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Local peaks of additive functions

By I. KATAI (Budapest) and M. V. SUBBARAO (Edmonton)

Abstract. It is proved that if a completely additive arithmetical function u(n)
satisfies
u(n) < max(u(n+1),...,u(n+k)) +1(n),

with a monotonically decreasing function 0 < I(n) such that 1(2)+1(22)+1(23)+- - - < oo,
then u(n) = clogn + v(n), where v(n) is of finite support.

1. Introduction

Let A* be the class of completely additive real valued functions.
Let t > 1, 4y,12,...,1; be an arbitrary permutation of the integers
1,2,...,t. We think that for all f, with the exception of some very special

ones,

(1) #n<e| fnti) < fntin) < < fn+i)

has a positive limit as z — oo. Since the log function is monotonic, it is
exceptional.

Another type of exceptional function f € A* can be constructed by
choosing f(2) > 0 and f(p) = 0 for every odd prime. Then f(n + 1) <
f(n+2) < f(n+ 3) has no solutions.
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Conjecture. Assume that for some f € A* there exists an integer
t > 1 and a permutation i1,1%s,...,4; of the integers 1,2,...,t such that
(1.1) tends to zero as x — oo. Then f(n) = clogn + u(n) with some
constant ¢, where u € A* is of finite support.

We are far from being able to prove this conjecture.

2. Formulation of the theorems

Let F be the class of those monotonically decreasing functions: N —
[0, 00) for which

o0

D> U2) < o0

holds. Let P be the set of primes.
We shall characterize those u € A* for which with a suitable [ € F

(2.1) u(n) <max(u(n+1),...,u(n+k))+1l(n) neN

holds. Here k > 1 is an arbitrary fixed integer.

Theorem 1. If (2.1) holds, then there exists a constant ¢, and v € A*,
such that u(n) = clogn + v(n), where v(p) = 0 for all but finitely many
primes p. If R = {q,...,q-} (it might be empty) is the set of the
exceptional primes on which v does not equal to zero, then v(g;) < 0
(j =1,...,r) and for every n € N there exists a j € {1,...,k}, for which
n + j is coprime to each q; (I =1,...,7).

Conversely, let R = {q1,...,q-} be such a collection of primes for
which for every n € N there exists at least one j € {1,...,k} such that
n + j is coprime to all members of R. Let v € A* be defined on primes
as follows: v(q;) = v < 0 (j = 1,...,7), v; are arbitrary, v(p) = 0
if p € P\R. Then v(n) < max{v(n + j),j = 1,...,k}, furthermore
u(n) = clogn + v(n) satisfies (2.1), for each ¢ € R, with a suitable | € F.

Theorem 2. Assume that for some u € A* and | € F the relation
(2.2) u(n) > min(u(n — 1),u(n + 1)) —l(n)
holds. Then

(2.3) u(n) = clogn + v(n),
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where c is a suitable constant, and either v(n) = 0 identically, or there is
an odd prime q for which v(q) > 0, and v(n) = 0 if (n,q) = 1.

Conversely, all such u satisfies (2.2) with some | € F.

3. Proof of Theorem 1

The second assertion is clear, we prove the first one.
A finite set of distinct primes {q1,..., ¢} is said to be of type 7 if

there exist k consecutive integers m+1, ..., m+k none of which is coprime
to 41,492, ---54r-
Let )
u\p
= eP).
P logp (p )

Lemma 1. Assume that (2.1) is satisfied. Let {qi,...,q.} € T. Then
dp <max{dq,,...,0q,.} (PEP).

First we observe that the theorem easily follows from Lemma 1. Indeed,
it is clear that a set of k distinct primes belongs to 7, since m + j = 0
(mod ¢;) (j =1,...,k). Thus, Lemma 1 implies that the set {0, | p € P}
does not contain more than k values. Let { be the largest value of ).
From Lemma 1, {q | §; < &} ¢ 7, and we are ready.

PROOF of Lemma 1. Let

{gg,- ¢} €T, c:= max dq;»  u*(n) :=u(n) — clogn.
J=14..,7
It is enough to prove that u*(n) < 0 for n € N. Let us observe that (2.1)
holds for u*(n) with some other [ € 7.
LetK:qla"'?QTﬂ Q<< g, C:=
We have

k+ K
q1—1°

max u"(g;) = 0.
j=1,...,r

Assume that u*(ng) > 0 for some ng. Let

L(x) = max u*(n).

Then L(z) — oo.
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Iterating the inequality (2.1), we obtain that
u*(n) < max(u*(n+ 7 +1),...,u*(n+ j + k)) +19)(n) holds for every
j€40,1,..., K} with some 1U) e F, consequently

u*(n) < min_ max(u*(n+j+1),...,u"(n+j+k))
(31) 7=0,...,K
‘HK(TL), g € F.

Let x > C, L(x) = u*(Ny).

Since {q1,...,q-} € T, therefore there exists such a j in [1, K] for
which (No+j+1,K)>1(l=1,...,k). Let I* be such a value for which

u*(No+j+1%) = _manU*(No +Jj+10).

gorey

Let NO —|—] + l* = qSNl.
Then w*(No + j + 1*) = u*(gs) + u* (V1) < u*(Ny), and

< N0+K+/€'
q1

Ny

We can repeat this procedure by Nj instead of Ny, and so on:

u*(N])gu*(N]H)—l—lK(NJ) (j:O,...,t—l),
where t is the smallest index for which Ny < C. Since Nj;q < Nj;lri{;r b
and Ny, No, ..., N;_1 is strictly decreasing, we obtain that ¢ is finite, and

t—1
w* (No) < mascu’ () + ZOZK(Nj)-
]:

The sum on the right hand side is bounded, since [ € F. Consequently
L(x) is bounded, so u*(ng) > 0 is not true.

The proof is complete. O

4. Proof of Theorem 2

The second assertion is obvious, we prove the first one.
If u is a solution of (2.2), then so is u(n) — clogn as well, thus we may
assume that u(2) = 0.
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First we show that u(n) > 0 for every n € N. Assume that u(ng) < 0.
Let
Then L(z) — —oo.

Let = be large, u(No) = L(z), No < z. We may assume that Ny is
odd. Then

w(No) > min (u (N02_ 1) u <N°2+ 1>> CU(N).

Thus there is an odd integer N1 < N&H for which u(Ny) < u(No) +1(No).
Repeating this procedure, we get: u(N;j11) < u(N;) +1(N;)
(j=1,...,t —1),1 = N, < N;_y < --- < Np. Since Nj; < N+l

therefore .
>IN

=0

is bounded, 0 = u(N;) < u(Ng) + I(No) + - -+ + I(N¢—1), thus u(Ng) > —c
with some positive c.
Thus u(2) = 0 and u(n) > 0 for every n € N.
Assume that there exist two primes ¢y, g2 for which u(g;) > 0, u(g2)>0.
Let

A = min(u(q1), u(g)).

Let I (mod g1g2) be determined by I = —1 (mod ¢1), I =1 (mod ¢).
Then, there is a constant ¢; such that for every n > ¢1, n =1 (mod q1¢2),
u(n) > %. Let Z be the set of primes p = [ (mod ¢1¢2) larger than ¢;.
Thus, u(n) > 5 if n has at least one prime divisor from Z.

Let m € P, m =5 (mod 8). Then the Legendre symbol (%) = -1,
thus 2"2° = —1 (mod ), and so 2** = —1 (mod 7), where oy = T51 +
tr — 1) = T51(1 + 2¢).

Let p =3 (mod 8), p € P. Let t be such an integer for which 142t =0
(mod 23).

Let 142t = %18. For suchat, p—1|2* —1, and so

i

0 = u(2%) > min(u(p), u(m)) —1(2%).

Since a; can be arbitrary large, 1(2*t) — 0 (¢ — o0), we get that
winu(p), u(x)) = 0.
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The relative density of those primes m = 5 (mod 8), for which either
(mr+1, Z)=1,o0r (r—1, Z) = 1 is zero. Similary, the relative density of
the primes p = 3 (mod 8), for which either (p+1, Z) =1, 0r (p—1, Z)=1
is zero. Consequently, there exists at least one couple p, w for which u(w),
u(p) > %. This is a contradiction, A > 0 cannot hold.

The proof is complete.

5. Further theorems
If u(n) satisfies (2.2), then for v(n) = —u(n), we have
(5.1) v(n) <max(v(n —1), v(n+ 1)) +1(n).

Consequently, from Theorem 2, we have

Theorem 2°. If (5.1) holds with some | € F, then v(n) = clogn —
h(n), with some constant c, and either h(n) = 0 identically, or there is an
odd prime q for which h(q) > 0, and h(n) = 0 for every n coprime to q.

As a direct consequence, we have

Theorem 3. Let f be a completely multiplicative function taking on
positive values, such that

(5.2) 2f(n) < fln+ 1)+ f(n—1)

holds for every large n.
Then f(n) =n® and either s <0 or s > 1.

PROOF of Theorem 3. Let v(n) :=log f(n). Then, (5.2) implies that
v(n) < max(v(n+ 1), v(n — 1)) for every large n, consequently the condi-
tions of Theorem 2’ are satisfied. Thus v(n) = slogn — h(n), consequently
f(n) = n°G(n), where either G(n) = 1 identically, or there exists an odd
q € P for which G(q) = e "% < 1, and G(n) = 1, if (n,q) = 1. Substi-
tuting into (5.2), we get

S

2G(n) < (1 4 i)se(m 1)+ (1 - i) Gln—1).

Let n — oo over the set of the integers for which ¢|jn 4+ 1. Then (n,q) =
(n—1,9) =1, and so 2 < G(q) + 1.

Thus h(n) = 0 identically, i.e. f(n) =n®.

Finally we observe that 2n® < (n + 1)* 4+ (n — 1)® holds for every
large n, if and only if s <0 or s > 1. 0
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From Theorem 2 we can deduce similarly

Theorem 4. Let f be a positive real valued completely multiplicative
function such that for every large n

2f(n) = f(n+1)+ f(n—1)

holds. Then f(n) =n°,0<s<1.
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