Note on a result of I. Nemes and A. Pethő concerning polynomial values in linear recurrences

By PÉTER KISS (Eger)

Dedicated to Professor Kálmán Györy on his 60th birthday

Abstract

Let $G_{n}(n=0,1,2, \ldots)$ be a linear recurrence of order $s(s \geq 2)$ and let $F(x)$ be a polynomial of degree q. In the paper, under some conditions, we prove that the equation $G_{n}=F(x)$ can have integer solutions only if $q<c$, where the constant c is effectively computable. Similar result was proved by I. Nemes and A. Pethő with another methods and stronger conditions.

Let $G_{n}(n=0,1,2, \ldots)$ be a linear recurrence sequence of rational integers of order $s(\geq 2)$ satisfying the recurrence relation

$$
G_{n}=A_{1} G_{n-1}+A_{2} G_{n-2}+\cdots+A_{s} G_{n-s} \quad(n \geq s)
$$

where A_{1}, \ldots, A_{s} and the initial terms G_{0}, \ldots, G_{s-1} are integers with $A_{s} \neq 0$ and $\left|G_{0}\right|+\cdots+\left|G_{s-1}\right|>0$. Denote by $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ the distinct roots of the polynomial

$$
g(x)=x^{s}-A_{1} x^{s-1}-A_{2} x^{s-2}-\cdots-A_{s} .
$$

In the followings we suppose that $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ have multiplicity $m_{1}=1, m_{2}, \ldots, m_{r}$, respectively and that $|\alpha|>\left|\alpha_{2}\right| \geq\left|\alpha_{3}\right| \geq \cdots \geq\left|\alpha_{r}\right|$.

It is known that in this case the terms of the sequence can be expressed as

$$
\begin{equation*}
G_{n}=a \alpha^{n}+p_{2}(n) \alpha_{2}^{n}+\cdots+p_{r}(n) \alpha_{r}^{n} \quad(n \geq 0), \tag{1}
\end{equation*}
$$

where $p_{i}(2 \leq i \leq r)$ is a polynomial of degree $m_{i}-1$, furthermore $a(\neq 0)$ and the coefficients of the polynomials are algebraic numbers from the field $\mathbb{Q}\left(\alpha, \alpha_{2}, \ldots, \alpha_{r}\right)$.

Let

$$
\begin{equation*}
F(x)=b x^{q}+b_{k} x^{k}+b_{k-1} x^{k-1}+\cdots+b_{0} \tag{2}
\end{equation*}
$$

be a polynomial with integer coefficients supposing that $b \neq 0, q \geq 2$ and $k<q$. The Diophantine equation

$$
\begin{equation*}
G_{n}=F(x) \tag{3}
\end{equation*}
$$

was investigated by several authors. It is known that if G_{n} is a nondegenerate second order linear recurrence ($s=2$ and α_{1} / α_{2} is not a root of unity) and $F(x)=b x^{q}$, then (3) has only finitely many integer solutions in variables $n \geq 0, x$ and $q \geq 2$, furthermore, in the case $q=2$, the solutions were exactly determined for some special sequences. Recently W. L. McDaniel [2], [3] has proved that the solutions of the equation

$$
G_{n}=x^{2}+x
$$

are $(n, x)=(0,0)$ and $(3,1)$ if G_{n} is the Fibonacci sequence and $(n, x)=$ $(0,1)$ if G_{n} is the Lucas sequence. For general linear recurrences, with some restrictions, we know that the equality $G_{n}=b x^{q}$, with $G_{n} \neq a \alpha^{n}$, can be satisfied only if $q<c$, where c is an effectively computable constant depending on the sequence G and the constant b (e.g. see [4] and [6]).

A more general result was proved by I. Nemes and A. Реthő [5]. They proved the following: Let G_{n} be a linear recurrence defined by (1) and let $F(x)$ be a polynomial defined by (2). Suppose that $\alpha_{2} \neq 1,|\alpha|=$ $\left|\alpha_{1}\right|>\left|\alpha_{2}\right|>\left|\alpha_{i}\right|$ for $3 \leq i \leq r, G_{n} \neq a \alpha^{n}$ for $n>c_{1}$ and $k \leq q c_{2}$. Then all integer solutions $n,|x|>1, q \geq 2$ of equation (3) satisfy $q<c_{3}$, where c_{1}, c_{2} and c_{3} are effectively computable positive constants depending on the parameters of the sequence G_{n} and the polynomial $F(x)$.

The purpose of this note is to show that the restrictions $\alpha_{2} \neq 1$ and $\left|\alpha_{2}\right|>\left|\alpha_{i}\right|(3 \leq i \leq r)$ are not necessary in the above result. Furthermore we shall show that c_{2} can be arbitrary in the interval $0<c_{2}<1$ except when $|\alpha|^{k}=\left|\alpha_{2}\right|^{q}$. We prove a theorem which extends the above result for some more general sequences using another method. In the theorem and in its proof c_{4}, c_{5}, \ldots will denote effectively computable positive constants which depend only on the sequence G_{n} and polynomial $F(x)$.

Theorem. Let G_{n} be a linear recurrence defined by (1) and let $F(x)$ be a polynomial defined by (2). Suppose that $k<\gamma q$ for a fixed real number γ with $0<\gamma<1$ and that $|\alpha|^{k} \neq\left|\alpha_{2}\right|^{q}$. If $G_{n} \neq a \alpha^{n}$ or $F(x) \neq b x^{q}$ and equation (3) is satisfied by integers $n \geq 0, x(|x|>1)$ and $q \geq 2$ then $q<c_{4}$, where c_{4} is an effectively computable positive constant depending on the sequence G_{n}, the polynomial $F(x)$ and γ.

In the proof we shall use a result due to A. Baker [1].
Lemma. Let

$$
\lambda=\left|\gamma_{1} \log \omega_{1}+\gamma_{2} \log \omega_{2}+\cdots+\gamma_{t} \log \omega_{t}\right|,
$$

where $\omega_{i}^{\prime} s(i=1,2, \ldots, t)$ are algebraic integers different from zero and one and $\gamma_{i}^{\prime} s$ are rational integers not all zero. We suppose that the logarithms mean their principal values and assume that ω_{i} have heights at most M_{i} $(\geq 4), \max \left(\left|\gamma_{1}\right|,\left|\gamma_{2}\right|, \ldots,\left|\gamma_{t-1}\right|\right) \leq B(B \geq 4)$ and $\left|\gamma_{t}\right| \leq B^{\prime}$. If $\lambda \neq 0$, then for any δ with $0<\delta<\frac{1}{2}$

$$
\lambda>\left(\delta / B^{\prime}\right)^{C \cdot \log M_{t}} \cdot e^{-\delta B},
$$

where $C>0$ is an effectively computable constant depending only on t, M_{1}, \ldots, M_{t-1} and on the degree of the field generated by ω_{i}^{\prime} s over the rational numbers.

Proof of the Theorem. Let G_{n} be a linear recurrence and let $F(x)$ be a polynomial defined by (1) and (2), respectively. Suppose that (3) and the conditions of the Theorem hold for some integers n and x. We suppose that $b_{k} \neq 0$ since in the case $F(x)=b x^{q}$ the Theorem was proved (see above). If $G_{n} \neq a \alpha^{n}$, i.e. $p_{2}(n), \ldots, p_{r}(n)$ are not all zero, then we can suppose that $p_{2}(n) \neq 0$. So (3) can be written in the form

$$
\begin{align*}
\frac{a \alpha^{n}}{b x^{q}} & =\left(1+\sum_{i=0}^{k} \frac{b_{i}}{b \cdot x^{q-i}}\right) \cdot\left(1+\sum_{i=2}^{r} \frac{p_{i}(n)}{a}\left(\frac{\alpha_{i}}{\alpha}\right)^{n}\right)^{-1} \tag{4}\\
& =\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)^{-1}
\end{align*}
$$

where

$$
\begin{equation*}
\left|\varepsilon_{1}\right|=\left|\frac{b_{k}}{b}\left(\frac{1}{x}\right)^{q-k}\right| \cdot\left|1+\frac{b_{k-1}}{b_{k}}\left(\frac{1}{x}\right)+\ldots\right| \tag{5}
\end{equation*}
$$

and $\varepsilon_{2}=0$ or

$$
\begin{equation*}
\left|\varepsilon_{2}\right|=\left|\frac{p_{2}(n)}{a} \cdot\left(\frac{\alpha_{2}}{\alpha}\right)^{n}\right| \cdot\left|1+\frac{p_{3}(n)}{p_{2}(n)}\left(\frac{\alpha_{3}}{\alpha_{2}}\right)^{n}+\ldots\right| \tag{6}
\end{equation*}
$$

Since by (3) or (4)

$$
\begin{equation*}
|\alpha|^{n-c_{5}}<|x|^{q}<|\alpha|^{n+c_{6}} \tag{7}
\end{equation*}
$$

therefore by (5) and (6), using the conditions and supposing that $\varepsilon_{1}, \varepsilon_{2} \neq 0$,

$$
\begin{equation*}
c_{7}\left|\frac{1}{\alpha}\right|^{\frac{q-k}{q}\left(n+c_{6}\right)}<\left|\varepsilon_{1}\right|<c_{8}\left|\frac{1}{\alpha}\right|^{\frac{q-k}{q}\left(n-c_{5}\right)} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{9} n^{j}\left|\frac{\alpha_{2}}{\alpha}\right|^{n}<\left|\varepsilon_{2}\right|<c_{10} n^{s}\left|\frac{\alpha_{2}}{\alpha}\right|^{n} \tag{9}
\end{equation*}
$$

follows with some $j \geq 0$. But $\left|\frac{1}{\alpha}\right|^{(q-k) / q} \neq\left|\alpha_{2} / \alpha\right|$ by the condition $|\alpha|^{k} \neq$ $\left|\alpha_{2}\right|^{q}$, so $\left|\varepsilon_{1}\right| \neq\left|\varepsilon_{2}\right|$ for $n>c_{11}$ and

$$
\left|\frac{a \alpha^{n}}{b x^{q}}\right| \neq 1
$$

So, using the Lemma with $t=4$ and $\omega_{t}=x$, we have

$$
\begin{align*}
\lambda & =|\log a+n \log \alpha-\log b-q \log x| \tag{10}\\
& >\left(\frac{\delta}{q}\right)^{c_{12} \log x} \cdot e^{-\delta n}=e^{-c_{12}(\log q-\log \delta) \log x-\delta n}
\end{align*}
$$

On the other hand by (4), (5), (6), (8) and (9), using the condition for k, we get

$$
\begin{equation*}
\lambda<2\left|\varepsilon_{1}\right|+2\left|\varepsilon_{2}\right|<e^{-c_{13}(1-\gamma) n}+e^{-c_{14} n}<e^{-c_{15} n} \tag{11}
\end{equation*}
$$

From (10) and (11) we obtain the inequality

$$
c_{15} n<c_{12}(\log q-\log \delta) \log x+\delta n
$$

We can choose δ such that $c_{15}-\delta>0$ and so from the above inequality, using (7),

$$
c_{16}<c_{17} \log q \cdot \frac{\log x}{n}<c_{18} \frac{\log q}{q}
$$

follows for any $q>c_{19}$. But it can be satisfied only by finitely many positive integers q and so our Theorem is proved.

References

[1] A. Baker, A sharpening of the bounds for linear forms in logarithms II, Acta Arithm. 24 (1973), 33-36.
[2] W. L. McDaniel, Pronic Fibonacci numbers, Fibonacci Quart. 36 (1998), 56-59.
[3] W. L. McDaniel, Pronic Lucas numbers, Fibonacci Quart. 36 (1998), 60-62.
[4] P. Kiss, Differences of the terms of linear recurrences, Studia Sci. Math. Hungar. 20 (1985), 285-293.
[5] I. Nemes and A. Pethö, Polynomial values in linear recurrences, Publ. Math. Debrecen 31 (1984), 229-233.
[6] T. N. Shorey and C. L. Stewart, On the Diophantine equation $a x^{2 t}+b x^{t} y+$ $c y^{2}=d$ and pure powers in recurrence sequences, Math. Scand. 52 (1983), 24-36.

PÉTER KISS

DEPARTMENT OF MATHEMATICS
TEACHER'S TRAINING COLLEGE
3300 EGER, LEÁNYKA U. 4.
HUNGARY
(Received August 16, 1999; revised January 10, 2000)

