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Characterisation of asymptotically Sturmian sequences

By ALEX HEINIS (Leiden) and ROB TIJDEMAN (Leiden)

Dedicated to Kálmán Győry on the occasion of his sixtieth birthday

Abstract. Sturmian sequences are both balanced and stiff. First we apply clas-
sical results of Morse, Hedlund and Coven to characterise the Sturmian, balanced and
stiff N-sequences in terms of Beatty N-sequences {bna + bc}n∈N. Recently Nakashima,
Tamura and Yasutomi showed that asymptotically balanced sequences are asymptot-
ically stiff and conversely. We provide an explicit characterisation of asymptotically
balanced N-sequences in terms of sequences of the form {bna+fnc}∞n=1 where {fn}∞n=1

is a real sequence with fn+1 − fn → 0 as n →∞. We conclude with a characterisation
of asymptotically Sturmian N-sequences.

1. Introduction

Let N = {1, 2, 3, . . . }. Let S = {sn}n∈N be a strictly increasing se-
quence of positive integers, a so-called N-sequence. We call S a posi-
tive Beatty sequence if there exist real constants a ≥ 1 and b such that
sn = ban + bc for all n and b < 1 ≤ a + b, or sn = dan + be for all n and
b ≤ 0 < a + b. If a is rational, then every positive Beatty sequence of the
form {dan + be}n∈N can be written as a positive Beatty sequence of the
form {ban + bc}n∈N, but this is not true if a is irrational. The sequence S

is called balanced if the number of terms of S in any two intervals [x, x+n)
and [y, y + n) with n, x, y ∈ N differ by at most 1. A simple calculation
yields that every positive Beatty sequence is balanced. Let σ : N→ {0, 1}
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be the characteristic function of S,

σ(s) =
{ 1 if s ∈ S

0 otherwise.

We call σ the N-word corresponding with S. For n ∈ N denote the number
of distinct vectors among (σ(x), σ(x+1), . . . , σ(x+n−1)) for x ∈ N by the
complexity number P (n). The sequence S is called stiff if P (n) ≤ n+1 for
every n. Morse and Hedlund [MH, Theorem 3.5–3.7] proved that every
balanced sequence is stiff and Coven and Hedlund [CH, Theorem 4.09]
that every periodic stiff sequence is balanced. Morse and Hedlund [MH,
Theorem 2.3.] further proved that every stiff sequence has a density α =
limx→∞ x−1

∣∣{s ∈ S | 0 < s ≤ x}
∣∣ and even that there is a b ∈ R such

that {sn − α−1n − b}n∈N is bounded by 1. The sequence S is called
almost periodic if for every n ∈ N there exists a C ∈ N such that for
all x, y ∈ N there is a z ∈ N with y ≤ z < y + C and σ(x + i) = σ(z + i)
for i = 0, 1, . . . , n − 1. We call S Sturmian if S is both balanced and
almost periodic. (Various authors use the word “Sturmian” in different
meanings!)

The behaviour is rather different for rational and irrational density.
If S is a sequence with irrational density, then the following properties are
equivalent: (i) S is Sturmian, (ii) S is balanced, (iii) S is stiff, (iv) S is
positive Beatty, (v) P (n) = n + 1 for every n (cf. [MH, Theorem 7.2]).
It follows that for every stiff sequence with rational density there exists
an n with P (n) ≤ n. For sequences S with rational density the following
properties are equivalent: (i) P (n) ≤ n for some n, (ii) {P (n)}n∈N is
bounded, (iii) S is ultimately periodic, i.e. for suitable c, k, n0 ∈ N we
have sn+k − sn = c for n > n0. Obviously not all sequences with these
properties are balanced or stiff and the example 00011111 . . . shows that
balanced and stiff are not equivalent in the rational case. As far as I
know, no explicit characterisation of balanced and stiff N-sequences in
terms of Beatty sequences is available in the literature. However, it is
easy to deduce the following theorem from known results. I recall the
characterisation of stiff sequences with irrational density given above. We
therefore restrict ourselves to stiff sequences with rational densities. Note
that a stiff sequence with density 0 contains at most one term. We deduce
Theorem 1 from the characterisation of stiff Z-sequences in [T] where it was
assumed without mention that both S and its complement are bi-infinite
sequences. Here we assume that S is an N-sequence.
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Theorem 1. Let S be a stiff N-sequence with rational density k/r
where k and r are coprime positive integers. Then one of the following
cases holds true:

(i) (periodic case) there exists an integer t with k − r ≤ t < k such that

sn =
⌊

nr + t

k

⌋
for n ≥ 1,

(ii) (skew case) there exist integers δ ∈ {−1, 1}, t and v with k − r − δ ≤
t < k − δ, v > 0, vr + t ≡ 0 (mod k) if δ = −1, and vr + t ≡ −1 (mod k)
if δ = 1, such that

sn =





⌊
nr + t

k

⌋
for n > v

⌊
nr + t + δ

k

⌋
for 1 ≤ n < v + k

(iii) (Hedlund case) there exist integers l, s, t, u, v with 0 < l ≤ s,
lr − ks = ±1, l − s ≤ u < l and v > 0 such that

sn =





⌊
nr + t

k

⌋
for n > v

⌊
ns + u

l

⌋
for 1 ≤ n < v + k + l

or there is some integer m > 0 such that sn = nr + m for n ∈ N.

We conclude that S is a periodic stiff sequence if and only if S is
positive Beatty. Case (i) is the only case in which S is almost periodic.
Thus the Sturmian N-sequences are just the positive Beatty sequences.

The sequences {sn}∞n=1 given in Theorem 1 represent stiff N-sequences
provided that in (iii) the parametes l, s, t, u, v are chosen in such a way
that the values of sn coincide for v < n < v+k+l. This happens if and only
if t and u are of the form t = kp−rv− (δ+1)/2 and u = lp−sv+(δ−1)/2
where δ = lr − ks and p is any integer.

We introduce the asymptotic analogues of the concepts defined above.
We say that S is asymptotically balanced if for every n ∈ S there is an
xn such that the numbers of terms of S in any two intervals [x, x + n)
and [y, y + n) with x, y > xn differ by at most 1. We call S asymptoti-
cally stiff if P∞(S, n) ≤ n + 1 for every n, where P∞(S, n) is the cardi-
nality of the set P∞(S, n) of vectors which occur infinitely often among
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(σ(m), σ(m + 1), . . . , σ(m + n − 1)) for m ∈ N. Nakashima, Tamura

and Yasutomi [NTY] define ∗-Sturmian as the property that for every
n the number of entries 1 in any two vectors from P∞(S, n) differ by at
most 1. It is not hard to show that the notions asymptotically balanced and
∗-Sturmian are equivalent. Hence they [NTY, Th. 2.6] prove that asymp-
totically balanced and asymptotically stiff are equivalent for N-sequences.
They give two more equivalent conditions and derive some results about
asymptotically balanced Z-sequences. It turns out that asymptotically
balanced N-sequences have a density too. It is our aim to provide an ex-
plicit description of these sequences. Again there is a distinction between
the rational and the irrational density case, but now the difference is more
subtle.

Theorem 2. a) The sequence S with rational density α is asymptoti-

cally balanced if and only if there exists an ultimately monotonic sequence

{fn}∞n=1 with fn+1 − fn → 0 as n → ∞ such that sn = bnα−1 + fnc for

n ∈ N.

b) The sequence S with irrational density α is asymptotically balanced

if and only if there exists a sequence {fn}∞n=1 with fn+1−fn → 0 as n →∞
such that sn = bnα−1 + fnc for n ∈ N.

We call S asymptotically almost periodic if for every n ∈ N there exist
integers Cn, xn ∈ N such that for all integers x, y > xn there exists a z ∈ N
with y ≤ z < y + Cn and σ(x + i) = σ(z + i) for i = 0, 1, . . . , n − 1. We
call S asymptotically Sturmian if S is both asymptotically balanced and
asymptotically almost periodic. We have the following characterisation for
asymptotically Sturmian sequences.

Theorem 3. a) If S has irrational density, then the following state-

ments are equivalent: (i) S is asymptotically Sturmian, (ii) S is asymp-

totically balanced, (iii) S is asymptotically stiff.

b) If S has rational density α, then the following statements are

equivalent: (i) S is asymptotically Sturmian, (ii) S is asymptotically bal-

anced and ultimately periodic, (iii) there are b ∈ R, M ∈ N such that

sn = bα−1n + bc for n ≥ M .

For convenience we shall include direct proofs of some results which
have been proved in a different way elsewhere.
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2. Characterisation of stiff sequences

We show first that every stiff word can be extended to a stiff Z-word.
This will enable us to deduce Theorem 1 from the corresponding result for
Z-words.

Let I be an interval of integers. A mapping σ : I → {0, 1} is called
an I-word. The word is called finite if I is finite. The length |σ| of a finite
I-word σ is defined as the number of integers in I. The number of integers
i ∈ I with σ(i) = 1 is called the content of σ and denoted by c(σ). We
denote the number of distinct subwords of σ of length n by P(σ, n) and
its cardinality by P (σ, n). A word σ is called balanced if |c(A)− c(B)| ≤ 1
for every two subwords A, B of length n. Obviously every I-word induces
a sequence of increasing elements of I corresponding to the values i ∈ I

with σ(i) = 1. The word σ is called balanced (stiff, . . . ) if and only if the
corresponding sequence S is balanced (stiff, . . . ). If σ1σ2 . . . σn is a word
of n letters and m ≤ n, then we call σ1 . . . σm the first m-subword of σ

and σn−m+1 . . . σn the last.
The first lemma is the finite equivalent of the well known result that

a Z-word σ with P (σ, n) ≤ n for some n is purely periodic.

Lemma 1. Let σ be a finite word with P (σ, n) ≤ n. If both the first

and the last (n − 1)-subword of σ occur at least twice as subwords of σ,

then σ is purely periodic with period l ≤ n.

Proof. The lemma is obvious for n = 1. Let n > 1. For 1 ≤ i ≤ n we
define an injection P(σ, i) ↪→ P(σ, i + 1) by mapping w ∈ P(σ, i) to some
right extension w∗ ∈ P(σ, i+1). Since P (σ, 1) = 2, P (σ, n) ≤ n and P(σ, i)
is non-decreasing in i, there is an index i < n such that P (σ, i) = P (σ, i+1).
Then the injection above is a bijection and every w ∈ P(σ, i) has a unique
right extension w∗ with ∗ ∈ {0, 1}. Writing [1, N ] for the domain of σ

we have σ([1, i]) = σ([l + 1, l + i]) for some minimal l > 0. Since right
extensions of i-subwords are unique, we obtain that σ is purely periodic
with period l. Then the i-subwords σ([h + 1, h + n]) for 0 < h ≤ l are
distinct and we have l = P (σ, i) ≤ P (σ, n) ≤ n. ¤

For Z-words σ it is well known that P (σ, n) ≤ n implies P (σ,m) ≤ n

for m ≥ n. The next lemma shows a similar result for finite stiff words.
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Lemma 2. Let σ be a finite stiff word with P (σ, k) ≤ k.

a) Then σ = βγδ with |β|+ |δ| < k such that γ has period l ≤ k− |β| − |δ|
b) Then P (σ,m) ≤ k for m ≥ k.

Proof. a) Define σ0 = σ and l0 as the smallest l with 1 ≤ l ≤ k and
P (σ, l) ≤ l. We define a sequence (σt, lt) for t ≥ 0 by induction. If the last
(lt−1)-word of σt does not occur elsewhere in σt, then we define σt+1 as σt

with the last letter removed. Otherwise, if the first (lt−1)-word of σt does
not occur elsewhere in σt, then we remove the first symbol of σt to obtain
σt+1. In both cases we put lt+1 = min{l | 1 ≤ l ≤ lt, P (σt+1, l) ≤ l}. It
follows from the definition of lt that P (σt, lt − 1) = lt for every t and that
P (σt+1, lt − 1) = P (σt, lt − 1)− 1 = lt − 1. Hence 1 ≤ lt+1 < lt and there
is a pair (σt0 , lt0), for which the process ends. Applying Lemma 1 to this
pair we find that γ := σt0 has a period

l ≤ lt0 ≤ l0 − t0 ≤ k − t0 = k − |β| − |δ|

where β is the subword for σ which precedes σt0 in σ and δ the subword
after σt0 in σ.

b) P (σ,m) ≤ |β|+ lt0 + |δ| ≤ k by the periodicity of σt0 . ¤

We use Lemma 2 to show that there is no maximal finite stiff word.

Lemma 3. Let σ be a finite stiff word. Then σ0 or σ1 is stiff.

Proof. Put n = |σ|. If P (σ, k) ≤ k for all k ≤ n, then σ1 is stiff.
Otherwise, let K be the maximal k ≤ n with P (σ, k) = k + 1. Note that
K < n by P (σ, n) = 1, and that P (σ,K + 1) = K + 1. By Lemma 2b)
we infer that P (σ, k) ≤ K + 1 for k > K, whence P (σx, k) ≤ k + 1 for
x ∈ {0, 1} and k > K. If the last (K − 1)-word in σ does not occur
elsewhere as as subword of σ, then P (σ′,K−1) = P (σ,K−1)−1 ≤ K−1
where σ′ denotes σ with the last symbol removed. Then Lemma 2b) implies
P (σ′, K) ≤ K − 1, whence P (σ,K) ≤ K, contradicting the choice of K.
Therefore the last (K − 1)-subword of σ appears elsewhere in σ, followed
by a symbol x, say. For every k ≤ K we then have that the final k-word
in σx occurs somewhere else in σx too. Hence P (σx, k) = P (σ, k) ≤ k +1.
Thus σx is stiff. ¤

Next we conclude that every stiff word can be extended to a stiff
Z-word.



Characterisation of asymptotically Sturmian sequences 421

Lemma 4. Every stiff word can be extended to a stiff Z-word.

Proof. Suppose σ is a finite stiff word on [1, n]. By applying Lem-
ma 3 inductively we find a stiff N-word τ starting with σ. Suppose that 0τ
and 1τ are both not stiff. Then P (0τ, i) ≥ i + 2 for some i and P (1τ, j) ≥
j +2 for some j. Let T be a finite initial segment of τ such that P(0τ, i) =
P(0T, i) and P(1τ, j) = P(1T, j). Then T is a finite stiff word admitting
no stiff left extension. This contradicts the reflected form of Lemma 3.

¤
The stiff Z-words have been classified by Morse and Hedlund [MH]

and Coven and Hedlund [CH]. A characterisation in terms of Beatty
sequences has been stated in [T, Theorem 4], however under the unmen-
tioned assumption that both S and its complement are bisequences (in the
present notation: that the sequence corresponding to σ̂ and its complement
are both Z-sequences). Here we state an unconditional classification.

Lemma 5. Let σ̂ = {sj}j∈Z be a stiff Z-word consisting of symbols 0
and 1. Let Ŝ be the set of j ∈ Z with σj = 1. If Ŝ has left and right

density α, then Ŝ is balanced and of one of the following forms:

(a) (periodic case) there exists an integer r with k := αr ∈ N and an
integer t with such that Ŝ = {b ir+t

k c}i∈Z
(b) (irrational case) α is irrational and there exists a µ ∈ R such that

Ŝ = {biα−1 + µc}i∈Z or Ŝ = {diα−1 + µe}i∈Z

(c) (skew case) there exists an integer r with k := αr ∈ N and an integer
m such that gcd(k, r) = 1 and

Ŝ =
{⌊

ir

k

⌋
+ m

}

i<k

∪
{⌊

ir − 1
k

⌋
+ m

}

i>0

or

Ŝ =
{⌊

ir − 1
k

⌋
+ m

}

i<k

∪
{⌊

ir

k

⌋
+ m

}

i>0

(d) (finite case) Ŝ = ∅ or Ŝ = {m} for some m ∈ Z.

If Ŝ does not have a density, then it has a left density l/s and a right
density k/r with k, l, r, s integers subject to lr − ks = ±1. Then one of
the following two cases holds:
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(e) (Hedlund case for positive densities) k > 0, l > 0 and there is an

m ∈ Z such that

Ŝ =
{⌊

is

l

⌋
+ m

}

i<k+l

∪
{⌊

ir − 1
k

⌋
+ m

}

i>0

if lr − ks = 1 and

Ŝ =
{⌊

is− 1
l

⌋
+ m

}

i<k+l

∪
{⌊

ir

k

⌋
+ m

}

i>0

if lr − ks = −1.

(f) (Hedlund case with some density 0) there is some m ∈ Z such that

Ŝ = {is + m}i<l or Ŝ = {ir + m}i>0.

It follows from Lemma 5 that the almost periodic stiff Z-words are
precisely those given by (a), (b) and by ∅ in (d), since the other words
contain subwords which occur only once. Thus the Sturmian Z-sequences
are precisely the Beatty sequences.

Proof of Theorem 1. Let S be a stiff N-sequence. Consider the
corresponding stiff N-word σ. According to Lemma 4 σ is the restriction
to N of a stiff Z-word σ̂. We apply Lemma 5 to σ̂. In case (a) the restriction
S of Ŝ is a positive Beatty sequence with s0 < 1 ≤ s1. This yields case (i).

Case (b) implies that S is a positive Beatty sequence with irrational
density. In the former instance of case (c) put δ = 1, define integers n and
t by ir − 1 + mk = rn + t with k − r − 1 ≤ t < k − 1 and set v = n − i.
Then vr + t ≡ −1 (mod k) and sn is as given in (ii). If v ≤ 0, then the
restriction S is periodic and covered by (i). In the latter instance of case (c)
put δ = −1, define n and t by ir+mk = nr+t with k−r+1 ≤ t < k+1 and
put again v = n − i. The further reasoning is similar and completes case
(ii). In case (d) S is not an N-sequence. In case (e) write is+ml = ns+u

in the former case and is−1+ml = ns+u in the latter with l−s ≤ u < l in
both cases. Write ir−1+mk = nr+ t in the former case, ir+mk = nr+ t

in the latter and v = n − i in both cases. Then sn is as given in (iii).
If v ≤ 0, then the restriction S is a positive Beatty sequence covered by
(i). This covers the Hedlund case (iii) with l > 0. In case (f) S is finite if
Ŝ = {is + m}i<l and covered by case (i) if Ŝ = {ir + m}i>0 and m ≤ 0.
The remaining possibility yields the latter case of (iii). ¤
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3. Characterisation of asymptotically stiff sequences

We start with a direct proof of the equivalence for N-sequences of
asymptotically balanced and asymptotically stiff.

Lemma 6 (Nakashima, Tamura, Yasumato, [NTY, Th. 2.6]). An

N-sequence S is asymptotically balanced if and only if it is asymptotically

stiff.

Proof. =⇒ Suppose S is not asymptotically stiff. Let σ be the corre-
sponding N-word.Then there exists a minimal n such that P∞(σ, n)>n +1.
Since P∞(σ, 1) ≤ 2, we have n > 1. Hence P∞(σ, n)−P∞(σ, n−1) ≥ 2. So
there are at least two (n− 1)-vectors, (a(i)

1 , . . . , a
(i)
n−1) ∈ {0, 1}n−1, for i =

1, 2, say, such that both (a(i)
1 , a

(i)
2 , . . . , a

(i)
n−1, 0) and (a(i)

1 , a
(i)
2 , . . . , a

(i)
n−1, 1)

are in P∞(σ, n). Let k be the largest index with a
(1)
k 6= a

(2)
k . Then both

(1, a
(1)
k+1, . . . , a

(1)
n−1, 1) and (0, a

(1)
k+1, . . . , a

(1)
n−1, 0) are in P∞(σ, n − k + 1).

Thus S is not asymptotically balanced.

⇐= Suppose S is asymptotically stiff, but not asymptotically bal-
anced. Let σ be the N-word corresponding with S and let n be the small-
est positive integer such that there exist X, Y ∈ P∞(σ, n) with c(X) ≥
c(Y ) + 2. Then n ≥ 2, X = 1v1, Y = 0w0 and c(X) = c(Y ) + 2. If v and
w are different, then v = CλD, w = CλE where C, D, E are words, λ is a
symbol and λ is the other symbol. If λ = 1 then 1C1, 0C0 are contained
in P∞(σ, n) and contradict the minimality of n. If λ = 0 one uses D1, E0
to obtain a contradiction. We conclude that X = 1v1, Y = 0v0 for some
finite word v. In particular X and Y are unique. Let Nn be a positive
integer such that for every x ≥ Nn the vector (σ(x), . . . , σ(x+n−1)) is in
P∞(σ, n). Choose x > y > Nn such that the subwords of σ with domain
[y, y + n), [x, x + n) contain k − 1 and k + 1 ones respectively and such
that all intermediate n-subwords contain exactly k-ones. The words above
[y, y +n), [x, x+n) are Y,X and x− y ≥ n by the minimality of n. Define
τ : [y, x + n) → {0, 1} by τ(y) = 1, τ(z) = σ(z) for y < z < x + n − 1,
τ(x+n−1) = 0. Then τ = 1v0 . . . 1v0 is periodic with period n and every
n-subword of τ contains exactly k ones where k = c(Y ) + 1. We call a
finite word primitive if it is not an integer power of a strictly smaller word.
Observe that every finite word τ is the power of a unique primitive word π,
called the root of τ , cf. [BP, Proposition 3.1] for a proof. Let π be the root
of τ of length d. The first d subwords of τ are all different and all contain
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dk/n ones. Let us suppose that x− y > n. Then these d subwords appear
in σ too, hence P∞(σ, d) ≥ d. Since σ contains 0v0, 1v1 infinitely often we
find that P∞(σ, d) should also contain an element with more than dk/n

ones and one with fewer than dk/n ones. Thus P∞(σ, d) ≥ d + 2, con-
tradicting the assumption that S is asymptotically stiff. Thus x = y + n.
Applying the same argument with y > x we find that some tail of σ equals
Y XY . . . . This tail is periodic and asymptotically stiff. Hence it is stiff
and applying [CH, Theorem 4.09] we see that it is balanced. Therefore σ

itself is asymptotically balanced which is a contradiction. ¤

It is well known that if S = {sn}n∈N is balanced, then for every
h ∈ N the difference sn+h − sn can attain only two consecutive integers.
Lemma 7 provides the corresponding property for asymptotically balanced
sequences.

Lemma 7. The sequence S = {sn}n∈N is asymptotically balanced

if and only if for every h the difference sn+h − sn can attain only two

consecutive integers except for finitely many n.

Proof. =⇒ Suppose there exists an h such that sr+h − sr > n for
infinitely many r and that sr+h− sr < n for infinitely many r. Then there
are infinitely many intervals [x, x+n) with fewer than h terms from S and
infinitely many intervals [x, x + n) with more than h terms from S. Such
an S is not asymptotically balanced.

⇐= Suppose there exists an n and an h such that for infinitely many x

the interval [x, x+n) contains more than h terms from S and for infinitely
many x the interval [x, x + n) contains fewer than h terms from S. The
former type of intervals induces infinitely many r with sr+h − sr < n,
whereas the latter type induces infinitely many r with sr+h − sr > n.
Thus {sr+h−sr}∞r=1 is not ultimately restricted to two consecutive values.

¤

The following lemma reveals which values can be attained.

Lemma 8. Every asympotically balanced sequence S = {sn}n∈N has

a density α > 0. Let h ∈ N. If hα /∈ N, then sn+h − sn equals bhα−1c
or dhα−1e with the exception of only finitely many n. If hα ∈ N, then

sn+h − sn ∈ {hα−1, hα−1 − 1} for all but finitely many n or sn+h − sn ∈
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{hα−1, hα−1 + 1} for all but finitely many n. In particular, there exists

an Nh such that

(2) |sn+h − sn − hα−1| ≤ 1 for n ≥ Nh.

Proof. Let S be asymptotically balanced and let h ∈ N. Then
there exist Nh and kh such that for x > Nh the number of terms of S

in the interval [x, x + h) equals kh or kh + 1, by Lemma 7. Put β =
lim suph→∞ kh/h and γ = lim infh→∞ kh/h. Suppose ε := (β − γ)/3 > 0.
Choose an m with km/m > γ + 2ε and an n > ε−1 with kn/n < γ + ε.
Consider an interval [x, x+mn) with x > max(Nm, Nn). Then the number
of terms of S in the interval is both at least kmn > (γ+2ε)mn and at most
m(kn+1) < ((γ+ε)n+1)m. This implies n < ε−1 which is a contradiction.
Thus β = γ = limh→∞ kh/h is the density of S.

Suppose sn+h−sn equals kh or kh+1 for all but finitely many n. Then
α ≥ (kh+1)−1. Hence α > 0. Since the average value of sn+h−sn is hα−1,
we obtain from Lemma 7 that for n ≥ xh the differences sn+h−sn should be
bhα−1c or dhα−1e if hα−1 /∈ N and otherwise either be in {hα−1, hα−1−1}
or in {hα−1, hα−1 + 1}. ¤

Proof of Theorem 2a). ⇐= Suppose there exists an ultimately mono-
tonically non-decreasing sequence {fn}∞n=1 with fn+1 − fn → 0 as n →∞
such that sn = bnα−1 + fnc for n ∈ N. We write sn = nα−1 + fn − δn

with 0 ≤ δn < 1. Let k be the numerator of α and ε = k−1. Let h ∈ N.
Then there is an Mh such that 0 ≤ fn+h − fn < ε for n ≥ Mh. Hence

−1 < sn+h − sn − hα−1 < 1 +
1
k

.

Since k(sn+h − sn − hα−1) ∈ Z, it should be contained in (−k, k]. If
hα−1 ∈ N, then sn+h − sn equals hα−1 or hα−1 + 1 for n ≥ Mh. If
hα−1 /∈ N, then sn+h − sn equals bhα−1c or dhα−1e for n ≥ Mh. Thus
{sn+h−sn}n∈N can attain only two consecutive integers except for finitely
many n. If {fn}∞n=1 is non-increasing, the proof is similar. According to
Lemma 7, S is asymptotically balanced.

=⇒ Suppose S is asymptotically balanced with rational density α =
k/r with k, r ∈ N and gcd(k, r) = 1. According to Lemma 8 for every h ∈ N
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there exists an Nh such that sn+h − sn can attain only two consecutive
integers th and th + 1 for n ≥ Nh where th ≤ hr/k ≤ th + 1. In particular
tk = r−1 or tk = r. We shall assume tk = r. The proof in case tk = r−1 is
similar. We first show that the gaps between the n for which sn+k−sn 6= r

grow indefinitely.

Lemma 9. Let {ni} be the sequence of n such that sn+k − sn 6= r.

Then {ni} is finite or limi→∞(ni+1 − ni) = ∞.

Proof. Suppose {ni} is infinite and lim infi→∞(ni+1 − ni) < ∞.
Then there exists an m ∈ N such that ni+1 − ni = m occurs infinitely
often. If m ≥ k, we have on one hand sni+k+m − sni

≤ (k + m)α−1 + 1
and on the other hand

sni+k+m − sni = 2(r + 1) + sni+m − sni+k > 2r + 2 + (m− k)α−1 − 1.

Hence r + 1 > r + 1 which is a contradiction. Thus m < k. Then

sni+k − sni+m = (sni+k+m − sni+m) + sni+k − sni)− (sni+k+m − sni)

≥ 2(r + 1)− (k + m)α−1 − 1 = (k −m)α−1 + 1.

Since the right-hand side is not an integer, this yields another contradic-
tion. ¤

Recall that sn+k − sn ≥ kα−1 for n ≥ Nk. Put φn = sn − nα−1

for every n. Then φn+k − φn ∈ {0, 1} for n ≥ Nk and the gaps between
consecutive 1’s increase without bound by the previous lemma. Suppose
φm = maxm−k<n≤m φn and m− k > Nk. By Lemma 8, sm − sn is either
b(m−n)α−1c or d(m−n)α−1e so that 0 ≤ φm−φn < 1 for m−k < n ≤ m.
Let t > m be the smallest integer with φt − φt−k = 1. Then φn = φn−k

for m < n < t Hence, by Lemma 8,

(3) 0 < φt − φm ≤ φt − φn < 1 for t− k < n < t.

For the first inequality we used that φt = φt−k + 1 = φν + 1 for some
m − k < ν ≤ m and for the second one we used that φn = φν , also for
some m− k < ν ≤ m.

Choose u such that t − k < u < t and (u − t)r ≡ 1 (mod k). Then
φt−φu ≡ (u−t)r

k ≡ 1
k (mod 1). By (3) with n = u, we obtain φt−φu = 1

k .
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It follows that 0 < φt − φm ≤ 1
k . By kα−1 ∈ N, the difference equals 1

k .
Thus

(4) φt − φm =
1
k

.

We shall now define {fn}n∈N. Let N > N2k. Choose the largest m such
that φm is maximal for N < m ≤ N + 2k. Since φn+k − φn ≥ 0, we have
m ≥ N +k. Put fn = φn for n ≤ m. For n > m we define fn by induction.
Suppose m is the largest index for which fm has been defined yet and for
which fm = φm, φn ≤ φm for m − k < n ≤ m and sn = bnα−1 + fnc for
n ≤ m. Put t = min{n > m | φn − φn−k = 1}. If t does not exist, then
φn − φn−k = 0 for all n > m and we put fn = fm for n > m. It follows
that {fn}n∈N is ultimately monotonic, that fn+1 − fn → 0 as n →∞ and
that sn = sn−k + r = b(n− k)α−1 + fn−kc+ r = bnα−1 + fnc for n > m

by induction. If, on the other hand, there exists such a t, then we put

(5) fn = fm +
n−m

(t−m)k
for m < n ≤ t.

In particular, ft = fm + 1
k = φm + 1

k = φt, by (4). By (3) we have
φn ≤ φm < φt for m− k < n < t. As shown before we have φt < φn + 1,
hence

φm − 1 < φt − 1 < φn ≤ φm for m− k < n < t.

Since φm = fm, this implies fm + nα−1 − 1 < sn ≤ fm + nα−1. Hence
sn = bnα−1 + fmc. By (5) we have 0 ≤ fn − fm < 1

k for m < n < t, and
together with kα−1 ∈ N we find that sn = bnα−1 + fnc for these n. We
further know st = φt + tα−1 = tα−1 + ft. This completes the inductive
definition of {fn}n∈N.

From the definition it is obvious that {fn}n∈N is ultimately non-
decreasing. Furthermore fn+1 − fn ≤ 1

(t−m)k and t − m tends to ∞ as
n →∞ by Lemma 9. Thus fn+1 − fn → 0 as n →∞. ¤

Proof of Theorem 2b). ⇐= Suppose {fn}n∈N is such that sn =
bαn + fnc for some α /∈ Q and fn+1 − fn → 0 as n →∞. Take h ∈ N and
let n ≥ Nh. Then sn+h − sn = α−1h + fn+h − fn + δn with |δn| < 1. Put
ε = |α−1h−Z|, the distance from α−1h to the nearest integer. Choose Mh

so large that |fn+h − fn| < ε for n ≥ Mh. Then, for n > max(Mh, Nh),

bα−1hc − 1 ≤ α−1h− 1− ε < sn+h − sn < α−1h + 1 + ε ≤ dα−1h + 1e.
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Thus sn+h − sn can attain only the values bα−1hc and dα−1he for n ≥
max(Mh, Nh). By Lemma 7, S is asymptotically balanced.

=⇒ Suppose {sn}n∈N is asymptotically balanced with density α /∈ Q.
Then by Lemma 8, sn+h− sn assumes only the values bhα−1c and dhα−1e
for n ≥ Nh. Without loss of generality we assume that Nh ≥ 2Nh−1 for
all h.

We give an inductive definition of {fn}n∈N. Put φn = sn − nα−1 for
all n and fn = φn for n ≤ N1. Suppose m is the largest index for which fm

has been defined yet and that sn = bnα−1+fnc for n ≤ m. Then we define
t > m as the smallest integer such that φt > fm or φt ≤ fm−1. If no such
t exists, then we put fn = fm for n > m and have sn = bnα−1 + fnc for
n ∈ N. Since nothing remains to be proved in this case, we assume that t

exists. Define h by Nh ≤ m < Nh+1. Put fn = fm for m < n < t, ft = φt

if φt > fm and ft = φt + 1 − 1
h otherwise. Then sn = bnα−1 + fnc for

n ≤ t. This completes the inductive definition of {fn}n∈N.
It remains to show that fn − fn−1 → 0 as n → ∞. It suffices to

show that in the above notation ft − ft−1 → 0 as t →∞ (since otherwise
fn = fn−1). Fix ε > 0 and let {pn

qn
}n∈N be the sequence of convergents

of α−1. Choose m so large that the corresponding h is at least 1
ε+1 and

that for the integer n, defined by qn ≤ h < qn+1, we have |qn−2α−Z| < ε.
Observe that t− h ≥ Nh − h ≥ Nh − 2h−1 ≥ Nh −Nh−1 ≥ Nh−1. We use
that, by Lemma 8,

(6) |φt − φu| < 1 for t− h ≤ u < t.

First suppose ft > ft−1. Let u be maximal such that t − h ≤ u < t and
fu < fu−1, if such u exist. This implies that this u is of type t and that
fu = φu+1−1/(h−1) in view of u ≥ Nh−1. Then fu = φu+1−1/(h−1) >

φt−ε = ft−ε by (6). Since ft > ft−1 ≥ fu, it follows that 0 < ft−ft−1 < ε.
If no such u exists, then fu ≥ fu−1 for t − h < u < t. Choose q = qn or
qn−1 so that qα−1−bqα−1c > 1− ε. We have, by (6), φt− 1 < φt−q < φt.
Since φt − φt−q ≡ −qα−1 (mod 1), we obtain that the left-hand side is in
between 0 and ε. Hence 0 < ft− ft−q < ε, which implies 0 < ft− ft−1 < ε

by the monotonicity of fu. We conclude that |ft − ft−1 |< ε if ft > ft−1.

Now suppose ft < ft−1. By a similar argument we find that ft <

ft−1 < ft+ε both in case there is a u with t−h ≤ u < t with fu > fu−1 and
in case there is no such u. Hence |ft−ft−1| < ε if ft < ft−1. Combining all
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cases we find that |ft−ft−1| < ε if t is sufficiently large. Thus fn−fn−1 → 0
as n →∞. ¤

Proof of Theorem 3a). The equivalence of (ii) and (iii) follows from
Lemma 6. By the definition of Sturmian (i) implies (ii). We shall prove
that (iii) implies (i). Suppose S is asymptotically stiff and σ is the cor-
responding word. Let Nj be such that σ is balanced and stiff beyond
Nj for subwords of length j. Fix some h ∈ N. Choose ε > 0 so that
|jα − Z| > ε for 1 ≤ j ≤ h. Put N = maxj≤3h2ε−1+2 Nj . Choose
some element from P∞(σ, h) and suppose it does not occur as a sub-
word σ(n)σ(n + 1) . . . σ(n + h − 1) for a ≤ n < b where a > N and
b = a + d3h2ε−1e. Then σ(a)σ(a + 1) . . . σ(b) is a finite word τ with
P (τ, h) ≤ h and 3h2ε−1 < |τ | < 3h2ε−1 + 2. According to Lemma 2a we
have τ = βγδ with |β|+ |δ| ≤ h and γ has period l ≤ h− |β| − |δ|. Let d

be the number of ones in such a period l. Then
∣∣∣∣c(τ)− |τ |d

l

∣∣∣∣ ≤
∣∣∣∣c(β)− |β|d

l

∣∣∣∣ +
∣∣∣∣c(γ)− |γ|d

l

∣∣∣∣ +
∣∣∣∣c(δ)− |δ|

d

l

∣∣∣∣
≤ |β|+ 2l + |δ| ≤ 2h.

Since S is asymptotically balanced and has some density α by Lemma 8,
we have ∣∣c(τ)− |τ |α

∣∣ ≤ 1, since a > N|τ |.

Hence

|τ |
∣∣∣∣α−

d

l

∣∣∣∣ ≤ 2h + 1.

Thus

|lα− Z| ≤ (2h + 1)l
|τ | <

(2h + 1)ε
3h

≤ ε

whereas l ≤ h. This contradiction shows that every interval [a, b) with
a ≥ N and b− a > 3h2ε−1 contains all elements from P∞(σ, h). Thus S is
almost periodic. ¤

Proof of Theorem 3b. It is clear that (iii) implies (ii) and (ii) implies
(i). We prove that (i) implies (iii). By Theorem 2a) we know that there
exists an ultimately monotonic sequence {fn}n∈N with fn − fn−1 → 0 as
n →∞ such that sn = bnα−1 +fnc for n ∈ N. Put α = k/r with k, r ∈ N,
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gcd(k, r) = 1. If i
k ≤ fn < i+1

k for t ≤ n ≤ u and σ is the word corre-
sponding with S, then σ(nt), σ(nt+1), . . . , σ(nu) is a sequence with period
r and with k ones in each period. By the stated properties of the sequence
{fn}, there exist arbitrarily long such intervals [t, u]. Since S is almost pe-
riodic, there exists an M such that for t ≥ M and u− t ≥ 2r all elements
of P∞(σ, r) occur as subwords of the finite word σ(nt)σ(nt +1) . . . σ(nu).
These subwords have unique right extension, as the added letter has to be
the same as the left letter in order to keep the number of ones constant k.
Thus sn = bnα−1 + i

k c for n ≥ M . Now take b = i/k. ¤
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