# Local peaks of additive functions 

By I. KÁTAI (Budapest) and M. V. SUBBARAO (Edmonton)


#### Abstract

It is proved that if a completely additive arithmetical function $u(n)$ satisfies $$
u(n) \leq \max (u(n+1), \ldots, u(n+k))+l(n)
$$ with a monotonically decreasing function $0<l(n)$ such that $l(2)+l\left(2^{2}\right)+l\left(2^{3}\right)+\cdots<\infty$, then $u(n)=c \log n+v(n)$, where $v(n)$ is of finite support.


## 1. Introduction

Let $\mathcal{A}^{*}$ be the class of completely additive real valued functions.
Let $t \geq 1, i_{1}, i_{2}, \ldots, i_{t}$ be an arbitrary permutation of the integers $1,2, \ldots, t$. We think that for all $f$, with the exception of some very special ones,

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leq x \mid f\left(n+i_{1}\right) \leq f\left(n+i_{2}\right) \leq \cdots \leq f\left(n+i_{t}\right)\right\} \tag{1.1}
\end{equation*}
$$

has a positive limit as $x \rightarrow \infty$. Since the $\log$ function is monotonic, it is exceptional.

Another type of exceptional function $f \in \mathcal{A}^{*}$ can be constructed by choosing $f(2)>0$ and $f(p)=0$ for every odd prime. Then $f(n+1) \leq$ $f(n+2) \leq f(n+3)$ has no solutions.

[^0]Conjecture. Assume that for some $f \in \mathcal{A}^{*}$ there exists an integer $t \geq 1$ and a permutation $i_{1}, i_{2}, \ldots, i_{t}$ of the integers $1,2, \ldots, t$ such that (1.1) tends to zero as $x \rightarrow \infty$. Then $f(n)=c \log n+u(n)$ with some constant $c$, where $u \in \mathcal{A}^{*}$ is of finite support.

We are far from being able to prove this conjecture.

## 2. Formulation of the theorems

Let $\mathcal{F}$ be the class of those monotonically decreasing functions $l: \mathbb{N} \rightarrow$ $[0, \infty)$ for which

$$
\sum_{j=1}^{\infty} l\left(2^{j}\right)<\infty
$$

holds. Let $\mathcal{P}$ be the set of primes.
We shall characterize those $u \in \mathcal{A}^{*}$ for which with a suitable $l \in \mathcal{F}$

$$
\begin{equation*}
u(n) \leq \max (u(n+1), \ldots, u(n+k))+l(n) \quad n \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

holds. Here $k \geq 1$ is an arbitrary fixed integer.
Theorem 1. If (2.1) holds, then there exists a constant $c$, and $v \in \mathcal{A}^{*}$, such that $u(n)=c \log n+v(n)$, where $v(p)=0$ for all but finitely many primes $p$. If $\mathcal{R}=\left\{q_{1}, \ldots, q_{r}\right\}$ (it might be empty) is the set of the exceptional primes on which $v$ does not equal to zero, then $v\left(q_{j}\right)<0$ $(j=1, \ldots, r)$ and for every $n \in \mathbb{N}$ there exists a $j \in\{1, \ldots, k\}$, for which $n+j$ is coprime to each $q_{l}(l=1, \ldots, r)$.

Conversely, let $\mathcal{R}=\left\{q_{1}, \ldots, q_{r}\right\}$ be such a collection of primes for which for every $n \in \mathbb{N}$ there exists at least one $j \in\{1, \ldots, k\}$ such that $n+j$ is coprime to all members of $\mathcal{R}$. Let $\bar{v} \in \mathcal{A}^{*}$ be defined on primes as follows: $\bar{v}\left(q_{j}\right)=\gamma_{j} \leq 0(j=1, \ldots, r), \gamma_{j}$ are arbitrary, $\bar{v}(p)=0$ if $p \in \mathcal{P} \backslash \mathcal{R}$. Then $\bar{v}(n) \leq \max \{\bar{v}(n+j), j=1, \ldots, k\}$, furthermore $u(n)=c \log n+\bar{v}(n)$ satisfies (2.1), for each $c \in \mathbb{R}$, with a suitable $l \in \mathcal{F}$.

Theorem 2. Assume that for some $u \in \mathcal{A}^{*}$ and $l \in \mathcal{F}$ the relation

$$
\begin{equation*}
u(n) \geq \min (u(n-1), u(n+1))-l(n) \tag{2.2}
\end{equation*}
$$

holds. Then

$$
\begin{equation*}
u(n)=c \log n+v(n) \tag{2.3}
\end{equation*}
$$

where $c$ is a suitable constant, and either $v(n)=0$ identically, or there is an odd prime $q$ for which $v(q)>0$, and $v(n)=0$ if $(n, q)=1$.

Conversely, all such $u$ satisfies (2.2) with some $l \in \mathcal{F}$.

## 3. Proof of Theorem 1

The second assertion is clear, we prove the first one.
A finite set of distinct primes $\left\{q_{1}, \ldots, q_{r}\right\}$ is said to be of type $\mathcal{T}$ if there exist $k$ consecutive integers $m+1, \ldots, m+k$ none of which is coprime to $q_{1}, q_{2}, \ldots, q_{r}$.

Let

$$
\delta_{p}:=\frac{u(p)}{\log p} \quad(p \in \mathcal{P})
$$

Lemma 1. Assume that (2.1) is satisfied. Let $\left\{q_{1}, \ldots, q_{r}\right\} \in \mathcal{T}$. Then

$$
\delta_{p} \leq \max \left\{\delta_{q_{1}}, \ldots, \delta_{q_{r}}\right\} \quad(p \in \mathcal{P})
$$

First we observe that the theorem easily follows from Lemma 1. Indeed, it is clear that a set of $k$ distinct primes belongs to $\mathcal{T}$, since $m+j \equiv 0$ $\left(\bmod q_{j}\right)(j=1, \ldots, k)$. Thus, Lemma 1 implies that the set $\left\{\delta_{p} \mid p \in \mathcal{P}\right\}$ does not contain more than $k$ values. Let $\xi$ be the largest value of $\delta_{p}$. From Lemma $1,\left\{q \mid \delta_{q}<\xi\right\} \notin \mathcal{T}$, and we are ready.

Proof of Lemma 1. Let

$$
\left\{q_{1}, \ldots, q_{r}\right\} \in \mathcal{T}, c:=\max _{j=1, \ldots, r} \delta_{q_{j}}, \quad u^{*}(n):=u(n)-c \log n .
$$

It is enough to prove that $u^{*}(n) \leq 0$ for $n \in \mathbb{N}$. Let us observe that (2.1) holds for $u^{*}(n)$ with some other $l \in \mathcal{T}$.

Let $K=q_{1}, \ldots, q_{r}, q_{1}<\cdots<q_{r}, C:=\frac{k+K}{q_{1}-1}$.
We have

$$
\max _{j=1, \ldots, r} u^{*}\left(q_{j}\right)=0
$$

Assume that $u^{*}\left(n_{0}\right)>0$ for some $n_{0}$. Let

$$
L(x)=\max _{n \leq x} u^{*}(n) .
$$

Then $L(x) \rightarrow \infty$.

Iterating the inequality (2.1), we obtain that $u^{*}(n) \leq \max \left(u^{*}(n+j+1), \ldots, u^{*}(n+j+k)\right)+l^{(j)}(n)$ holds for every $j \in\{0,1, \ldots, K\}$ with some $l^{(j)} \in \mathcal{F}$, consequently

$$
\begin{gather*}
u^{*}(n) \leq \min _{j=0, \ldots, K} \max \left(u^{*}(n+j+1), \ldots, u^{*}(n+j+k)\right)  \tag{3.1}\\
+l_{K}(n), \quad l_{K} \in \mathcal{F}
\end{gather*}
$$

Let $x>C, L(x)=u^{*}\left(N_{0}\right)$.
Since $\left\{q_{1}, \ldots, q_{r}\right\} \in \mathcal{T}$, therefore there exists such a $j$ in $[1, K]$ for which $\left(N_{0}+j+l, K\right)>1(l=1, \ldots, k)$. Let $l^{*}$ be such a value for which

$$
u^{*}\left(N_{0}+j+l^{*}\right)=\max _{l=1, \ldots, k} u^{*}\left(N_{0}+j+l\right) .
$$

Let $N_{0}+j+l^{*}=q_{s} N_{1}$.
Then $u^{*}\left(N_{0}+j+l^{*}\right)=u^{*}\left(q_{s}\right)+u^{*}\left(N_{1}\right) \leq u^{*}\left(N_{1}\right)$, and

$$
N_{1} \leq \frac{N_{0}+K+k}{q_{1}}
$$

We can repeat this procedure by $N_{1}$ instead of $N_{0}$, and so on:

$$
u^{*}\left(N_{j}\right) \leq u^{*}\left(N_{j+1}\right)+l_{K}\left(N_{j}\right) \quad(j=0, \ldots, t-1)
$$

where $t$ is the smallest index for which $N_{t} \leq C$. Since $N_{j+1} \leq \frac{N_{j}+K+k}{q_{1}-1}$ and $N_{1}, N_{2}, \ldots, N_{t-1}$ is strictly decreasing, we obtain that $t$ is finite, and

$$
u^{*}\left(N_{0}\right) \leq \max _{n \leq C} u^{*}(n)+\sum_{j=0}^{t-1} l_{K}\left(N_{j}\right)
$$

The sum on the right hand side is bounded, since $l_{K} \in \mathcal{F}$. Consequently $L(x)$ is bounded, so $u^{*}\left(n_{0}\right)>0$ is not true.

The proof is complete.

## 4. Proof of Theorem 2

The second assertion is obvious, we prove the first one.
If $u$ is a solution of (2.2), then so is $u(n)-c \log n$ as well, thus we may assume that $u(2)=0$.

First we show that $u(n) \geq 0$ for every $n \in \mathbb{N}$. Assume that $u\left(n_{0}\right)<0$.
Let

$$
L(x)=\min _{n \leq x} u(n) .
$$

Then $L(x) \rightarrow-\infty$.
Let $x$ be large, $u\left(N_{0}\right)=L(x), N_{0} \leq x$. We may assume that $N_{0}$ is odd. Then

$$
u\left(N_{0}\right) \geq \min \left(u\left(\frac{N_{0}-1}{2}\right), u\left(\frac{N_{0}+1}{2}\right)\right)-l\left(N_{0}\right) .
$$

Thus there is an odd integer $N_{1} \leq \frac{N_{0}+1}{2}$ for which $u\left(N_{1}\right) \leq u\left(N_{0}\right)+l\left(N_{0}\right)$. Repeating this procedure, we get: $u\left(N_{j+1}\right) \leq u\left(N_{j}\right)+l\left(N_{j}\right)$
$(j=1, \ldots, t-1), 1=N_{t}<N_{t-1}<\cdots<N_{0}$. Since $N_{j+1} \leq \frac{N_{j}+1}{2}$, therefore

$$
\sum_{j=0}^{t} l\left(N_{j}\right)
$$

is bounded, $0=u\left(N_{t}\right) \leq u\left(N_{0}\right)+l\left(N_{0}\right)+\cdots+l\left(N_{t-1}\right)$, thus $u\left(N_{0}\right) \geq-c$ with some positive $c$.

Thus $u(2)=0$ and $u(n) \geq 0$ for every $n \in \mathbb{N}$.
Assume that there exist two primes $q_{1}, q_{2}$ for which $u\left(q_{1}\right)>0, u\left(q_{2}\right)>0$.
Let

$$
\Delta=\min \left(u\left(q_{1}\right), u\left(q_{2}\right)\right)
$$

Let $l\left(\bmod q_{1} q_{2}\right)$ be determined by $l \equiv-1\left(\bmod q_{1}\right), l \equiv 1\left(\bmod q_{2}\right)$. Then, there is a constant $c_{1}$ such that for every $n>c_{1}, n \equiv l\left(\bmod q_{1} q_{2}\right)$, $u(n) \geq \frac{\Delta}{2}$. Let $\mathcal{I}$ be the set of primes $p \equiv l\left(\bmod q_{1} q_{2}\right)$ larger than $c_{1}$. Thus, $u(n) \geq \frac{\Delta}{2}$ if $n$ has at least one prime divisor from $\mathcal{I}$.

Let $\pi \in \mathcal{P}, \pi \equiv 5(\bmod 8)$. Then the Legendre $\operatorname{symbol}\left(\frac{2}{\pi}\right)=-1$, thus $2^{\frac{\pi-1}{2}} \equiv-1(\bmod \pi)$, and so $2^{\alpha_{t}} \equiv-1(\bmod \pi)$, where $\alpha_{t}=\frac{\pi-1}{2}+$ $t(\pi-1)=\frac{\pi-1}{2}(1+2 t)$.

Let $p \equiv 3(\bmod 8), p \in \mathcal{P}$. Let $t$ be such an integer for which $1+2 t \equiv 0$ $\left(\bmod \frac{p-1}{2}\right)$.

Let $1+2 t=\frac{p-1}{2} s$. For such a $t, p-1 \mid 2^{\alpha_{t}}-1$, and so

$$
0=u\left(2^{\alpha_{t}}\right) \geq \min (u(p), u(\pi))-l\left(2^{\alpha_{t}}\right)
$$

Since $\alpha_{t}$ can be arbitrary large, $l\left(2^{\alpha_{t}}\right) \rightarrow 0\left(\alpha_{t} \rightarrow \infty\right)$, we get that $\min (u(p), u(\pi))=0$.

The relative density of those primes $\pi \equiv 5(\bmod 8)$, for which either $(\pi+1, \mathcal{I})=1$, or $(\pi-1, \mathcal{I})=1$ is zero. Similary, the relative density of the primes $p \equiv 3(\bmod 8)$, for which either $(p+1, \mathcal{I})=1$, or $(p-1, \mathcal{I})=1$ is zero. Consequently, there exists at least one couple $p, \pi$ for which $u(\pi)$, $u(p) \geq \frac{\Delta}{2}$. This is a contradiction, $\Delta>0$ cannot hold.

The proof is complete.

## 5. Further theorems

If $u(n)$ satisfies (2.2), then for $v(n)=-u(n)$, we have

$$
\begin{equation*}
v(n) \leq \max (v(n-1), v(n+1))+l(n) . \tag{5.1}
\end{equation*}
$$

Consequently, from Theorem 2, we have
Theorem 2'. If (5.1) holds with some $l \in \mathcal{F}$, then $v(n)=c \log n-$ $h(n)$, with some constant $c$, and either $h(n)=0$ identically, or there is an odd prime $q$ for which $h(q)>0$, and $h(n)=0$ for every $n$ coprime to $q$.

As a direct consequence, we have
Theorem 3. Let $f$ be a completely multiplicative function taking on positive values, such that

$$
\begin{equation*}
2 f(n) \leq f(n+1)+f(n-1) \tag{5.2}
\end{equation*}
$$

holds for every large $n$.
Then $f(n)=n^{s}$ and either $s \leq 0$ or $s \geq 1$.
Proof of Theorem 3. Let $v(n):=\log f(n)$. Then, (5.2) implies that $v(n) \leq \max (v(n+1), v(n-1))$ for every large $n$, consequently the conditions of Theorem 2' are satisfied. Thus $v(n)=s \log n-h(n)$, consequently $f(n)=n^{s} G(n)$, where either $G(n)=1$ identically, or there exists an odd $q \in \mathcal{P}$ for which $G(q)=e^{-h(q)}<1$, and $G(n)=1$, if $(n, q)=1$. Substituting into (5.2), we get

$$
2 G(n) \leq\left(1+\frac{1}{n}\right)^{s} G(n+1)+\left(1-\frac{1}{n}\right)^{s} G(n-1) .
$$

Let $n \rightarrow \infty$ over the set of the integers for which $q \| n+1$. Then $(n, q)=$ $(n-1, q)=1$, and so $2 \leq G(q)+1$.

Thus $h(n)=0$ identically, i.e. $f(n)=n^{s}$.
Finally we observe that $2 n^{s} \leq(n+1)^{s}+(n-1)^{s}$ holds for every large $n$, if and only if $s \leq 0$ or $s \geq 1$.

From Theorem 2 we can deduce similarly
Theorem 4. Let $f$ be a positive real valued completely multiplicative function such that for every large $n$

$$
2 f(n) \geq f(n+1)+f(n-1)
$$

holds. Then $f(n)=n^{s}, 0 \leq s \leq 1$.

```
I. KÁTAI
DEPARTMENT OF COMPUTER ALGEBRA
LORÁND EÖTVÖS UNIVERSITY
H-1518 BUDAPEST P.O. BOX 32
HUNGARY
M. V. SUBBARAO
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ALBERTA
6 3 2 ~ C E N T R A L ~ A C A D E M I C ~ B U I L D I N G ~
EDMONTON, T6G 2G1
CANADA
```

(Received December 3, 1998; revised July 20, 1999)


[^0]:    Mathematics Subject Classification: 11K65, 11N60.
    Key words and phrases: characterization, arithmetical functions.
    It was financially supported by OMFB D-41/97 (first author) and by the grant of the second author.

