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Local peaks of additive functions

By I. KÁTAI (Budapest) and M. V. SUBBARAO (Edmonton)

Abstract. It is proved that if a completely additive arithmetical function u(n)
satisfies

u(n) ≤ max(u(n + 1), . . . , u(n + k)) + l(n),

with a monotonically decreasing function 0 < l(n) such that l(2)+l(22)+l(23)+· · · < ∞,
then u(n) = c log n + v(n), where v(n) is of finite support.

1. Introduction

Let A∗ be the class of completely additive real valued functions.
Let t ≥ 1, i1, i2, . . . , it be an arbitrary permutation of the integers

1, 2, . . . , t. We think that for all f , with the exception of some very special
ones,

(1.1)
1
x

#{n ≤ x | f(n + i1) ≤ f(n + i2) ≤ · · · ≤ f(n + it)}

has a positive limit as x → ∞. Since the log function is monotonic, it is
exceptional.

Another type of exceptional function f ∈ A∗ can be constructed by
choosing f(2) > 0 and f(p) = 0 for every odd prime. Then f(n + 1) ≤
f(n + 2) ≤ f(n + 3) has no solutions.
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Conjecture. Assume that for some f ∈ A∗ there exists an integer

t ≥ 1 and a permutation i1, i2, . . . , it of the integers 1, 2, . . . , t such that

(1.1) tends to zero as x → ∞. Then f(n) = c log n + u(n) with some

constant c, where u ∈ A∗ is of finite support.

We are far from being able to prove this conjecture.

2. Formulation of the theorems

Let F be the class of those monotonically decreasing functions l : N→
[0,∞) for which

∞∑

j=1

l(2j) < ∞

holds. Let P be the set of primes.
We shall characterize those u ∈ A∗ for which with a suitable l ∈ F

(2.1) u(n) ≤ max(u(n + 1), . . . , u(n + k)) + l(n) n ∈ N

holds. Here k ≥ 1 is an arbitrary fixed integer.

Theorem 1. If (2.1) holds, then there exists a constant c, and v ∈A∗,
such that u(n) = c log n + v(n), where v(p) = 0 for all but finitely many

primes p. If R = {q1, . . . , qr} (it might be empty) is the set of the

exceptional primes on which v does not equal to zero, then v(qj) < 0
(j = 1, . . . , r) and for every n ∈ N there exists a j ∈ {1, . . . , k}, for which

n + j is coprime to each ql (l = 1, . . . , r).
Conversely, let R = {q1, . . . , qr} be such a collection of primes for

which for every n ∈ N there exists at least one j ∈ {1, . . . , k} such that

n + j is coprime to all members of R. Let v̄ ∈ A∗ be defined on primes

as follows: v̄(qj) = γj ≤ 0 (j = 1, . . . , r), γj are arbitrary, v̄(p) = 0
if p ∈ P \ R. Then v̄(n) ≤ max{v̄(n + j), j = 1, . . . , k}, furthermore

u(n) = c log n + v̄(n) satisfies (2.1), for each c ∈ R, with a suitable l ∈ F .

Theorem 2. Assume that for some u ∈ A∗ and l ∈ F the relation

(2.2) u(n) ≥ min(u(n− 1), u(n + 1))− l(n)

holds. Then

(2.3) u(n) = c log n + v(n),



Local peaks of additive functions 173

where c is a suitable constant, and either v(n) = 0 identically, or there is

an odd prime q for which v(q) > 0, and v(n) = 0 if (n, q) = 1.

Conversely, all such u satisfies (2.2) with some l ∈ F .

3. Proof of Theorem 1

The second assertion is clear, we prove the first one.
A finite set of distinct primes {q1, . . . , qr} is said to be of type T if

there exist k consecutive integers m+1, . . . , m+k none of which is coprime
to q1, q2, . . . , qr.

Let

δp :=
u(p)
log p

(p ∈ P).

Lemma 1. Assume that (2.1) is satisfied. Let {q1, . . . , qr} ∈ T . Then

δp ≤ max{δq1 , . . . , δqr} (p ∈ P).

First we observe that the theorem easily follows from Lemma 1. Indeed,
it is clear that a set of k distinct primes belongs to T , since m + j ≡ 0
(mod qj) (j = 1, . . . , k). Thus, Lemma 1 implies that the set {δp | p ∈ P}
does not contain more than k values. Let ξ be the largest value of δp.
From Lemma 1, {q | δq < ξ} /∈ T , and we are ready.

Proof of Lemma 1. Let

{q1, . . . , qr} ∈ T , c := max
j=1,...,r

δqj , u∗(n) := u(n)− c log n.

It is enough to prove that u∗(n) ≤ 0 for n ∈ N. Let us observe that (2.1)
holds for u∗(n) with some other l ∈ T .

Let K = q1, . . . , qr, q1 < · · · < qr, C := k+K
q1−1 .

We have
max

j=1,...,r
u∗(qj) = 0.

Assume that u∗(n0) > 0 for some n0. Let

L(x) = max
n≤x

u∗(n).

Then L(x) →∞.
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Iterating the inequality (2.1), we obtain that
u∗(n) ≤ max(u∗(n + j + 1), . . . , u∗(n + j + k)) + l(j)(n) holds for every
j ∈ {0, 1, . . . , K} with some l(j) ∈ F , consequently

(3.1)
u∗(n) ≤ min

j=0,...,K
max(u∗(n + j + 1), . . . , u∗(n + j + k))

+lK(n), lK ∈ F .

Let x > C, L(x) = u∗(N0).
Since {q1, . . . , qr} ∈ T , therefore there exists such a j in [1,K] for

which (N0 + j + l, K) > 1 (l = 1, . . . , k). Let l∗ be such a value for which

u∗(N0 + j + l∗) = max
l=1,...,k

u∗(N0 + j + l).

Let N0 + j + l∗ = qsN1.
Then u∗(N0 + j + l∗) = u∗(qs) + u∗(N1) ≤ u∗(N1), and

N1 ≤ N0 + K + k

q1
.

We can repeat this procedure by N1 instead of N0, and so on:

u∗(Nj) ≤ u∗(Nj+1) + lK(Nj) (j = 0, . . . , t− 1),

where t is the smallest index for which Nt ≤ C. Since Nj+1 ≤ Nj+K+k
q1−1

and N1, N2, . . . , Nt−1 is strictly decreasing, we obtain that t is finite, and

u∗(N0) ≤ max
n≤C

u∗(n) +
t−1∑

j=0

lK(Nj).

The sum on the right hand side is bounded, since lK ∈ F . Consequently
L(x) is bounded, so u∗(n0) > 0 is not true.

The proof is complete. ¤

4. Proof of Theorem 2

The second assertion is obvious, we prove the first one.
If u is a solution of (2.2), then so is u(n)−c log n as well, thus we may

assume that u(2) = 0.
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First we show that u(n) ≥ 0 for every n ∈ N. Assume that u(n0) < 0.
Let

L(x) = min
n≤x

u(n).

Then L(x) → −∞.
Let x be large, u(N0) = L(x), N0 ≤ x. We may assume that N0 is

odd. Then

u(N0) ≥ min
(

u

(
N0 − 1

2

)
, u

(
N0 + 1

2

))
− l(N0).

Thus there is an odd integer N1 ≤ N0+1
2 for which u(N1) ≤ u(N0)+ l(N0).

Repeating this procedure, we get: u(Nj+1) ≤ u(Nj) + l(Nj)
(j = 1, . . . , t − 1), 1 = Nt < Nt−1 < · · · < N0. Since Nj+1 ≤ Nj+1

2 ,
therefore

t∑

j=0

l(Nj)

is bounded, 0 = u(Nt) ≤ u(N0) + l(N0) + · · ·+ l(Nt−1), thus u(N0) ≥ −c

with some positive c.
Thus u(2) = 0 and u(n) ≥ 0 for every n ∈ N.
Assume that there exist two primes q1, q2 for which u(q1)> 0, u(q2)>0.
Let

∆ = min(u(q1), u(q2)).

Let l (mod q1q2) be determined by l ≡ −1 (mod q1), l ≡ 1 (mod q2).
Then, there is a constant c1 such that for every n > c1, n ≡ l (mod q1q2),
u(n) ≥ ∆

2 . Let I be the set of primes p ≡ l (mod q1q2) larger than c1.
Thus, u(n) ≥ ∆

2 if n has at least one prime divisor from I.
Let π ∈ P, π ≡ 5 (mod 8). Then the Legendre symbol

(
2
π

)
= −1,

thus 2
π−1

2 ≡ −1 (mod π), and so 2αt ≡ −1 (mod π), where αt = π−1
2 +

t(π − 1) = π−1
2 (1 + 2t).

Let p ≡ 3 (mod 8), p ∈ P. Let t be such an integer for which 1+2t ≡ 0
(mod p−1

2 ).
Let 1 + 2t = p−1

2 s. For such a t, p− 1 | 2αt − 1, and so

0 = u(2αt) ≥ min(u(p), u(π))− l(2αt).

Since αt can be arbitrary large, l(2αt) → 0 (αt → ∞), we get that
min(u(p), u(π)) = 0.
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The relative density of those primes π ≡ 5 (mod 8), for which either
(π + 1, I) = 1, or (π − 1, I) = 1 is zero. Similary, the relative density of
the primes p ≡ 3 (mod 8), for which either (p+1, I) = 1, or (p−1, I)= 1
is zero. Consequently, there exists at least one couple p, π for which u(π),
u(p) ≥ ∆

2 . This is a contradiction, ∆ > 0 cannot hold.
The proof is complete.

5. Further theorems

If u(n) satisfies (2.2), then for v(n) = −u(n), we have

(5.1) v(n) ≤ max(v(n− 1), v(n + 1)) + l(n).

Consequently, from Theorem 2, we have

Theorem 2’. If (5.1) holds with some l ∈ F , then v(n) = c log n −
h(n), with some constant c, and either h(n) = 0 identically, or there is an
odd prime q for which h(q) > 0, and h(n) = 0 for every n coprime to q.

As a direct consequence, we have

Theorem 3. Let f be a completely multiplicative function taking on
positive values, such that

(5.2) 2f(n) ≤ f(n + 1) + f(n− 1)

holds for every large n.
Then f(n) = ns and either s ≤ 0 or s ≥ 1.

Proof of Theorem 3. Let v(n) := log f(n). Then, (5.2) implies that
v(n) ≤ max(v(n + 1), v(n− 1)) for every large n, consequently the condi-
tions of Theorem 2’ are satisfied. Thus v(n) = s log n−h(n), consequently
f(n) = nsG(n), where either G(n) = 1 identically, or there exists an odd
q ∈ P for which G(q) = e−h(q) < 1, and G(n) = 1, if (n, q) = 1. Substi-
tuting into (5.2), we get

2G(n) ≤
(

1 +
1
n

)s

G(n + 1) +
(

1− 1
n

)s

G(n− 1).

Let n → ∞ over the set of the integers for which q‖n + 1. Then (n, q) =
(n− 1, q) = 1, and so 2 ≤ G(q) + 1.

Thus h(n) = 0 identically, i.e. f(n) = ns.
Finally we observe that 2ns ≤ (n + 1)s + (n − 1)s holds for every

large n, if and only if s ≤ 0 or s ≥ 1. ¤
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From Theorem 2 we can deduce similarly

Theorem 4. Let f be a positive real valued completely multiplicative

function such that for every large n

2f(n) ≥ f(n + 1) + f(n− 1)

holds. Then f(n) = ns, 0 ≤ s ≤ 1.
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