Publ. Math. Debrecen 41 / 1-2 (1992), 295-306

Linear recursive sequences and power series

By JAMES P. JONES (Calgary) and PÉTER KISS (Eger)

Introduction

Let R_n (n = 0, 1, ...), be a sequence of complex numbers defined by a k^{th} order linear recurrence

$$R_n = A_1 R_{n-1} + A_2 R_{n-2} + \dots + A_k R_{n-k}, \qquad (n \ge k),$$

where k is a nonnegative integer, A_1, \ldots, A_k are fixed parameters, $A_k \neq 0$ and the initial values R_0, \ldots, R_{k-1} are complex numbers not all zero. The polynomial

$$c(x) = x^{k} - A_{1}x^{k-1} - A_{2}x^{k-2} - \dots - A_{k}$$

is called the characteristic polynomial of the sequence R_n . If R(x) is a function whose formal power series expansion is of the form

$$R(x) = R_0 + R_1 x + R_2 x^2 + \dots = \sum_{n=1}^{\infty} R_n x^n,$$

then R(x) is called the *generating function* of the sequence R_n (n=0, 1, ...). For many recurrences generating functions are known. The best known example is the generating function of the Fibonacci sequence. Let F_n , (n = 0, 1, 2, ...) be the Fibonacci sequence defined by $F_n = F_{n-1} + F_{n-2}$ (n > 1) and $F_0 = 0$, and $F_1 = 1$. Then it is well known that

$$\frac{x}{1-x-x^2} = \sum_{n=0}^{\infty} F_n x^n.$$

Research supported partially by the Hungarian National Foundation (Grant $\sharp 1641$) for Scientific Research and the National Scientific and Engineering Research Council of Canada.

V.E. HOGGATT, Jr. [5] and R.T. HANSEN [4] gave a great number of generating functions for sequences constructed from Fibonacci and Lucas sequences.

In this paper we show that the generating function of any linear recurrent sequence is a rational function, and conversely, any rational function whose denominator is not zero at x = 0, is the generating function of some linear recurrence. Our results give an easy way to determine the power series expansion of rational functions. Furthermore, as a consequence of our development, we give new proofs for some known results. Similar topics were investigated by M. D'OCAGNE [8], A.J. van der POORTEN [11] and P. ERDŐS, Th. MAXSEIN, P.R. SMITH [1].

Main theorem

For a given fixed linear recurrence it is not difficult to determine the generating function. Furthermore, from [10], pp. 96–97, it follows that if a power series $a_0 + a_1x + a_2x^2 + \ldots$ represents a rational function, then the sequence a_n $(n = 0, 1, \ldots)$ satisfies a linear recurrence. We give a unified proof of these results and some improvements.

Theorem 1. Let a_n (n = 0, 1, ...), be a linear recurrence with characteristic polynomial $x^k - A_1 x^{k-1} - \cdots - A_k$. Then the formal power series

$$a_0 + a_1 x + a_1 x^2 + \dots$$

is generated by a rational function of the form

$$a(x) = \frac{b_0 + b_1 x + \ldots + b_{k-1} x^{k-1}}{1 - A_1 x - A_2 x^2 - \ldots - A_k x^k},$$

where

$$b_i = a_i - \sum_{j=1}^{i} A_j a_{i-j}$$
 $(i = 0, 1, 2, \dots, k-1).$

Conversely, every rational function

$$\frac{b_0+b_1x+\ldots+b_sx^s}{d_0+d_1x+\ldots+d_kx^k},$$

where $s \ge 0$, $k \ge 1$, $b_s \ne 0$, $d_0 \ne 0$, $d_k \ne 0$, and the denominator is not an algebraic factor of the numerator, is a generating function of some sequence a_n , satisfying a linear recurrence relation with characteristic polynomial

$$x^k + \frac{d_1}{d_0}x^{k-1} + \dots + \frac{d_k}{d_0}$$

for indices $n \ge n_0 = \max(k, 1 + s)$. The terms of the sequence a_n are rational integers when s < k, $d_0 = 1$ and $d_1, \ldots, d_k, b_0, \ldots, b_s$ are rational integers.

PROOF. \implies First suppose that a_n is a k^{th} order linear recurrence satisfying the relation

(1)
$$a_n = A_1 a_{n-1} + A_2 a_{n-2} + \dots + A_k a_{n-k}$$

for any $n \ge k$. If a(x) is a function such that

$$a(x) = a_0 + a_1 x + a_2 x^2 + \dots$$

then

$$a(x) - A_1 x a(x) - A_2 x^2 a(x) - \dots - A_k x^k a(x) =$$

= $a(x)(1 - A_1 x - A_2 x^2 - \dots - A_k x^k)$
= $a_0 + (a_1 - A_1 a_0)x + (a_2 - A_1 a_1 - A_2 a_0)x^2 + \dots$
 $\dots + (a_{k-1} - A_1 a_{k-2} - \dots - A_{k-1} a_0)x^{k-1}$

since, by (1), the coefficients of x^k, x^{k+1}, \ldots on the right-hand side are zero. From this we have

$$a(x) = \frac{a_0 + (a_1 - A_1 a_0)x + \dots + (a_{k-1} - A_1 a_{k-2} - \dots - A_{k-1} a_0)x^{k-1}}{1 - a_1 x - \dots - a_k x^k}$$

which proves the first part of the theorem.

Now let

$$a'(x) = \frac{b'_0 + b'_1 x + \dots + b'_s x^s}{d_0 + d_1 x + \dots + d_k x^k}$$

be a rational function with complex coefficients, where $s \ge 0, k \ge 1$, $b'_s \ne 0, d_0 \ne 0, d_k \ne 0$ and the denominator is not a divisor of the numerator. Then a'(x) can be written as

(2)
$$a'(x) = a''(x) + \frac{1}{d_0} \cdot a(x),$$

where a''(x) is a polynomial and a(x) is of the form

$$a(x) = \frac{b_0 + b_1 x + \dots + b_{k-1} x^{k-1}}{1 - A_1 x - \dots - A_k x^k}$$

with b_i 's not all zero and $A_i = -d_i/d_0$ for i = 1, 2, ..., k.

Let us consider the system of equations

$$a_{k-1} - A_1 a_{k-2} - A_2 a_{k-3} - \dots - A_{k-2} a_1 - A_{k-1} a_0 = b_{k-1}$$

$$a_{k-2} - A_1 a_{k-3} - \dots - A_{k-3} a_1 - A_{k-2} a_0 = b_{k-2}$$

$$\vdots$$

$$a_1 - A_1 a_0 = b_1$$

$$a_0 = b_0$$

in unknowns $a_0, a_1, \ldots, a_{k-1}$. This system has a unique solution since its determinant is 1. The solutions are integers if the A_i 's and b_i 's are rational integers and a_0, \ldots, a_{k-1} are not all zero since b_0, \ldots, b_{k-1} are not all zero. But then, as we have seen above, the sequence a_n $(n = 0, 1, \ldots)$ defined by the initial terms a_0, \ldots, a_{k-1} and by the recursion

(3)
$$a_n = A_1 a_{n-1} + A_2 a_{n-2} + \dots + A_k a_{n-k} \qquad (n \ge k)$$

has the generating function a(x). From this, by (2), it follows that the coefficients of the power series of a'(x) satisfy the recurrence relation (3) for any $n \ge n_0$, where $n_0 = k$ or $n_0 = k + 1 + \deg a''(x)$ according as a''(x) is identically zero or not.

From this the theorem follows.

Remark. Theorem 1 and its proof give a method for obtaining the power series expansion of a rational function. For example let

$$a(x) = \frac{4 - 3x + 2x^2}{1 - 3x + 2x^2} = 1 + \frac{3}{1 - 3x + 2x^2}.$$

By Theorem 1 the function $\frac{3}{1-3x+2x^2}$ is the generating function of a linear recurrence a_n with characteristic polynomial $x^2 - 3x + 2$. For the initial terms, we have from the proof of the Theorem, $a_1 - 3a_0 = 0$ and $a_0 = 3$. So $a_0 = 3$, $a_1 = 9$ and

$$a(x) = a_0 + 1 + \sum_{n=1}^{\infty} a_n x^n$$

But it is known that if α_1 and α_2 are the roots of the characteristic polynomial of a second order linear recurrence a_n and $\alpha_1 \neq \alpha_2$, then the terms can be expressed by

(4)
$$a_n = \frac{(a_1 - a_0 \alpha_2) \alpha_1^n - (a_1 - a_0 \alpha_1) \alpha_2^n}{\alpha_1 - \alpha_2}.$$

In our case $\alpha_1 = 2$, $\alpha_2 = 1$, $a_0 = 3$, $a_1 = 9$ and so we have

$$\frac{4-3x+2x^2}{1-3x+2x^2} = 4 + \sum_{n=1}^{\infty} (6 \cdot 2^n - 3)x^n.$$

Consequences of the theorem

Let R_n (n = 0, 1, ...) be a linear recurrence of order k as defined in the introduction and let $\alpha_1, \alpha_2, ..., \alpha_m$ be the distinct roots of the characteristic polynomial c(x) with multiplicities $k_1, k_2, ..., k_m$ respectively, $(k_1 + \cdots + k_m = k)$.

Explicit forms for the terms R_n are known in special cases, the best known of which is Binet's formula for Fibonacci numbers: $F_n = (\alpha_1^n - \alpha_2^n)/(\alpha_1 - \alpha_2)$, where α_1 and α_2 are the roots of the polynomial $x^2 - x - 1$. For general second order recurrences formula (4) is also well known. For an arbitrary sequence R_n , J.A. JESKE [6] proved the existence of polynomials $r_i(x)$, $i = 1, \ldots, m$, such that

$$R_n = \sum_{i=1}^m r_i(n)\alpha_i^n$$

for any $n \ge 0$. We show that this result and its converse follow from our Theorem.

Corollary 1. The terms of the linear recurrence R_n can be expressed by

(5)
$$R_n = \sum_{i=1}^m r_i(n)\alpha_i^n$$

for every $n \geq 0$, where $r_i(x)$, (i = 1, ..., m) are fixed polynomials of degree $k_i - 1$, respectively and the coefficients of these polynomials are elements of the number field generated by $R_0, ..., R_{k-1}, A_1, ..., A_k$ and $\alpha_1, ..., \alpha_m$ over the rationals. Also conversely, if the terms of a sequence satisfy equality (5) with polynomials $r_i(x)$ of degree $k_i - 1$ $(1 \leq i \leq m)$, then the sequence satisfies a linear recurrence of order $k_1 + ... + k_m$ with characteristic polynomial

$$c(x) = \prod_{i=1}^{m} (x - \alpha_i)^{k_i}.$$

PROOF. Let R_n be a linear recurrence with characteristic polynomial

(6)
$$c(x) = \prod_{i=1}^{m} (x - \alpha_i)^{k_i} = x^k - A_1 x^{k-1} - \dots - A_k.$$

Then, by Theorem 1, there is a polynomial g(x) with deg g(x) < k and such that

(7)
$$R(x) = \frac{g(x)}{1 - A_1 x - \dots - A_k x^k} = \sum_{n=0}^{\infty} R_n x^n.$$

By (6) we can write

(8)
$$R(x) = \frac{g(x)}{\prod_{i=1}^{m} (1 - \alpha_i x)^{k_i}} = \sum_{i=1}^{m} \frac{g_i(x)}{(1 - \alpha_i x)^{k_i}}$$

where

$$g_i(x) = b_{i,0} + b_{i,1}x + \dots + b_{i,k_i-1}x^{k_i-1}, \qquad (i = 1, \dots, m),$$

are polynomials.

It is known that

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \left(\begin{array}{c} n+k-1\\ k-1 \end{array} \right) x^n,$$

from which

(9)

$$\frac{g_i(x)}{(1-\alpha_i x)^{k_i}} = \sum_{n=0}^{\infty} \sum_{j=0}^{k_i-1} b_{i,j} \begin{pmatrix} n+k_i-1\\k_i-1 \end{pmatrix} \alpha_i^n x^{n+j} = \\
= \sum_{n=0}^{\infty} \sum_{j=0}^{k_i-1} \frac{b_{i,j}}{\alpha_i^j} \begin{pmatrix} n+k_i-1\\k_i-1 \end{pmatrix} \alpha_i^{n+j} x^{n+j} = \\
= \sum_{n=0}^{\infty} \left(\sum_{j=0}^{k_i-1} \frac{b_{i,j}}{\alpha_i^j} \begin{pmatrix} n-j+k_i-1\\k_i-1 \end{pmatrix} \right) \alpha_i^n x^n = \\
= \sum_{n=0}^{\infty} r_i(n) \alpha_i^n x^n$$

follows, where $r_i(x)$ is a polynomial of degree at most $k_i - 1$. From this, by (7) and (8), equality (5) follows. The restrictions on the coefficients of the polynomials also hold.

Now let R'_n be a sequence of numbers defined by

(10)
$$R'_n = \sum_{i=1}^m r_i(n)\alpha_i^n$$

for any $n \ge 0$, where $r_i(x)$, (i = 1, ..., m), are polynomials of degree $k_i - 1$, respectively, $m, k_1, ..., k_m$ are positive rational integers, and $\alpha_1, ..., \alpha_m$ are fixed non-zero numbers.

We show that for any polynomial

(11)
$$r(x) = c_0 + c_1 x + \dots + c_{k-1} x^{k-1},$$

there are numbers $t_0, t_1, \ldots, t_{k-1}$ such that

(12)
$$r(x) = t_0 \left(\begin{array}{c} x+k-1\\ k-1 \end{array} \right) + t_1 \left(\begin{array}{c} x-1+k-1\\ k-1 \end{array} \right) + \cdots + t_{k-1} \left(\begin{array}{c} x-(k-1)+k-1\\ k-1 \end{array} \right)$$

for any non-negative integer x. By (11) and (12) $t_0 = c_0$ follows since $r(0) = c_0$ and $\binom{x-i+k-1}{k-1} = 0$ if x - i < 0. Also by (12) we have

$$t_1 = r(1) - t_0 \begin{pmatrix} k \\ k-1 \end{pmatrix}$$

and continuing this process with $x = 2, 3, \ldots, k - 1$ we have

$$t_i = r(i) - \sum_{j=0}^{i-1} t_j \left(\begin{array}{c} i - j + k - 1 \\ k - 1 \end{array} \right)$$

for any $1 \leq i \leq k-1$. So the numbers t_0, \ldots, t_{k-1} are uniquely determined. From this and (9) by replacing $b_{i,j}$ by $t_j \alpha^j$, it follows that

$$\sum_{n=0}^{\infty} r(n)\alpha^n x^n = \frac{g'(x)}{(1-\alpha x)^k},$$

for some polynomial g'(x) of degree k-1, for any $\alpha \neq 0$ and polynomial r(x) of degree k-1. So by (10)

(13)
$$\sum_{i=1}^{m} \frac{g_i(x)}{(1-\alpha_i x)^{k_i}} = \sum_{i=0}^{\infty} R'_n x^n$$

follows for some polynomials $g_i(x)$ of degree $k_i - 1, i = 1, ..., m$.

The right hand side of (13) is a rational function with denominator of the form

$$c'(x) = \prod_{i=1}^{m} (1 - \alpha_i x)^{k_i} = 1 - A_1 x - \dots - A_k x^k$$

and so, by the Theorem, the sequence R_n^\prime is a linear recurrence with characteristic polynomial

$$c(x) = \prod_{i=1}^{m} (x - \alpha_i)^{k_i} = x^k - A_1 x^{k-1} - \dots - A_k.$$

Remark. Some authors state formula (5) in the form that the degree of the polynomials $r_i(x)$ are "at most" $k_i - 1$. Corollary 1 implies that if deg $r_i(x) < k_i - 1$ for some *i*, then the sequence R_n satisfies a recurrence relation of order less than $k_1 + \cdots + k_m = k$.

Let $q \ge 1$, $r \ge 0$ be fixed natural numbers. Then the sequence $H_n = R_{qn+r}$, (n = 0, 1, 2, ...), is a subsequence of R_n . If R_n is a second order linear recursive sequence, then it is easy to see that H_n is also a second order linear recurrence. For the Fibonacci sequence this was shown by J.H. HALTON [3]. For an arbitrary linear recurrence this result can be derived from Corollary 1. Now we give another proof of it using only our Theorem.

Corollary 2. Let R_n , n = 0, 1, 2, ..., be a k^{th} order linear recurrence. Then the subsequence H_n of R_n defined by

$$H_n = R_{qn+r} \qquad (n \ge 0),$$

where q > 0 and $r, 0 \le r < q$, are fixed integers, is also a linear recurrence, of order k. If R_n is a sequence of rational integers with integer parameters, then the sequence H_n also has integer parameters.

PROOF. Let R_n be a k^{th} order recurrence with characteristic polynomial

$$c(x) = x^k - A_1 x^{k-1} - \dots - A_k.$$

Then for any given $r \ge 0$ the sequence R_r, R_{r+1}, \ldots is also a linear recurrence with the same characteristic polynomial, c(x). Let g(x)/f(x) be the generating function of this sequence, i.e.,

$$\frac{g(x)}{f(x)} = R_r + R_{r+1}x + R_{r+2}x^2 + \dots$$

where, by Theorem 1, $\deg g(x) < \deg f(x) = k$ and

$$f(x) = 1 - A_1 x - \dots - A_k x^k.$$

Let q > 0 be a natural number and ε be a primitive q^{th} root of unity. Put

$$\frac{g(\varepsilon^i x)}{f(\varepsilon^i x)} = R_r + R_{r+1}(\varepsilon^i x) + R_{r+2}(\varepsilon^i x)^2 + \dots$$

for i = 0, 1, ..., q - 1. Then

(14)
$$\frac{G(x)}{F(x)} = \sum_{i=0}^{q-1} \frac{g(\varepsilon^i x)}{f(\varepsilon^i x)} = q \cdot R_r + \sum_{n=1}^{\infty} \left(R_{n+r} x^n \cdot \sum_{i=0}^{q-1} \varepsilon^{i \cdot n} \right),$$

where

$$F(x) = \prod_{i=0}^{q-1} f(\varepsilon^i x).$$

But

$$\sum_{i=0}^{q-1} \varepsilon^{in} = \begin{cases} 0 & \text{if } q \nmid n \\ q & \text{if } q \mid n \end{cases}$$

and so by (14) we have

(15)
$$\frac{G(x)}{F(x)} = \sum_{n=0}^{\infty} q \cdot R_{qn+r} x^{qn} = q \cdot \sum_{n=0}^{\infty} H_n x^{qn}.$$

By the definition of F(x), for any complex number x and any integer i, $(0 \le i \le q-1), F(x) = F(\varepsilon^i x)$. This implies that if $\delta \ne 0$ is a root of the equation F(x) = 0, then $\varepsilon \delta, \varepsilon^2 \delta, \ldots, \varepsilon^{q-1} \delta$ are also roots with the same multiplicity as δ . Since $F(0) \ne 0$, it follows that F(x) is of the form

(16)
$$F(x) = f_k \cdot \prod_{i=1}^k (x^q - \beta_i^q) = f_0 + f_1 x^q + f_2 x^{2q} + \dots + f_k x^{kq},$$

where β_1, \ldots, β_k are the roots of the polynomial $f(x), |f_k| = |A_k|^q$ and $|f_0| = |f_k| \cdot |\prod_{i=1}^k \beta_i|^q = 1.$

Let

$$G'(x) = g(x) \cdot f(\varepsilon x) \cdot f(\varepsilon^2 x) \cdot f(\varepsilon^{q-1} x) = a_m x^m + \dots + a_1 x + a_0.$$

Then

$$G(x) = \sum_{i=0}^{q-1} G'(\varepsilon^{i}x) = b_{m}x^{m} + \dots + b_{1}x + b_{0},$$

where

$$b_i = a_i \sum_{j=0}^{q-1} \varepsilon^{ij} = \begin{cases} q \cdot a_i & \text{if } q \mid i \\ 0 & \text{if } q \nmid i \end{cases}$$

for any $0 \le i \le m$ and so G(x) has the form

(17)
$$G(x) = q \cdot \sum_{i=0}^{t} g_i x^{qi}$$

for some integer $t \ge 0$.

By (15), (16) and (17), after replacing x^q by x, we get

$$\frac{\pm (g_0 + g_1 x + \dots + g_t x^t)}{1 \pm (f_1 x + \dots + f_k x^k)} = \sum_{n=0}^{\infty} H_n x^n,$$

which, by Theorem 1, implies that H_n is a linear recurrence of order k with characteristic polynomial $c(x) = x^k \pm (f_1 x^{k-1} + \dots + f_k)$.

If R_n is a sequence of integers with rational integer parameters A_1, \ldots, A_k , then by using theorems about the elementary symmetric functions of variables which are roots of a polynomial, it is easy to check that f_1, \ldots, f_k are integers. The initial terms of the sequence H_n are obviously integers and so the proof is complete.

Using the generating functions for the Fibonacci F_n and Lucas L_n sequences H.W. GOULD [2] showed that for any fixed integer $p \ge 1$ the sequences F_n^p and L_n^p are also linear recurrences. Similar results were obtained by I.I. KOLONDER [7] for general second order linear recurrences. Corollary 1 implies a generalization of these results.

Corollary 3. Let R_n be a linear recurrence and let

$$p(x) = a_t x^t + a_{t-1} x^{t-1} + \dots + a_0$$

be a polynomial. Then the sequence G_n , defined by

$$G_n = p(R_n) \qquad (n = 0, 1, \dots)$$

also satisfies a linear recursion equation.

PROOF. By Corollary 1, for any given complex number a and any integer $s \ge 0$, the numbers $a \cdot R_n^s$ are of the form

$$a \cdot R_n^s = a \cdot \left(\sum_{i=1}^m r_i(n)\alpha_i^n\right)^s = \sum_{i=1}^v g_i(n)\beta_i^n$$

for all $n \ge 0$. Here v is a positive integer, the $g_i(x)$'s are polynomials and the β_i 's are determined by

$$\beta_i = \prod_{j=1}^m \alpha_j^{e_j}$$
 with $\sum_{j=1}^m e_j = s.$

But then

$$G_n = p(R_n) = \sum_{s=0}^t a_s R_n^s = \sum_{i=1}^u h_i(n)\gamma_i^n$$

for some integer u, some polynomials $h_i(x)$ and some numbers γ_i . So by Corollary 1 the sequence G_n is a linear recurrence.

Remark. One can easily check that if R_n is a sequence with integer parameters and the coefficients of p(x) are integers, then the parameters of the sequence G_n are also integers.

Additional consequences

Now we list some further consequences which can be proved easily from the above results.

Corollary 4. Let $S = \{p_1, \ldots, p_s\}$ be a finite set of prime numbers and suppose that a_n $(n = 0, 1, \ldots)$, is a sequence of non zero integers such that all prime divisors of the terms a_0, a_1, a_2, \ldots are elements of the set S. Then the sequence a_n satisfies a linear recurrence relation if and only if the terms of a_n are of the form

$$a_{nn+r} = c_r \cdot \alpha_r^{pn+r}$$

for all $n \ge 0$ and all $r, 0 \le r < p$, where p is a positive integer and α_r, c_r $(r = 0, 1, \dots, p-1)$ are constants.

PROOF. This follows from Theorem 1 and a result of G. PÓLYA [9]. But it can also be proved from Corollaries 1 and 2, using the known result: if a_n is a non-degenerate linear recurrence of integers, then there are infinitely many prime p such that $p|a_n$ for some n.

Corollary 5. Let R_n be a linear recurrence of order k with generating function g(x)/f(x). If (g(x), f(x)) > 1, then the sequence satisfies a recurrence relation of order less than k.

PROOF. From Theorem 1.

Corollary 6. If R_n (n = 0, 1, ...) and K_n are linear recurrences of order k_1 and k_2 , respectively, then the sequence $R_n + K_n$, (n = 0, 1, ...), is also a linear recurrence of order $\leq k_1 + k_2$.

PROOF. This follows from Theorem 1 by adding the generating functions of the sequences. Corollary 1 also implies this assertion.

Corollary 7. If R_n and K_n are the sequences defined in Corollary 6, then the sequence L_n , defined by

$$L_n = \sum_{i=0}^n R_i K_{n-i}$$

is also a linear recurrence of order at most $k_1 + k_2$.

PROOF. It follows from Theorem 1 by multiplying the generating functions of the sequences.

Corollary 8. If L_n is a linear recurrence and p > 0 is a fixed natural number, then the sequence P_n , defined by

$$P_n = \sum_{i=0}^n L_i^p$$

is also a linear recurrence.

PROOF. The sequence L_n^p is a linear recurrence by Corollary 3. Hence if in Corollary 7 we replace the sequence R_n by L_n^p and let K_n be defined by $K_n = 1$ for $n \ge 0$, then the assertion follows.

References

- P. ERDŐS, TH. MAXSEIN AND P.R. SMITH, Primzahlpotenzen in rekurrenten Folgen, Analysis 10 (1990), 71–83.
- [2] H.W. GOULD, Generating functions for products of powers of Fibonacci numbers, Fibonacci Quart. vol.1, No.2 (1963), 1–16.
- [3] J.A. HALTON, A note on Fibonacci sequences, *Fibonacci Quart.* vol. **3** No.4 (1965), 321–322.
- [4] R.T. HANSEN, Generating identities for Fibonacci and Lucas triples, *Fibonacci Quart.* vol. 10 No.6 (1972), 571–578.
- [5] V.E. HOGGATT, JR., Some special Fibonacci and Lucas generating functions, Fibonacci Quart. Vol. 9 No.2 (1971), 121-133.
- [6] J.A. JESKE, Linear recurrence relations Part 1, Fibonacci Quart. vol. 1, No.2 (1963), 69–74.
- [7] I.I. KOLONDER, On a generating function associated with generalized Fibonacci sequences, *Fibonacci Quart.* vol. 3, No.4 (1965), 272–278.
- [8] M. D'OCAGNE, Mémoire sur les suites recurrentes, Journal de l'ecole polytechnique 64 (1894), 151–224.
- [9] G. PÓLYA, Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen, J. Reine und Angewante Math. 151 (1921), 1–31.
- [10] G. PÓLYA AND G. SZEGÖ, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, 1976.
- [11] A.J. VAN DER POORTEN, Some facts that should be better known, especially about rational functions, Number Theory and Applications, vol. 265 NATO AASI series (R.A. Mollin, Ed.), Kluwer Acad. Publ. (1989), 497–528.

JAMES P. JONES DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF CALGARY CALGARY, ALBERTA CANADA T2N 1N4

PÉTER KISS ESZTERHÁZY KÁROLY UNIVERSITY DEPARTMENT OF MATHEMATICS 3301 EGER, HUNGARY

(September 20, 1991)