying
similarity, if necessary, we can assume with no loss of generality that

g(λ0) =
[

A 0
0 B

]

with A and B having no common eigenvalue. Now, as g(λ) commutes with
g(λ0) for every nonzero λ, we have

g(λ) =
[

τ1(λ) 0
0 τ2(λ)

]

for every λ ∈ C∗. Applying the induction hypothesis on mappings τ1 and
τ2 we conclude the induction proof of our first step.
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So, from now on we can restrict ourselves to the case where multi-
plicative ρ : C∗ → GLn(C) maps every nonzero λ into an invertible matrix
with one eigenvalue. So, ρ(λ) = f(λ)I + N(λ), where f : C∗ → C∗

is multiplicative and N(λ) is nilpotent for every nonzero λ. A mapping
ψ : C∗ → GLn(C) defined by

ψ(λ) = (f(λ))−1ρ(λ), λ ∈ C,

is multiplicative. Moreover, for every λ ∈ C∗ the only eigenvalue of ψ(λ)
is 1. So, ψ(λ) = I + M(λ) with M(λ) nilpotent. Therefore, we can define
a new mapping φ : C∗ → Mn(C) by

φ(λ) = log ψ(λ) = M(λ)− 1
2
M(λ)2 + . . . +

(−1)n

n− 1
M(λ)n−1.

Obviously, φ(λ) is nilpotent for every nonzero complex number λ. More-
over, φ(λ) and φ(µ) commute for all λ, µ ∈ C∗. It is easy to see that

φ(λµ) = φ(λ) + φ(µ), λ, µ ∈ C∗.

Applying the fact that

ρ(λ) = f(λ)ψ(λ) = f(λ) exp(φ(λ))

we complete the proof. ¤

As an application of Theorem 2.2 we will characterize homomorphisms
of the multiplicative semigroup C into Mn(C).

Theorem 2.3. Let n be a positive integer and let g : C→ Mn(C) be

a nonzero map satisfying g(λµ) = g(λ)g(µ) for all complex numbers λ and

µ. Then there exist an integer k ≥ 0, an integer s ≥ 0, and an invertible

n× n matrix T such that

g(λ) = T




Is 0 0 . . . 0 0
0 f1(λ)eφ1(λ) 0 . . . 0 0
0 0 f2(λ)eφ2(λ) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . fk(λ)eφk(λ) 0
0 0 0 . . . 0 0




T−1,
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λ ∈ C∗, and

g(0) = T




Is 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0
0 0 0 . . . 0 0




T−1.

Here, φp : C∗ → Mnp , 1 ≤ p ≤ k, is a mapping as in Lemma 2.1, n ≥
s + n1 + · · ·+ nk > 0, Is is an s× s identity matrix, and fp : C∗ → C∗ is
a multiplicative function, 1 ≤ p ≤ k.

Proof. Obviously, g(1) and g(0) are idempotents satisfying
g(1)g(0) = g(0)g(1) = g(0) and g(1) 6= 0. Applying similarity, if nec-
essary, we can assume that

g(1) =




Is 0 0
0 Ij 0
0 0 0




and

g(0) =




Is 0 0
0 0 0
0 0 0




with s, j ≥ 0. Of course, in the cases n = s + j, s = 0, or j = 0 some
columns and rows are absent. From g(0) = g(0)g(λ) = g(λ)g(0) and
g(1)g(λ) = g(λ)g(1) = g(λ) we get that

g(λ) =




Is 0 0
0 g1(λ) 0
0 0 0


 , λ ∈ C∗,

with g1 : C∗ → Mj(C) being multiplicative. Using g(λ)g(λ−1) = g(1) we
see that g1(λ) is invertible for every nonzero λ. Applying Theorem 2.2 we
complete the proof. ¤

3. Remarks

1. Applying the result of Djoković [3] together with our Theorem 2.2
we get a complete understanding of the structure of homomorphisms from
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GLn(C) into GLm(C), m < n. The general form of additive functions
h : C → C satisfying h(2πi) = 0 is well known [1]. So, to get the com-
plete description of the set of homomorphisms from GLn(C) into GLm(C),
m < n, we have to characterize all multiplicative functions f : C∗ → C∗.
Although we believe that the structure of such functions is known we were
not able to find the description of their general form in the literature.
Therefore we will briefly explain the structure of multiplicative functions
on C∗.

In what follows arg λ ∈ [0, 2π) denotes the argument of a nonzero
complex number λ. Let f : C∗ → C∗ be a multiplicative function. For
every λ ∈ C∗ we have

f(λ) = f(|λ|)f
(

λ

|λ|
)

,

and so, it is enough to describe the general form of multiplicative functions
f1 : (0,∞) → C∗ and f2 : S1 → C∗ in order to understand the structure
of multiplicative functions on C∗. Here, S1 denotes the set of all complex
numbers of modulus one. If f1 : (0,∞) → C∗ is a multiplicative function
then g1 : (0,∞) → (0,∞) defined by g1(t) = |f1(t)| is multiplicative while
g2 : R→ [0, 2π) defined by g2(t) = arg f1(et) is additive modulo 2πZ, that
is, g2(t + s)− g2(t)− g2(s) ∈ 2πZ. Here, Z denotes the set of all integers.
The structure of multiplicative functions on the set of positive real numbers
is known [1]. The general form of real functions additive modulo 2πZ was
obtained by van der Corput [2] and Vietoris [7]. Similarly, if f2 : S1 →
C∗ is multiplicative then h1 : R → (0,∞) defined by h1(t) = |f2(eit)| is
a periodic function satisfying the Cauchy exponential functional equation
h1(t + s) = h1(t)h1(s). The general form of such functions is known [1].
The function h2(t) = arg f2(eit), t ∈ R, is a periodic function additive
modulo 2πZ. Van der Corput and Vietoris obtained the general form
of real functions additive modulo 2πZ. A slight modification of their
arguments gives a general form of real peridoic functions that are additive
modulo 2πZ. So, it is possible to obtain the general form of multiplicative
functions defined on C∗. As the formulation of the result is rather long we
will omit it.

2. It would be nice to have an analogue of Theorem 2.2 for some other
fields. We believe that the real case is especially interesting. If we can solve
the functional equation g(ts) = g(t)g(s) for functions g : R∗ → GLm(R),
then we get the complete description of homomorphisms from GLn(R) into
GLm(R) for m ≤ n.
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