Publ. Math. Debrecen 56 / 3-4 (2000), 451–455

Note on a result of I. Nemes and A. Pethő concerning polynomial values in linear recurrences

By PÉTER KISS (Eger)

Dedicated to Professor Kálmán Győry on his 60th birthday

Abstract. Let G_n (n = 0, 1, 2, ...) be a linear recurrence of order s $(s \ge 2)$ and let F(x) be a polynomial of degree q. In the paper, under some conditions, we prove that the equation $G_n = F(x)$ can have integer solutions only if q < c, where the constant c is effectively computable. Similar result was proved by I. Nemes and A. Pethő with another methods and stronger conditions.

Let G_n (n = 0, 1, 2, ...) be a linear recurrence sequence of rational integers of order $s (\geq 2)$ satisfying the recurrence relation

$$G_n = A_1 G_{n-1} + A_2 G_{n-2} + \dots + A_s G_{n-s} \quad (n \ge s)$$

where A_1, \ldots, A_s and the initial terms G_0, \ldots, G_{s-1} are integers with $A_s \neq 0$ and $|G_0| + \cdots + |G_{s-1}| > 0$. Denote by $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_r$ the distinct roots of the polynomial

$$g(x) = x^{s} - A_{1}x^{s-1} - A_{2}x^{s-2} - \dots - A_{s}.$$

In the followings we suppose that $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_r$ have multiplicity $m_1 = 1, m_2, \ldots, m_r$, respectively and that $|\alpha| > |\alpha_2| \ge |\alpha_3| \ge \cdots \ge |\alpha_r|$.

Mathematics Subject Classification: 11B39.

Key words and phrases: linear recurrences, polynomial value.

Research (partially) was supported by the Hungarian OTKA foundation grant No. T 29 330 and 020295.

Péter Kiss

It is known that in this case the terms of the sequence can be expressed as

(1)
$$G_n = a\alpha^n + p_2(n)\alpha_2^n + \dots + p_r(n)\alpha_r^n \quad (n \ge 0),$$

where p_i $(2 \le i \le r)$ is a polynomial of degree $m_i - 1$, furthermore $a \ (\ne 0)$ and the coefficients of the polynomials are algebraic numbers from the field $\mathbb{Q}(\alpha, \alpha_2, \ldots, \alpha_r)$.

Let

(2)
$$F(x) = bx^{q} + b_{k}x^{k} + b_{k-1}x^{k-1} + \dots + b_{0}$$

be a polynomial with integer coefficients supposing that $b \neq 0, q \geq 2$ and k < q. The Diophantine equation

$$G_n = F(x)$$

was investigated by several authors. It is known that if G_n is a nondegenerate second order linear recurrence (s = 2 and α_1/α_2 is not a root of unity) and $F(x) = bx^q$, then (3) has only finitely many integer solutions in variables $n \ge 0$, x and $q \ge 2$, furthermore, in the case q = 2, the solutions were exactly determined for some special sequences. Recently W. L. MCDANIEL [2], [3] has proved that the solutions of the equation

$$G_n = x^2 + x$$

are (n, x) = (0, 0) and (3, 1) if G_n is the Fibonacci sequence and (n, x) = (0, 1) if G_n is the Lucas sequence. For general linear recurrences, with some restrictions, we know that the equality $G_n = bx^q$, with $G_n \neq a\alpha^n$, can be satisfied only if q < c, where c is an effectively computable constant depending on the sequence G and the constant b (e.g. see [4] and [6]).

A more general result was proved by I. NEMES and A. PETHŐ [5]. They proved the following: Let G_n be a linear recurrence defined by (1) and let F(x) be a polynomial defined by (2). Suppose that $\alpha_2 \neq 1$, $|\alpha| = |\alpha_1| > |\alpha_2| > |\alpha_i|$ for $3 \le i \le r$, $G_n \ne a\alpha^n$ for $n > c_1$ and $k \le qc_2$. Then all integer solutions n, |x| > 1, $q \ge 2$ of equation (3) satisfy $q < c_3$, where c_1 , c_2 and c_3 are effectively computable positive constants depending on the parameters of the sequence G_n and the polynomial F(x).

The purpose of this note is to show that the restrictions $\alpha_2 \neq 1$ and $|\alpha_2| > |\alpha_i|$ $(3 \leq i \leq r)$ are not necessary in the above result. Furthermore we shall show that c_2 can be arbitrary in the interval $0 < c_2 < 1$ except when $|\alpha|^k = |\alpha_2|^q$. We prove a theorem which extends the above result for some more general sequences using another method. In the theorem and in its proof c_4, c_5, \ldots will denote effectively computable positive constants which depend only on the sequence G_n and polynomial F(x).

452

Note on a result of I. Nemes and A. Pethő concerning polynomial values ... 453

Theorem. Let G_n be a linear recurrence defined by (1) and let F(x) be a polynomial defined by (2). Suppose that $k < \gamma q$ for a fixed real number γ with $0 < \gamma < 1$ and that $|\alpha|^k \neq |\alpha_2|^q$. If $G_n \neq a\alpha^n$ or $F(x) \neq bx^q$ and equation (3) is satisfied by integers $n \ge 0$, x (|x| > 1) and $q \ge 2$ then $q < c_4$, where c_4 is an effectively computable positive constant depending on the sequence G_n , the polynomial F(x) and γ .

In the proof we shall use a result due to A. BAKER [1].

Lemma. Let

$$\lambda = |\gamma_1 \log \omega_1 + \gamma_2 \log \omega_2 + \dots + \gamma_t \log \omega_t|$$

where $\omega'_i s$ (i = 1, 2, ..., t) are algebraic integers different from zero and one and $\gamma'_i s$ are rational integers not all zero. We suppose that the logarithms mean their principal values and assume that ω_i have heights at most M_i $(\geq 4), \max(|\gamma_1|, |\gamma_2|, ..., |\gamma_{t-1}|) \leq B$ $(B \geq 4)$ and $|\gamma_t| \leq B'$. If $\lambda \neq 0$, then for any δ with $0 < \delta < \frac{1}{2}$

$$\lambda > (\delta/B')^{C \cdot \log M_t} \cdot e^{-\delta B},$$

where C > 0 is an effectively computable constant depending only on t, M_1, \ldots, M_{t-1} and on the degree of the field generated by ω'_i s over the rational numbers.

PROOF of the Theorem. Let G_n be a linear recurrence and let F(x) be a polynomial defined by (1) and (2), respectively. Suppose that (3) and the conditions of the Theorem hold for some integers n and x. We suppose that $b_k \neq 0$ since in the case $F(x) = bx^q$ the Theorem was proved (see above). If $G_n \neq a\alpha^n$, i.e. $p_2(n), \ldots, p_r(n)$ are not all zero, then we can suppose that $p_2(n) \neq 0$. So (3) can be written in the form

(4)
$$\frac{a\alpha^n}{bx^q} = \left(1 + \sum_{i=0}^k \frac{b_i}{b \cdot x^{q-i}}\right) \cdot \left(1 + \sum_{i=2}^r \frac{p_i(n)}{a} \left(\frac{\alpha_i}{\alpha}\right)^n\right)^{-1}$$
$$= (1 + \varepsilon_1)(1 + \varepsilon_2)^{-1},$$

where

(5)
$$|\varepsilon_1| = \left|\frac{b_k}{b}\left(\frac{1}{x}\right)^{q-k}\right| \cdot \left|1 + \frac{b_{k-1}}{b_k}\left(\frac{1}{x}\right) + \dots\right|$$

Péter Kiss

and $\varepsilon_2 = 0$ or

(6)
$$|\varepsilon_2| = \left| \frac{p_2(n)}{a} \cdot \left(\frac{\alpha_2}{\alpha} \right)^n \right| \cdot \left| 1 + \frac{p_3(n)}{p_2(n)} \left(\frac{\alpha_3}{\alpha_2} \right)^n + \dots \right|.$$

Since by (3) or (4)

(7)
$$|\alpha|^{n-c_5} < |x|^q < |\alpha|^{n+c_6},$$

therefore by (5) and (6), using the conditions and supposing that $\varepsilon_1, \varepsilon_2 \neq 0$,

(8)
$$c_7 \left| \frac{1}{\alpha} \right|^{\frac{q-k}{q}(n+c_6)} < |\varepsilon_1| < c_8 \left| \frac{1}{\alpha} \right|^{\frac{q-k}{q}(n-c_5)}$$

and

(9)
$$c_9 n^j \left| \frac{\alpha_2}{\alpha} \right|^n < |\varepsilon_2| < c_{10} n^s \left| \frac{\alpha_2}{\alpha} \right|^n$$

follows with some $j \ge 0$. But $|\frac{1}{\alpha}|^{(q-k)/q} \ne |\alpha_2/\alpha|$ by the condition $|\alpha|^k \ne |\alpha_2|^q$, so $|\varepsilon_1| \ne |\varepsilon_2|$ for $n > c_{11}$ and

$$\left|\frac{a\alpha^n}{bx^q}\right| \neq 1.$$

So, using the Lemma with t = 4 and $\omega_t = x$, we have

(10)
$$\lambda = \left| \log a + n \log \alpha - \log b - q \log x \right|$$
$$> \left(\frac{\delta}{q} \right)^{c_{12} \log x} \cdot e^{-\delta n} = e^{-c_{12} (\log q - \log \delta) \log x - \delta n}.$$

On the other hand by (4), (5), (6), (8) and (9), using the condition for k, we get

(11)
$$\lambda < 2|\varepsilon_1| + 2|\varepsilon_2| < e^{-c_{13}(1-\gamma)n} + e^{-c_{14}n} < e^{-c_{15}n}.$$

From (10) and (11) we obtain the inequality

$$c_{15}n < c_{12}(\log q - \log \delta) \ \log x + \delta n.$$

454

Note on a result of I. Nemes and A. Pethő concerning polynomial values ... 455

We can choose δ such that $c_{15} - \delta > 0$ and so from the above inequality, using (7),

$$c_{16} < c_{17} \log q \cdot \frac{\log x}{n} < c_{18} \frac{\log q}{q}$$

follows for any $q > c_{19}$. But it can be satisfied only by finitely many positive integers q and so our Theorem is proved.

References

- A. BAKER, A sharpening of the bounds for linear forms in logarithms II, Acta Arithm. 24 (1973), 33–36.
- [2] W. L. MCDANIEL, Pronic Fibonacci numbers, Fibonacci Quart. 36 (1998), 56-59.
- [3] W. L. MCDANIEL, Pronic Lucas numbers, Fibonacci Quart. 36 (1998), 60-62.
- [4] P. KISS, Differences of the terms of linear recurrences, Studia Sci. Math. Hungar. 20 (1985), 285–293.
- [5] I. NEMES and A. PETHŐ, Polynomial values in linear recurrences, *Publ. Math. Debrecen* **31** (1984), 229–233.
- [6] T. N. SHOREY and C. L. STEWART, On the Diophantine equation $ax^{2t} + bx^ty + cy^2 = d$ and pure powers in recurrence sequences, *Math. Scand.* **52** (1983), 24–36.

PÉTER KISS DEPARTMENT OF MATHEMATICS TEACHER'S TRAINING COLLEGE 3300 EGER, LEÁNYKA U. 4. HUNGARY

(Received August 16, 1999; revised January 10, 2000)