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Interpolation determinants of exponential polynomials

By MICHEL LAURENT (Marseille)

To Kálmán Győry for his sixtieth birthday

1. Introduction

Let N be an integer ≥ 1. We call interpolation determinant any N×N

determinant of the type

∆ = det

(
1
tj !

(
∂

∂z

)tj

ϕi(ζj)

)

1≤i≤N
1≤j≤N

,

where ϕ1, . . . , ϕN denotes a sequence of analytic functions in one complex
variable z, ζ1, . . . , ζN is a sequence of points located in a disk B(0, R)⊂C
centered at the origin in which all the functions ϕi are holomorphic, and
where t1, . . . , tN are natural integers. The name alternant is also em-
ployed when all the tj = 0 (see for instance Chapter XI from [8]). We are
specifically interested with the case of functions ϕi which are exponential
polynomials, that is to say linear combinations of entire functions of the
form zkeωz where k ∈ N and ω ∈ C.

For any pair of integral N -tuples k = (k1, . . . , kN ) and t = (t1, . . . , tN ),
any pair of N -tuples of complex numbers X = (X1, . . . , XN ) and
Y = (Y1, . . . , YN ), denote by ∆k,t(X, Y ) (or sometimes ∆ in brief) the
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determinant

∆k,t(X, Y ) := det




min(ki,tj)∑

l=0

1
l!(ki − l)!(tj − l)!

X
tj−l
i Y ki−l

j eXiYj




1≤i≤N
1≤j≤N

.

Leibniz’s formula shows immediately that

min(k,t)∑

l=0

1
l!(k − l)!(t− l)!

Xt−lY k−leXY

=
1
t!

(
∂

∂z

)t (
zk

k!
eXz

)
(Y ) =

1
k!

(
∂

∂z

)k (
zt

t!
eY z

)
(X),

so that ∆k,t(X, Y ) can be viewed as an interpolation determinant of ex-
ponential polynomials in two different ways:

∆ = det

(
1
tj !

(
∂

∂z

)tj
(

zki

ki!
eXiz

)
(Yj)

)

= det

(
1

kj !

(
∂

∂z

)kj
(

zti

ti!
eYiz

)
(Xj)

)
.

Any interpolation determinant of exponential polynomials can clearly be
written as a linear combination

∑
k,X ck,X∆k,t(X,Y ) of determinants of

the type ∆. The above duality formula implies that these determinants ∆
satisfy the relation

∆k,t(X,Y ) = ∆t,k(Y, X)

in which are simultaneously interchanged the sequences of frequencies X

with that of points Y and the sequence of order of derivations t with that
of exponents k. We refer to [11] for an extension in several variables of
this relation which is the basis of the duality between the transcendence
methods of Gel’fond and of Schneider. From the point of view of interpo-
lation determinants, the two methods coincide since they lead to the same
determinants by the duality formula.

We plan to achieve an analytical study of the determinants ∆k,t(X,Y )
reflecting this symmetry at the level of the estimations. First we expand
each interpolation determinant as a Taylor series and deduce from this
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general formula (quoted as Theorem 1 below) a precise upper bound for
the absolute value |∆k,t(X,Y )|. Next we show that, in the real case, the
signs of all terms appearing in the Taylor expansion of ∆k,t(X,Y ) are the
same under rather weak conditions, incidentally proving the nonvanishing
of ∆k,t(X, Y ). This property follows easily from some standard facts about
Schur polynomials. Finally, combining these results, we obtain a new
simple proof of the Gel’fond–Schneider Theorem in the real case.

2. Expansion in Taylor series of interpolation determinants

Let

∆ = det

(
1
tj !

(
∂

∂z

)tj

ϕi(ζj)

)

1≤i≤N
1≤j≤N

be any interpolation determinant. By expanding each function

ϕi(z) =
∑

ν≥0

pi,νzν (1 ≤ i ≤ N)

in a Taylor series around the origin, we obtain the following formula:

Theorem 1. The interpolation determinant ∆ is equal to the sum

∆ =
∑

0≤ν1<···<νN

det
(
pi,νj

)
× det

((
νi

tj

)
ζ

νi−tj

j

)

where the summation index (ν1, . . . , νN ) ranges along the set of N -tuples

of increasing natural integers.

Proof. For any N -tuple z = (z1, . . . , zN ) of complex numbers, set

Φ(z) = det
(
ϕi(zj)

)
1≤i≤N
1≤j≤N

= det



R1

. . .

RN


 ,

whereRi = (ϕi(z1), . . . , ϕi(zN )) denotes the i-th row in the matrix (ϕi(zj)).
From the Taylor series of the functions ϕi we deduce an expansion of Ri

as an infinite sum of rows

Ri =
∑

ν≥0

piνLν with Lν = (zν
1 , . . . , zν

N ).
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By multilinearity on the rows of the determinant Φ(z) we find

Φ(z) =
∑

(ν1,...,νN )∈NN

(
N∏

i=1

pi,νi

)
× det



Lν1

. . .

LνN




=
∑

0≤ν1<···<νN

det(pi,νj )× det



Lν1

. . .

LνN




=
∑

0≤ν1<···<νN

det(pi,νj )× det(zνi
j ),

noting that each integral N -tuple has a unic representative with 0 ≤ ν1 ≤
· · · ≤ νN under the permutation’s action of the symmetric group SN on
NN , and remarking that in the first sum we can restrict to integral N -tuples
having pairwise distinct components νj , since otherwise the corresponding
term vanishes. Derivating now the function Φ, we find the formula

1
t1! . . . tN !

(
∂

∂z1

)t1

. . .

(
∂

∂zN

)tN

Φ(z)

=
∑

0≤ν1<···<νN

det
(
pi,νj

)
× det

((
νi

tj

)
z

νi−tj

i

)
.

from which follows the expansion

∆ =
1

t1! . . . tN !

(
∂

∂z1

)t1

. . .

(
∂

∂zN

)tN

Φ(ζ1, . . . , ζN )

=
∑

0≤ν1<···<νN

det(pi,νj )× det
((

νi

tj

)
ζ

νi−tj

i

)
. ¤

Corollary 2. Let k and t be integral N -tuples, X and Y be N -tuples

of complex numbers. Then

∆k,t(X, Y ) =
∑

0≤ν1<···<νN

det
((

νj

ki

)
X

νj−ki

i

)
× det

((
νi

tj

)
Y

νi−tj

j

)

ν1!× · · · × νN !
.
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Proof. Using for instance the first expression of ∆k,t(X,Y ) as an
interpolation determinant with

ϕi(z) =
1
ki!

zkieXiz =
∑

ν≥0

(
ν
ki

)
Xν−ki

i

ν!
zν (1 ≤ i ≤ N)

we obtain the formula. ¤

3. An upper bound of |∆|

We shall bound |∆k,t(X,Y )| by estimating the absolute value of each
term in the sum of Theorem 1. This approach was already used in [4] for
the Six Exponentials Theorem, and in [1] to obtain sharp lower bounds for
p-adic linear forms in two logarithms. Of course it is also possible to use the
classical Schwarz Lemma as was done in [5]–[6]. In the Archimedian case,
which is our context here, some ratio ρ of radii then plays an important
role, especially for the numerical value of the constants occurring in the
theory of linear forms in logarithms. In Theorem 3 below, we recover an
analogue of ρ whose definition is however different. It should be interesting
to test numerically the following type of estimation in the context of [5]–[6].

Theorem 3. Let R and S be positive real numbers such that

max
1≤j≤N

(|Yj |) ≤ R and max
1≤i≤N

(|Xi|) ≤ S.

Suppose that the ratio ρ := N
(R+1)(S+1) is ≥ 1. Then we have an upper

bound of the shape

log |∆k,t(X,Y )| ≤
(
− log ρ

2
+

3
4

+
1

4ρ2

)
N2 + cN log N

for some universal constant c when N is large enough.

Proof. From Corollary 2 let us write

∆ =
∑

0≤ν1<···<νN

det
((

νj

ki

)
X

νj−ki

i

)
× det

((
νi

tj

)
Y

νi−tj

j

)

ν1!× · · · × νN !
.
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The idea is simple. Since the summation’s indices ν satisfy the condition

ν1 ≥ 0, ν2 ≥ 1, . . . , νN ≥ N − 1,

which implies

ν1!× · · · × νN ! ≥ 0!× 1!× · · · × (N − 1)! ≥ N (1/2)N2−o(N2),

the denominator in each term of the above formula for ∆ is much larger
than the numerator provided that N is much greater than Ω:=(R+1)(S+1).
More precisely, we expand the two determinants of the numerator and
bound

∣∣∣∣
(

νj

ki

)
X

νj−ki

i

∣∣∣∣ ≤ (|Xi|+ 1)νj ≤ (S + 1)νj

∣∣∣∣
(

νi

tj

)
Y

νi−tj

j

∣∣∣∣ ≤ (|Yj |+ 1)νi ≤ (R + 1)νi .

We obtain

|∆| ≤ (N !)2
∑

0≤ν1<···<νN

Ων1+···+νN

ν1!× · · · × νN !

≤ (N !)2
∑

ν1≥0,ν2≥1,...,νN≥N−1

Ων1+···+νN

ν1!× · · · × νN !
= (N !)2

N−1∏
n=0


∑

ν≥n

Ων

ν!


 .

Let M be the smallest integer which is ≥ Ω. For 0 ≤ n < M ≤ N , we
bound trivially

∑

ν≥n

Ων

ν!
≤

∑

ν≥0

Ων

ν!
= eΩ,

and
M−1∏
n=0


∑

ν≥n

Ων

ν!


 ≤ eMΩ ≤ eΩ2+Ω.

If M = N , then ρ ≤ N/(N − 1) and Theorem 3 is satisfied for some
constant c. When n ≥ M , the sum

∑
ν≥n

Ων

ν! has approximately the same
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magnitude as its first term:

∑

ν≥n

Ων

ν!
=

Ωn

n!

(
1 +

Ω
n + 1

+
Ω2

(n + 1)(n + 2)
+ · · ·

)

≤ Ωn

n!

(
1 +

Ω
n + 1

+
(

Ω
n + 1

)2

+ · · ·
)

=
Ωn

n!
n + 1

n + 1− Ω
.

Notice that
N−1∏

n=M

n + 1
n + 1− Ω

≤
N−1∏

n=M

n + 1
n + 1−M

=
N−M∏
n=1

n + M

n
=

(
N

N −M

)
≤ 2N .

We deduce the upper bound

N−1∏

n=M

(∑

ν≥n

Ων

ν!

)
≤ 2N

N−1∏

n=M

Ων

ν!
= 2N × Ω(N−M)(N+M−1)/2 ×

∏M−1
ν=1 ν!∏N−1
ν=1 ν!

.

Then the Euler–MacLaurin summation formula, together with the elemen-
tary estimate

ννe−ν ≤ ν! ≤ 3νν+(1/2)e−ν ,

which is valid for any integer ν ≥ 1, implies that

n−1∑
ν=1

log ν! =
1
2
n2 log n− 3

4
n2 +O(n log n).

Combining the above estimates, we obtain the upper bound

log |∆| ≤ −1
2
N2 log

N

Ω
+

1
2
M2 log

M

Ω
+

3
4
N2 − 3

4
M2 + Ω2 +O(N log N)

≤ −1
2
N2 log ρ +

3
4
N2 +

1
4
Ω2 +O(N log N)

≤
(
− log ρ

2
+

3
4

+
1

4ρ2

)
N2 +O(N log N). ¤

Remark 1. In the above proof, we have bounded
(
n
k

)|x|n−k by (1+|x|)n

for any integer k ≥ 0 by grace of the binomial formula. Obviously, this
argument is not always the most efficient. For example, we can replace
in Theorem 3 the ratio ρ by N/(R + 1)S whenever all the ki = 0, by
N/R(S + 1) if all the tj = 0, and by N/RS when ki = tj = 0 for all i, j.
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Remark 2. Let us introduce the function Φ in one complex variable z

defined by

Φ(z) = det

(
1
tj !

(
∂

∂z

)tj

ϕi(Yjz)

)

= det




min(ki,tj)∑

l=0

1
l!(ki − l)!(tj − l)!

(Yjz)ki−lX
tj−l
i eXiYjz




with ϕi(z) = (ki!)−1zkieXiz, in such a way that ∆ = Φ(1). The function
Φ has a zero at the origin with multiplicity ≥ N2−N

2 −∑
tj . If we bound

∣∣∣∣∣
min(ki,tj)∑

l=0

1
l!(ki − l)!(tj − l)!

(Yjz)ki−lX
tj−l
i eXiYjz

∣∣∣∣∣

≤ (1 + |Xi|)tj

tj !
e|Yj | |z|+|Xi| |Yj | |z| ≤ eS+1+R|z|+RS|z| ≤ eΩ|z|

for any complex number z with modulus ≥ 1, the usual Schwarz Lemma
applied to the function Φ in the disk |z| ≤ N/(2Ω) gives the slightly weaker
upper bound

log |∆| ≤
(
−1

2
log ρ +

1
2

+
log 2

2

)
N2 +O

(
(N +

∑
tj) log N

)
.

That is the method used in [5]–[6]–[9] to estimate analytically interpolation
determinants.

4. About positivity of interpolation determinants

In this section we are concerned with the special case of N -tuples X

and Y which are real. It turns out that under the rather weak conditions
(i) or (ii) of Theorem 6 below, all the terms occurring in the sum from
Corollary 2 have the same sign. Therefore ∆k,t(X,Y ) is nonzero. On the
other hand, this property shows that the absolute estimations for summing
series that we achieved in §3 are essentially optimal, at least in the real
case.
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Let us begin by a digression on Schur polynomials Sν . For each inte-
gral N -tuple ν = (ν1, . . . , νN ) satisfying 0 ≤ ν1 < · · · < νN , set

Sν(X1, . . . , XN ) =
det

(
Xνi

j

)
∏

1≤i<j≤N

(Xj −Xi)
.

We shall use the following basic facts concerning Schur’s polynomials

Theorem 4. The ratio Sν is a symmetric polynomial with positive

integral coefficients.

Proof. We shall only give some hints about this assertion; a com-
plete proof can be found in Section I.3 of [7]. First, it is clear that Sν

is a symmetric polynomial with integral coefficients since the numerator
det(Xνi

j ) is an alternating polynomial which is therefore divisible by the
discriminant

∏
1≤i<j≤N (Xj − Xi). The only non trivial point is in the

positivity of the coefficients of Sν . They have the following combinatorial
interpretation. Since 0 ≤ ν1 < · · · < νN , define λi by the relation

νi = i− 1 + λN+1−i (1 ≤ i ≤ N)

so that
λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0.

The polynomial Sν is most often denoted sλ in connection with the N -
tuple λ viewed as a partition of the integer λ1 + · · · + λN . We associate
to the partition λ its Ferrers diagram which contains λ1 boxes on its first
row, . . . , λN boxes on its N -th row:

A tableau of shape λ is made with a Ferrers diagram of the partition λ

whose boxes are filled with integers between 1 and N in such a way that in
each row the sequence of integers read from left to right is non decreasing
while in each column the sequence increases from top to bottom:

1 1 2

2
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Let µ = (µ1, . . . , µN ) be an N -tuple of integers ≥ 0. Let Kλ,µ be the
number of tableaux of shape λ in which the integer n appears exactly µn

times in the tableau for each n = 1, . . . , N . Then we have the explicit
formula

Sν(X1, . . . , XN ) =
∑

µ1≥0,...,µN≥0
µ1+···+µN=λ1+···+λN

Kλ,µXµ1
1 · · ·XµN

N . ¤

By differentiating the defining relation

det
(
X

νj

i

)
= Sν(X1, . . . , XN )×

∏

1≤i<j≤N

(Xj −Xi),

we can obviously express any interpolation determinant of monomial func-
tions

det
((

νi

tj

)
ζ

νi−tj

j

)

in term of the polynomial Sν and its partial derivatives. This relation is
quite simple when all the successive derivatives of order < Tk occur at n

given points ξk ∈ C for k = 1, . . . , n.

Theorem 5. Let n be a positive integer, ξ1, . . . , ξn be complex num-

bers and T1, . . . , Tn be positive integers such that T1 + · · · + Tn = N .

Denote by ζ and t the N -tuples

ζ =
(

ξ1, . . . , ξ1︸ ︷︷ ︸
T1 times

, . . . . . . , ξn, . . . , ξn︸ ︷︷ ︸
Tn times

)

t =
(
0, 1, . . . , T1 − 1, . . . . . . , 0, 1, . . . , Tn − 1

)
.

For each integral N -tuple ν with 0 ≤ ν1 < · · · < νN , we have the equality

det
((

νi

tj

)
ζ

νi−tj

j

)
= Sν(ζ)

∏

1≤k<l≤n

(ξl − ξk)TkTl .

Proof. Let X1, . . . , XN be independent variables. Denote by

V (X) =
∏

1≤i<j≤N

(Xj −Xi)
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the discriminant in these variables, and by ∂[τ ] the differential operators

∂[τ ] =
1
τ1!

(
∂

∂X1

)τ1

· · · 1
τN !

(
∂

∂XN

)τN

for each τ = (τ1, . . . , τN ) ∈ NN . Applying the operator ∂[t] to both mem-
bers of the equality det(Xνj

i ) = V Sν we obtain the formula

det
((

νi

tj

)
X

νi−tj

i

)
=

t1∑
τ1=0

· · ·
tN∑

τN=0

∂[τ ]V · ∂[t−τ ]Sν .

Let us check the formula

∂[τ ]V (ζ) =





0 if τ ≤ t and τ 6= t
∏

1≤k<l≤n

(ξl − ξk)TkTl if τ = t.

which obviously implies Theorem 5. To that purpose, decompose the dis-
criminant in a product

V =
∏

1≤k≤n

Vk

∏

1≤k<l≤n

Rk,l

where

Vk =
∏

Sk−1+1≤i<j≤Sk

(Xj −Xi) and Rk,l =
Sk∏

i=Sk−1+1

Sl∏

j=Sl−1+1

(Xj −Xi)

with Sk = T1 + · · ·+ Tk. It is clear that

Rk,l(ζ) = (ξl − ξk)TkTl (1 ≤ k < l ≤ n).

On the other hand Vk, now viewed as a polynomial in the variables
XSk−1+1, . . . , XSk

, vanishes at the point (ξk, . . . , ξk) ∈ CTk with multi-
plicity (T 2

k − Tk)/2. It follows that

∂[τ ]

(
n∏

k=1

Vk

)
(ζ) = 0
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for any τ ∈ NN with order τ1 + · · ·+ τN <
∑

k(T 2
k −Tk)/2 = t1 + · · ·+ tN .

Moreover

∂[t]

(
n∏

k=1

Vk

)
(ζ) =

n∏

k=1

∂[(0,1,...,Tk−1)]Vk(ξk, . . . , ξk) = 1

as easily seen using for instance Vandermonde’s formula. ¤

Theorem 6. Let m and n be two positive integers. Let K1, . . . , Km

(resp. T1, . . . , Tn) be positive integers whose sum is equal to N . Let

x1, . . . , xm (resp. y1, . . . , yn) be real numbers which are pairwise distinct.

Finally, let a and b be two integers ≥ 0. Set

k = (a, a + 1, . . . , a + K1 − 1, . . . . . . , a, a + 1, . . . , a + Km − 1)

t = (b, b + 1, . . . , b + T1 − 1, . . . . . . , b, b + 1, . . . , b + Tn − 1)

X =
(

x1, . . . , x1︸ ︷︷ ︸
K1 times

, . . . . . . , xm, . . . , xm︸ ︷︷ ︸
Km times

)

Y =
(

y1, . . . , y1︸ ︷︷ ︸
T1 times

, . . . . . . , yn, . . . , yn︸ ︷︷ ︸
Tn times

)
.

Then the determinant ∆k,t(X,Y ) is nonzero in both of the following two

cases:

(i) a = b = 0,

(ii) the real numbers x1, . . . , xm and y1, . . . , yn are all positive.

Proof. Let us begin with the assumptions (ii). Theorem 1 gives us
the expansion

∆ =
∑

0≤ν1<···<νN

det
((

νj

ki

)
X

νj−ki

i

)
× det

((
νi

tj

)
Y

νi−tj

j

)

ν1!× · · · × νN !
.

First notice that we can restrict the above sum to N -tuples ν satisfying

max(a, b) ≤ ν1 < · · · < νN .

Suppose otherwise that ν1 < max(a, b). Then at least one of the two
determinants occurring in the numerator of the term indexed by ν vanishes,
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because the first row or the first column of the corresponding matrix is
identically zero since all the ki are ≥ a and all the tj are ≥ b. Now remark
that
(

νj

ki

)
=

νj . . . (νj − a + 1)
ki . . . (ki − a + 1)

(
νj − a

ki − a

)
,

(
νi

tj

)
=

νi . . . (νi − b + 1)
tj . . . (tj − b + 1)

(
νi − b

tj − b

)
.

We deduce from Theorem 5 the formula

∆ =
∏

1≤k<l≤m

(xl − xk)KkKl

∏

1≤k<l≤n

(yl − yk)TkTl

×
( ∑

max(a,b)≤ν1<···<νN

pνSν−a1(X)Sν−b1(Y )

)
,

where we have set

1 = (1, . . . , 1), pν =
N∏

l=1

(
νl

a

)(
νl

b

)

νl!
(
kl

a

)(
tl

b

) .

All the terms pνSν−a1(X)Sν−b1(Y ) in the above sum are positive since
the coefficients of the polynomials Sν−a1 and Sν−b1 are ≥ 0 and since the
coordinates of the N -tuples X and Y are positive. It follows that the sum
itself is positive.

Let us now consider (i). We shall reduce this case to (ii) by translating
the components of X and Y . Let k and t stand for the above N -tuples
with a = b = 0. Then we have the following translation formula:

∆k,t(X + ξ1, Y + ζ1) = ∆k,t(X, Y ) exp
(
Nξζ + ξ

(∑
Yi

)
+ (

∑
Xi)ζ

)
,

which is valid for any complex numbers ξ and ζ. Let us prove this formula
for ζ = 0; the general case follows by symmetry. From the initial definition,
∆k,t(X + ξ1, Y ) = det

(
ci,j(ξ)

)
with

ci,j(ξ) =
min(ki,tj)∑

l=0

1
l!(ki − l)!(tj − l)!

(Xi + ξ)tj−lY ki−i
j e(Xi+ξ)Yj

=eξYj




min(ki,tj)∑

l=0

tj−l∑
τ=0

1
l!τ !(ki−l)!(tj−l−τ)!

ξτX
tj−l−τ
i Y ki−l

j eXiYj


 .
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Viewing the summation index τ appearing in the above double sum as
attached to the column labeled by j, we obtain the formula

ci,j(ξ)=
tj∑

τj=0

eξYj ξτj

τj !

(
min(ki,tj−τj)∑

l=0

1
l!(ki−l)!(tj−τj−l)!

X
tj−τj−l
i Y ki−l

j eXiYj

)
,

which makes appear the j-th column of the matrix
(
ci,j(ξ)

)
as a linear

combination of the j-th, (j − 1)-th, . . . , (j − tj)-th columns of the matrix(
ci,j(0)

)
. Remind that the sequence

t = (0, 1, . . . , T1 − 1, . . . . . . , 0, 1, . . . , Tn − 1)

is composed by the disjoint union of n segments of consecutive integers
beginning with 0. By multilinearity, we immediately see that the only
nonzero contribution in the determinant det

(
ci,j(ξ)

)
comes from τ1 =

· · · = τN = 0. It follows that

∆k,t(X + ξ1, Y ) = ∆k,t(X, Y ) exp
(
ξ(

∑
Yj)

)
.

After adding some sufficiently large real numbers ξ and ζ to the compo-
nents of X and Y respectively, we may assume without loss of generality
that all the numbers x1, . . . , xm, y1, . . . , yn are positive. ¤

Remarks. When a = b = 0, Theorem 6 is a reformulation of a well-
known result, due to Pólya, on the number of real zeroes of exponential
polynomials whose frequencies are real. The vanishing of ∆k,t(X,Y ) is
equivalent to the existence of a non trivial relation between the rows of
the interpolation matrix, which means that there exists some nonzero ex-
ponential polynomial of the shape

m∑
µ=0

Kµ−1∑

k=0

pk,µzkexµz.

vanishing with multiplicity ≥ Tν at the points yν for ν = 1, . . . , n. Pólya’s
Theorem then asserts the upper bound

n∑
ν=1

Tν <

m∑
µ=1

Kµ.
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Notice that the initial proof of Pólya’s Theorem is based on the classi-
cal Rolle’s Lemma; see for instance Chapter 6 from [10]. Our approach
is related to explicit formulas for ∆k,t(X, Y ). We remark also that the
Wronskian formula from [2] can be easily deduced from our results, using
the expansion of ∆k,t(X,Y ) for n = 1 and y1 = 0, and next the translation
formula.

5. The real Gel’fond–Schneider Theorem

As an example, we sketch in this section an alternative proof of
Gel’fond–Schneider Theorem in the real case. One can find in [3] a de-
tailed proof of this result, which is again based on Rolle’s Lemma. Our
argument may be viewed as its translation in terms of interpolation deter-
minants.

Real Gel’fond–Schneider Theorem. Let α be a positive real alge-

braic number distinct from 1, and let log α be the real determination of

its logarithm. Let β be an algebraic number which is real and irrational.

The the number αβ = eβ log α is transcendental.

Proof. We construct a family of interpolation determinants depend-
ing upon four integral parameters K, L, R, S satisfying KL = RS. First
order, in any way, the two sequences of N := KL = RS pairs

(k, `) ∈ N2; 0 ≤ k < K, 0 ≤ ` < L

(r, s) ∈ N2; 0 ≤ r < R, 0 ≤ s < S.

Then we consider the N functions and the N points

{ϕ1, . . . , ϕN} =
{

zk

k!
e`(log α)z; 0 ≤ k < K, 0 ≤ ` < L

}

{ζ1, . . . , ζN} =
{

r + sβ; 0 ≤ r < R, 0 ≤ s < S
}

,

together with the associated interpolation determinant

∆ = det (ϕi(ζj)) = det
(

(r + sβ)kα`r(αβ)`s

k!

)
(k,`)
(r,s)

.
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Now suppose that

N ≥ 10
(
1 + (L− 1)| log α|

)(
R− 1 + (S − 1)|β|

)
.

Theorem 3 (or more precisely Remark 1 that follows Theorem 3) gives the
upper bound

log |∆| ≤ −N2

3
+O(N log N).

On the other hand, Theorem 6 implies that ∆ is nonzero. Assume to
the contrary that αβ is an algebraic number. Then Liouville’s inequality
furnishes a lower bound of the type

log |∆| ≥ −cN
(
K log K + K log max(R,S) + L max(R,S)

)
,

for some constant c depending only upon α and β. The upper bound and
the lower bound contradict one another as soon as

K log K + K log max(R, S) + L max(R, S) ¿ N.

Choose for instance K = L3, R = S = L2 with L large enough to find a
final contradiction to the algebraicity of αβ . ¤
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Arithmétiques de Luminy 1989”, Astérisque 198–200, 209–230.
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arithmes et déterminants d’interpolation, J. Number Theory 55 (1995), 285–321.

[7] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford University
Press, 1979.

[8] T. Muir, A treatise on the theory of determinants, Longmans, Green and Com-
pany, 1933.

[9] M. Waldschmidt, Linear independence of logarithms of algebraic numbers, The
Institute of Mathematical Sciences, IMSc. Report 116 (1992).



Interpolation determinants of exponential polynomials 473

[10] M. Waldschmidt, Nombres transcendants, Lecture Notes in Math., vol. 402,
Springer-Verlag, 1974.

[11] M. Waldschmidt, Fonctions auxiliaires et fonctionnelles analytiques, J. Analyse
Math. 56 (1991), 231–279.

MICHEL LAURENT
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