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One-dimensional marginals of operator stable laws
and their domains of attraction

By MARK M. MEERSCHAERT (Reno)
and HANS-PETER SCHEFFLER (Dortmund)

Abstract. Operator stable laws are the weak limits of affine normalized partial
sums of i.i.d. random vectors. It is known that the one-dimensional marginals of op-
erator stable laws need not be stable, or even attracted to a stable law. In this paper
we show that for any operator stable law, there exists a basis in which the marginals
along every coordinate axis are attracted to a stable or semistable law. This connection
between operator stable and semistable laws is new and surprising. We also charac-
terize those operator stable laws whose marginals are stable or semistable. Finally we
consider the marginals of random vectors attracted to some operator stable law.

1. Introduction

The theory of operator stable probability measures on finite dimen-
sional real vectors spaces was begun by Sharpe (1969), see also Jurek

and Mason (1993). A probability measure ν on Rd which is full (that
is, not supported on a proper hyperplane) is said to be operator stable if
there is a linear operator E on Rd (called an exponent of ν) and a vector
valued function at so that for all t > 0

(1) νt = tEν ∗ δ(at).

Here ν is known to be infinitely divisible, so νt, the t-th convolution power
is well defined. The operator tE is defined as exp(E log t) where exp is the
usual exponential mapping for matrices. For any linear operator A the
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measure Aν is defined by Aν(B) = ν(A−1(B)) for Borel sets B ⊂ Rd, δ(a)
denotes the point mass in a ∈ Rd and ∗ denotes convolution.

Operator stable laws are the weak limits of affine normalized partial
sums of independent and identically distributed (i.i.d.) random vectors.
(See Sharpe (1969).) Let X, X1, X2, . . . be i.i.d. random vectors and let
Y be a random vector with a full distribution ν on Rd. If there exist linear
operators An and nonrandom vectors sn ∈ Rd such that

(2) An(X1 + · · ·+ Xn)− sn ⇒ Y

as n →∞, we say that X belongs to the generalized domain of attraction
of Y (resp. ν) and write X ∈ GDOA(Y ). Here ⇒ denotes convergence in
distribution. It is shown in Sharpe (1969) that ν is operator stable if and
only if GDOA(ν) 6= ∅. Generalized domains of attraction were character-
ized by Meerschaert (1993) using a multivariate theory of regular varia-
tion. In the one-dimensional situation d = 1 the operator stable measures
are exactly the classical α-stable measures and the exponent E = 1/α. If
(2) holds in this case we say that X belongs to the domain of attraction
of Y .

In the general case d ≥ 2 the situation is more complex. Let E(ν)
denote the collection of all exponents of the operator stable law ν in (1)
(for possibly different shift vectors at) and S(ν) = {A : Aν = ν ∗ δ(a) for
some a ∈ Rd} denote the symmetry group of ν which is compact since
ν is full. Then Holmes et al. (1982) establish that E(ν) = E + TS(ν)
where E ∈ E(ν) is arbitrary and TS(ν) is the tangent space of S(ν).
Hudson et al. (1986) established the existence of an exponent E0 ∈ E(ν)
which commutes with every element of S(ν). Such exponents are called
commuting exponents and play a central role in deriving a decomposition
of the underlying vector space as well as the exponent E in Meerschaert

and Veeh (1993) which will be crucial for our work.
Now let Y be a random vector with an operator stable distribution ν.

For any nonzero θ ∈ Rd we say that 〈Y, θ〉 is a one-dimensional marginal
of Y . Here 〈x, y〉 denotes the usual Euclidean inner product on Rd. An
operator stable law with exponent E = (1/α)I, I the identity, is called
multivariable stable. Samorodnitsky and Taqqu (1994) show that every
one-dimensional marginal of a multivariable stable law is stable with the
same index α. However, Marcus (1983) provides an example showing
that the converse is not true in general. In fact there exists a probability
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distribution µ on R2 whose one-dimensional marginals are all stable with
index 0 < α < 1 but µ is not multivariate α-stable. It follows from
Theorem 1 of Giné and Hahn (1983) that µ is not even infinitely divisible
even though all one-dimensional marginals are as stable laws of course
infinitely divisible.

Meerschaert (1990) gives an example of an operator stable law
whose marginals are not stable, or even in the domain of attraction of a
stable law. Surprisingly enough these marginals turn out to be semistable.
This shows a new connection between semistable and operator stable laws.

A nondegenerate probability measure ρ on R is called semistable if it
is infinitely divisible and if there exist a b > 0 and c > 1 such that

(3) ρc = bρ ∗ δ(s)

for some shift s ∈ R, where (bρ)(B) = ρ(b−1B). If Z is a random variable
with distribution ρ we say that either ρ or Z is (b, c) semistable if (3)
holds. We say that U belongs to the domain of semistable attraction of
a random variable Z with distribution ρ if there exist a sequence kn of
natural numbers tending to infinity with kn+1/kn → c as n →∞, an > 0
and shifts sn ∈ R such that

(4) an(U1 + · · ·+ Ukn)− sn ⇒ Z

and we write U ∈ DOSA(Z). Pillai (1971) shows that DOSA(Z) 6= ∅ if
and only if Z has a (b, c) semistable distribution. For further information
on semistable laws see Kruglov (1972), Shimizu (1970), Pillai (1971),
Scheffler (1994) and Meerschaert and Scheffler (1996). Note that if
ρ is α-stable then ρ is (t1/α, t) semistable for all t > 1, so that stable laws
are also semistable.

The main result of this paper is that for any operator stable random
vector Y there is a basis {θ1, . . . , θd} of Rd such that every one-dimensional
marginal 〈Y, θi〉 belongs to either the domain of attraction of some stable
law, or to the domain of semistable attraction of some semistable law on
R. This result also extends to laws belonging to the domain of normal
attraction of an operator stable law. That is, the norming operators in
(2) are of the special form An = n−E for some exponent E ∈ E(ν). We
also show that every operator stable law has marginals which are either
stable or semistable, and it turns out that these marginals are the only
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possible limit laws in our main result. Finally we investigate the most
general case: one-dimensional marginals of laws in the generalized domain
of attraction of some operator stable law. Here a stochastic compactness
result is the best obtainable, and again the possible limit laws are the
stable or semistable marginals of the operator stable law.

The significance of these results relates to the construction of the
norming operators An in (2), an important open problem. Hahn and
Klass (1985) show that An can be constructed by first choosing an ap-
propriate basis (which varies with n), and then applying one-dimensional
methods to the marginals in each of these directions. However it is not
clear how to choose these bases. Our results show that there is a fixed
basis in which one-dimensional methods can be employed, if one allows
semistable as well as stable limits.

2. One dimensional marginals of operator stable laws

In order to formulate our first result we first introduce some nota-
tion and present the decomposition theorem of Meerschaert and Veeh

(1993). Assume that Y is a random vector on Rd with a full operator sta-
ble distribution ν. Let E ∈ E(ν) be a commuting exponent of ν and write
E = S + N where S is semisimple and N is nilpotent. Then SN = NS.
Recall that a linear operator on Rd is said to be semisimple if its minimal
polynomial is the product of distinct prime factors and that N is called
nilpotent if Nk = 0 for some k ≥ 0. (See Hoffman and Kunze (1961).)
For a linear operator A on Rd let A∗ denote its transpose.

Then by Theorem 3.2 of Meerschaert and Veeh (1993) there exists
a direct sum decomposition Rd = U1 ⊕ · · · ⊕ Us, s ≥ 1, into subspaces
invariant under E and N (and hence under S) such that

(4)
N = N1 ⊕ · · · ⊕Ns

S = S1 ⊕ · · · ⊕ Ss

where Ni is nilpotent and

(5)

Si = aiI or

Si =




B 0 0

0
. . . 0

0 0 B


 , where B =

(
ai −bi

bi ai

)
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for some ai ≥ 1
2 and bi > 0. Note that by Sharpe (1969) all the real parts

of the eigenvalues of E are necessarily ≥ 1
2 and that the first case of (5) is

the case of a real eigenvalue whereas the second case of (5) corresponds to
a pair of conjugate complex eigenvalues with real part ai. Our first result
shows that every operator stable law has one-dimensional marginals which
are either stable or semistable. This result seems to be the first known
connection between operator stable and semistable laws.

Theorem 1. Let Y be a random vector with a full operator stable

distribution ν and E ∈ E(ν) be a commuting exponent. Then, using the

decomposition of Rd and E in (4) and (5) above we have: For i = 1, . . . , s

and θ0 ∈ Kern N∗
i we have either

(a) 〈Y, θ0〉 is stable with index 1/ai if Si = aiI

or

(b) 〈Y, θ0〉 is (e2πai/bi , e2π/bi) semistable if Si = diag(B, . . . , B), where

B =
(

ai −bi

bi ai

)
.

Proof. Since θ0 ∈ Kern N∗
i we have N∗

i θ0 = 0 and hence tN
∗
i θ0 = θ0

for all t > 0. Then tE
∗
θ0 = tE

∗
i θ0 = tS

∗
i +N∗

i θ0 = tS
∗
i tN

∗
i θ0 = tS

∗
i θ0.

Now if Si = aiI then tE
∗
θ0 = taiθ0 for all t > 0. Let T0(x) = 〈x, θ0〉

denote a homomorphism from Rd to R and let ν0 = T0(ν) denote the image
measure. Then (1) implies

(6) T0(νt) = T0(ν)t = νt
0 = T0(tEν) ∗ δ(T0(at))

for all t > 0. But if ρ̂ denotes the Fourier transform of a probability
measure ρ on R we get

T0(tEν)̂(s) =
∫

Rd

eisT0(x)d(tEν)(x) =
∫

Rd

eis〈x,tE∗θ0〉dν(x)

=
∫

Rd

eistai T0(x)dν(x) = T0(ν)̂(stai) = ν̂0(stai) = (taiν)̂(s)

showing by the uniqueness theorem of the Fourier transform that T0(tEν)=
(taiν0). Hence by (6) we have

νt
0 = (taiν0) ∗ δ(st) for all t > 0
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and some st ∈ R. Since ν is full it follows that ν0 is nondegenerate and
therefore stable with index 1/ai.

Now assume that Si = diag(B, . . . , B) where B =
(

ai −bi

bi ai

)
. Then

tS
∗
i = taiR(bi log t) for all t > 0, where R(s) is a rotation of angle s in

the U∗
i space. That is R is an orthogonal operator with R(s + 2π) =

R(s), R is continuous and R(0) = I. Hence, as before tE
∗
θ0 = tS

∗
i θ0 =

taiR(bi log t)θ0. Define ν0 = T0(ν) as above. Then (6) holds for all t > 0.
But

T0(tEν)̂(s) =
∫

Rd

eistai 〈x,R(bi log t)θ0〉dν(x).

If we set t0 = exp(2π/bi) we get R(bi log t0) = I and hence

T0(tE0 ν)̂(s) =
∫

Rd

eist
ai
0 T0(x)dν(x) = ν̂0(stai

0 ) = (tai
0 ν0)̂(s).

Therefore

νt0
0 = (tai

0 ν0) ∗ δ(T0(at0))

showing that ν0 is (tai
0 , t0) semistable. This concludes the proof. ¤

Remark. The following example shows that the marginals of an opera-
tor stable law are not necessarily semistable. Hence the result of Theorem 1
is in some sense the best possible. Suppose that d = 4 and E = B1 ⊕ B2

where Bi are of the form (5) with a1 = a2 = a and b1/b2 irrational. Let
e1, . . . , e4 denote the standard basis for R4 and let V1 = Span{e1, e2},
V2 = Span{e3, e4}. Take Yi independent operator stable with exponent Bi

on Vi and let Y = (Y1, Y2) so that Y is operator stable on R4 with expo-
nent E, with two independent 2-dimensional components. Suppose Yi has
semistable but not stable marginals, for example we can take the Lévy mea-
sure of Yi concentrated on one orbit. Then Z1 = 〈Y, e1〉 is (e2πa/b1 , e2π/b1)
semistable and Z2 = 〈Y, e3〉 is (e2πa/b2 , e2π/b2) semistable. Then the Lévy
measure φi of Zi satisfies φi(t,∞) = t−1/a hi(log t) where hi is periodic
with period log(e2πa/bi) = 2πa/bi. But then Z = Z1 + Z2 = 〈Y, e1 + e3〉
has Lévy measure φ = φ1 + φ2 and so φ(t,∞) = t−1/a h(log t) where h is
not periodic, hence Theorem 1 of Kruglov (1972) shows that Z is not
semistable.
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3. Domains of normal attraction

In this section we will investigate the one-dimensional marginals of
laws in the domain of normal attraction of an operator stable law. Let
X, X1, X2, . . . be i.i.d. random vectors with common distribution µ and let
ν be a full operator stable law. If for some E ∈ E(ν) there exist nonrandom
vectors sn ∈ Rd such that

(7) n−E(X1 + · · ·+ Xn)− sn ⇒ Y

as n → ∞, we say that X belongs to the domain of normal attraction of
Y (resp. ν) and write X ∈ DONA(Y ). Domains of normal attraction were
characterized by Jurek (1980) who also showed that DONA(Y ) does not
depend on the particular choice of the exponent E ∈ E(ν).

Let ρ be a nondegenerate α-stable probability measure on R and as-
sume that U,U1, U2, . . . are i.i.d. random variables. We say that U belongs
to the domain of attraction of a random variable Z with distribution ρ, if
there exist an > 0 and shifts sn ∈ R such that

(8) an(U1 + · · ·+ Un)− sn ⇒ Z.

In this case we write U ∈ DOA(Z). It is a classical result that DOA(Z) 6= ∅
if and only if Z has an α-stable distribution.

Similarly, let ρ be a nondegenerate (b, c) semistable distribution for
some c > 1. We say that U belongs to the domain of semistable attraction
of a random variable Z with distribution ρ, if there exist a sequence kn of
natural numbers tending to infinity with kn+1/kn → c as n →∞, an > 0
and shifts sn ∈ R such that

(9) an(U1 + · · ·+ Ukn)− sn ⇒ Z.

We write U ∈ DOSA(Z). It is shown in Pillai (1971) that DOSA(Z) 6= ∅
if and only if Z has a (b, c) semistable distribution.

Now we come to the main result of this paper. Given an operator sta-
ble random vector Y with distribution ν, we construct a basis in which, for
any X ∈ DONA(Y ), there is a complete set of one-dimensional marginals
along the coordinate axes, each of which is attracted to some stable or
semistable law on R. This basis does not depend on which X we choose,
and the limiting semistable distributions are themselves one-dimensional
marginals of Y as identified in Theorem 1. Since Y ∈ DONA(Y ) this result
also applies a fortiori to operator stable laws.
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Theorem 2. Let Y be a random vector with a full operator stable

distribution ν and let E ∈ E(ν) be a commuting exponent. Let X ∈
DONA(Y ). Then, using the decomposition of Rd and E in (4) and (5)

above we have: For i = 1, . . . , s and nonzero θ0 ∈ U∗
i we have either

(a) 〈X, θ0〉 ∈ DOA(〈Y, θ̄0〉) for some unit vector θ̄0 ∈ Kern N∗
i if

Si = aiI;

or

(b) 〈X, θ0〉 ∈ DOSA(〈Y, θ̄0〉) for some unit vector θ̄0 ∈ Kern N∗
i , if

Si = diag(B, . . . , B), where B=
(

ai −bi

bi ai

)
. Here 〈Y, θ̄0〉 is (e2πai/bi , e2π/bi)

semistable as in Theorem 1.

Proof. Assume first that Si = aiI for some ai ≥ 1/2. Since E∗
i =

S∗i +N∗
i and S∗i and N∗

i commute we get nE∗θ0 = nainN∗
i θ0. Choose j ≥ 1

such that N
∗(j−1)
i θ0 6= 0 but N∗j

i θ0 = 0. Then

nN∗
i θ0 = θ0 + (log n)N∗

i θ0 + · · ·+ 1
(j − 1)!

(log n)j−1N
∗(j−1)
i θ0

and hence

(10)
nN∗

i θ0

(log n)j−1
→ 1

(j − 1)!
N
∗(j−1)
i θ0 = r̄0θ̄0

for some unit vector θ̄0 and some r̄0 > 0. Note that since N∗
i θ̄0 = 1/(r̄0(j−

1)!)N∗j
i θ0 = 0 we have θ̄0 ∈ Kern N∗

i . Now write nE∗θ0 = nainN∗
i θ0 =

r−1
n θn for some rn > 0 and ‖θn‖ = 1. If we write nN∗

i θ0 = ρnθn we get
from (10) that θn → θ̄0. Furthermore r−1

n = naiρn. Then (7) implies

rn

(
〈X1, θ0〉+ · · ·+ 〈Xn, θ0〉

)
− rn〈sn, nE∗θ0〉

= rn

(〈X1 + · · ·+ Xn, θ0〉 − 〈sn, nE∗θ0〉
)

= rn

〈
n−E(X1 + · · ·+ Xn)− sn, nE∗θ0

〉

=
〈
n−E(X1 + · · ·+ Xn)− sn, θn

〉 ⇒ 〈Y, θ̄0〉

using Billingsley (1968), Theorem 5.5. Note that by Theorem 1 (a)
〈Y, θ̄0〉 is nondegenerate stable with index 1/ai.
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Assume now that Si = diag(B, . . . , B) where B =
(

ai −bi

bi ai

)
for

some ai ≥ 1/2 and bi > 0. Note that in this case

nE∗θ0 = nE∗i θ0 = naiR(bi log n)nN∗
i θ0

where R(·) is a rotation of the U∗
i space as in the proof of Theorem 1.

For n ≥ 1 define

kn = inf{k ≥ 1 : bi log k ≥ 2πn}.

Then it follows that kn+1/kn → exp(2π/bi) = c > 1. Furthermore, if we
write bi log kn = 2πn + δn for some δn ≥ 0, we get from the definition of
kn that

0 ≤ δn = bi log kn − 2πn < bi log kn − bi log(kn − 1)

= bi log
kn

kn − 1
→ 0 as n →∞.

Hence R(bi log kn) = R(δn) → R(0) = I as n →∞.
Write kE∗

n θ0 = kai
n R(bi log kn)kN∗

i
n θ0 = r−1

n θn for some rn > 0 and
unit vectors θn. Furthermore, if we set k

N∗
i

n θ0 = ρnωn for some ρn > 0 and
‖ωn‖ = 1 we get as in the proof of the first case that ωn → θ̄0 for some
unit vector θ̄0 ∈ KernN∗

i . But r−1
n = kai

n ρn and θn = R(bi log kn)ωn → θ̄0

as n →∞.
Then, by (7) and Theorem 5.5 of Billingsley (1968) we get

rn

(〈X1, θ0〉+ · · ·+ 〈Xkn , θ0〉
)− rn〈skn , kE∗

n θ0〉
= rn

(〈X1 + · · ·+ Xkn , θ0〉 − 〈skn , kE∗
n θ0〉

)

= rn

〈
k−E

n (X1 + · · ·+ Xkn)− skn , kE∗
n θ0

〉

=
〈
k−E

n (X1 + · · ·+ Xkn − skn , θn

〉 ⇒ 〈Y, θ̄0〉

as n → ∞ showing that 〈X, θ0〉 ∈ DOSA(〈Y, θ̄0〉). Note that by Theo-
rem 1(b) 〈Y, θ̄0〉 is (b, c) semistable with c = exp(2π/bi) > 1. This con-
cludes the proof. ¤
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Remark. Since Y ∈ DONA(Y ) for any full operator stable distribu-
tion Theorem 2 applies to Y showing that 〈Y, θ0〉 for any nonzero θ0 ∈ U∗

i

and any i = 1, . . . , s belongs to some domain of (semistable) attraction.

Corollary 1. In the situation of Theorem 2 there exists a basis

{θ1, . . . , θd} of Rd such that 〈X, θi〉 belongs to the domain of (semistable)

attraction of some non-degenerate (semi) stable law on R.

Proof. For i = 1, . . . , s let {θ(i)
1 , . . . , θ

(i)
di
}, di = dim U∗

i be a basis
of U∗

i . Then the union of these basis vectors form a basis of Rd which by
Theorem 2 has the desired property. ¤

Remark. The example in Marcus (1983) shows that as for multivari-
ate stable laws in our general situation we can not expect to characterize
operator stable laws by their one-dimensional marginals.

We next consider the special case of operator stable laws with semisim-
ple exponents E. It is shown in Theorem 2.1 of Meerschaert and Veeh

(1993) that the nilpotent part of every exponent E ∈ E(ν) is the same.
(The statement of that theorem contains an obvious typographical error.)
Hence, if the nilpotent part of an exponent E ∈ E(ν) is zero then every ex-
ponent of ν is semisimple. In that case, when we reduce to one-dimensional
methods by projecting onto the coordinate axes in the appropriate basis,
the limit laws are obtained by projecting the limiting random vector Y

onto these same coordinate axes.

Corollary 2. Let Y be a random vector with a full operator stable

distribution ν and let E = S ∈ E(ν) be a semisimple commuting exponent.

Let X ∈ DONA(Y ). Then, using the decomposition of Rd and E in (4)
and (5) above we have: For i = 1, . . . , s and nonzero θ0 ∈ U∗

i we have

either

(a) 〈X, θ0〉 ∈ DOA(〈Y, θ0〉) if Si = aiI, where 〈Y, θ0〉 has a nondegen-

erate 1/ai-stable law.

or

(b) 〈X, θ0〉 ∈ DOSA(〈Y, θ0〉) if Si = diag(B, . . . , B), where B =(
ai −bi

bi ai

)
. Here 〈Y, θ0〉 is nondegenerate (e2πai/bi , e2π/bi) semistable.

Proof. Since N = 0, Kern N∗
i = U∗

i for i = 1, . . . , s so by Theorem 1
〈Y, θ0〉 is nondegenerate and either stable with index 1/ai or (e2πai/bi , e2π/bi)
semistable.
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For X ∈ DONA(Y ) we get (10) for j = 1 and hence r̄0 = 1 and
θ̄0 = θ0 = θn for all n ≥ 1 in the proof of the first part of Theorem 2.
Then the argument of that part shows that 〈X, θ0〉 ∈ DOA(〈Y, θ0〉).

In the proof of the second part of Theorem 2 we get in our present
situation that ρn = 1 and ωn = θ0 for all n ≥ 1. Hence r−1

n = kai
n

and θn = R(bi log kn)θ0 → θ0 as n → ∞. Then as before it follows that
〈X, θ0〉 ∈ DOSA(〈Y, θ0〉). This concludes the proof. ¤

4 Generalized domains of attraction

We now investigate the one-dimensional marginals of laws belonging
to the generalized domain of attraction of a full operator stable law. In
this most general situation, all we can show is a stochastic compactness
result. We say that a sequence of random variables (Zn)n is stochastically
compact if the laws of Zn are weakly relatively compact and all limit laws
are nondegenerate.

Theorem 3. Let Y be a random vector with a full operator stable
distribution ν. Let X ∈ GDOA(ν) and assume that X1, X2, . . . are i.i.d.
as X. Then for all nonzero θ ∈ Rd there exist rn > 0 and bn ∈ R such that

(
rn

n∑

i=1

〈Xi, θ〉 − bn

)

n≥1

is stochastically compact. Moreover, the limit set is contained in the set
{〈Y, θ0〉 : θ0 6= 0} of all one-dimensional marginals of Y .

Proof. Fix any nonzero θ ∈ Rd and write (A∗n)−1θ = r−1
n θn for some

‖θn‖ = 1 and some rn > 0 where An are the norming operators for X in
(2). Using the compactness of the unit sphere in Rd any sequence (n′)
contains a further sequence (n′′) ⊂ (n′) such that θn → θ0 along (n′′).
Since

〈Xi, θ〉 = 〈AnXi, (A∗n)−1θ〉 = r−1
n 〈AnXi, θn〉

we get if we let bn = 〈sn, θn〉 that

rn

n∑

i=1

〈Xi, θ〉 − bn =
n∑

i=1

〈AnXi, θn〉 − 〈sn, θn〉

=
〈
An

n∑

i=1

Xi − sn, θn

〉 ⇒ 〈Y, θ0〉
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along (n′′) using Billingsley (1968), Theorem 5.5. Since Y is full, 〈Y, θ0〉
is nondegenerate for all θ0 6= 0. This concludes the proof. ¤
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