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On the running time
of the Adleman–Pomerance–Rumely primality test
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Abstract. In the present work we prove a relatively simple explicit upper bound
for a number theoretic function which plays an important role in the running time
analysis of the Adleman–Pomerance–Rumely primality test. The same function appears
in the investigation of Carmichael’s λ-function.

1. Introduction

In the running time analysis of the Adleman–Pomerance–Rumely
(APR) Test [APR] the following function f(n) plays a crucial role. Let
f(n) denote the least positive square-free integer such that the product of
the primes q with q − 1 | f(n) exceeds

√
n. Similarly, the function g(n) is

defined as the least (not necessarily square-free) positive integer such that
the product of the primes q with q − 1 | g(n) exceeds

√
n.

With these definitions, the running time T (n) of the APR-test satisfies

f(n) ≤ T (n), if n is prime

T (n) ≤ f(n)c, for all n

with an absolute, positive, explicitly calculable constant c. (This is Theo-
rem 2 of [APR].)
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About the functions g(n), f(n), the following result, (Theorem 3) is
proved in [APR]:

(log n)c1 log3 n ≤ g(n) ≤ f(n) < (log n)c2 log3 n

where c1 and c2 are explicitly calculable positive absolute constants. logν

denotes the ν-fold iterated logarithmic function. They also remark that a
slightly more careful treatment leads

(1.2) c1 =
1

log 2
+ o(1).

Further they express in Remark 2 the

Conjecture. c2 = 1
log 2 + o(1).

Concerning the actual value of c2 provided by the work [APR], no
calculations are given in [APR], but, the value would be very large due to
the application of a deep result of Gallagher. The object of the present
work is to show that c2 can be chosen as small as c2 = 2.302.

For the sake of completeness, we also include the standard proof of
(1.2) (cf. Theorem 1 of [EPS]). The upper bound with c2 = 2.302 also
implies the simple upper bound

(1.3) f(n) < 10log2 n log3 n for n > n0 explicit constant.

It would be very elaborate to give a good explicit value for n0.
We will prove the following

Theorem. There is a positive, absolute, calculable constant c0 (c0 =
2.3013598 . . . ) such that for any ε > 0 and n > n0(ε) we have

(1.4) (log n)(
1

log 2−ε) log3 n < g(n) ≤ f(n) < (log n)(c0+ε) log3 n.

The exact definition of c0 is given in the Remark following the Main Lemma
in Section 4. (cf. (4.2)–(4.4)).

The authors are grateful to one of the referees who pointed out that
the result of the present paper can be applied to Carmichael’s λ-function.
We formulate here the result which makes explicit the constant in the
exponent in Theorem 1 of Erdős, Pomerance and Schmutz [EPS]. The
only modification in their argument is that we need to replace the constant
2 in the definition of xi (in the exponent) by 1 + o(1). Our Theorem or
Main Lemma (cf. Section 4) implies then easily the following
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Corollary. Let λ(n) denote Carmichael’s λ-function. There exists a

sequence ni →∞ such that

λ(ni) < (log ni)(2c0+o(1)) log3 ni < (100)log2 ni log3 ni

where c0 = 2.302. (For the exact value of c0 see the definition (4.2)–(4.4)
in Section 4.)

The proof of our Theorem, similarly to that of [APR] follows the
arguments of Prachar [P], who was the first to prove a result of such type.
(For more details see the works [APR] and [P].) The improvement in [APR]
compared to [P] was due to the idea of Odlyzko to use Gallagher’s prime
number theorem [G] instead of a theorem of Tatuzawa. Our relatively good
explicit value of c0 comes from the idea of using a statistical theorem about
the distribution of primes in arithmetic progressions mod k (Theorem A)
which requires more (although a bounded number of) exceptional moduli
than Gallagher’s prime number theorem [G], but allows much better
dependence of the moduli k on x (k < x5/12−ε) than Gallagher’s theorem
(k < xδ, δ small absolute constant, theoretically effective). Such kind
of results may be derived in this strong form from the density theorem
of Huxley [Hu] about the distribution of zeros of Dirichlet L-functions.
Similar but weaker results were proved first by Rényi and later by Barban.
A result anologous to Theorem A with the weaker exponent 1/3 in place
of 5/12 was proved by P.D.T.A. Elliott [E]. For the present form of
Theorem A we refer the reader for [AGP, Theorem 2.1].

Although the structure of the proof [APR] remains unchanged several
significant modifications are introduced to get a possibly small value of c0.

2. The lower estimate

As mentioned in Remark 6.3 of [APR], it is quite standard to show
the lower estimate in (1.4). Using the well-known inequality [W]

(2.1) d(k) ≤ 2(1+o(1)) log k/ log2 k
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we have (cf. the proof of Theorem 1 in [EPS])

∏

q−1|k
q ≤

∏

d|k
(d + 1) ≤

∏

d|k
(2d) = (2k1/2)d(k)(2.2)

≤ exp
{(

log 2 +
1
2

log k

)
2(1+o(1)) log k

log2 k

}

= exp
{

2(1+o(1)) log k
log2 k

}
< exp

(
log n

2

)
=
√

n

if

(2.3)
log 2 · log k

log2 k
(1 + o(1)) < log2 n− log 2.

Now, (2.3) and so (2.2) certainly holds if

(2.4) log k ≤ (1− ε)
log 2

· log2 n log3 n ⇐⇒ k ≤ (log n)
1−ε
log 2 log3 n

This calculation proves that

(2.5) g(n) > (log n)
1−ε
log 2 log3 n.

3. Statistical theorems
for primes in arithmetric progressions

Our basic tool is the following statistical theorem about the distri-
bution of primes in arithmetric progressions, mentioned at the end of the
Introduction.

Theorem A. For every ε > 0 there are calculable positive numbers

x0(ε) and c(ε) such that if x ≥ x0(ε) and k, a are co-prime integers with

k < x5/12−ε then

(3.1)
∣∣∣∣

∑

p≡a(k); p≤x

log p− x

ϕ(k)

∣∣∣∣ <
εx

ϕ(k)

except possibly for those k which are divisible by at least one kν(x) where

kν(x) are certain integers with kν(x) > log x, ν = 1, 2, . . . c(ε).
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Let

(3.2)

Θ(x, k, a) =
∑

p≡a(k); p≤x

log p,

Θ0(x, k, a) =
∑

p≡a(k); p≤x

µ2(p− 1) log p

where µ denotes the Möbius function. This means that in Θ0 we count
only those primes p where p− 1 is square-free. Let

α =
∏
p

(
1− 1

p2 − p

)
= 0.3740 . . . .

Let ψ(k) denote the multiplicative function whose value at the prime
power pd is 1− 1/(p2 − p). We have clearly α ≤ ψ(k) < 1 for all k.

Theorem A implies the following

Theorem B. For every ε > 0 there are calculable positive numbers

x1(ε) and c(ε) such that if x ≥ x1(ε), and k < x5/12−ε is square-free, then

(3.3)
∣∣∣∣Θ0(x, k, 1)− αx

ψ(k)k

∣∣∣∣ < ε
x

k

∏

p|k

(
1 +

2
p− 1

)

except possibly for those k for which k2 is a multiple of at least one k′ν(x)
where k′ν(x) are certain integers with k′ν(x) > (log x)3/4, ν = 1, 2, . . . c(ε).

Proof. Let us write every square-free natural number m in the form
m = ab, where a | k, (b, k) = 1. By the inclusion-exclusion principle we
have (

∑′ denotes summation over square-free numbers)

Θ0(x, k, 1) =
∑′

m

(−1)ω(m)Θ(x, [k, m2], 1)(3.4)

=
∑′

a|k
(−1)ω(a)

∑′

(b,k)=1

(−1)ω(b)Θ(x, kab2, 1),

where ω(n) denotes the number of distinct prime factors of n. Let T =
[
1
ε

]

and let M(T ) denote the right side of (3.4) where we consider only square-
free numbers b having all prime factors below T . Denoting Q =

∏
p-k; p<T

p,
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we have

(3.5) M(T ) =
∑′

a|k
(−1)ω(a)

∑

b|Q
(−1)ω(b)Θ(x, kab2, 1).

Further, we have

|Θ0(x, k, 1)−M(T )| ≤
∑′

a|k

∑

b≥T

Θ(x, kab2, 1)(3.6)

≤
∑′

a|k

{ ∑

T<b≤x1/20

c3x

ϕ(k)aϕ(b2)
+

∑

x1/2>b>x1/20

log x
(
1 +

x

akb2

)}

≤ c4x

ϕ(k)T

∑

a|k

1
a

=
c4x

kT

∏

p|k

(
1 +

2
p− 1

)

by
∑

n>u 1/ϕ(n2) < c5/u and the Brun–Titchmarsh inequality

(3.7) Θ(x, d, a) ≤ c6x

ϕ(d)
log x

log(x/d)
.

Choosing k′ν = kν

(kν ,Q2) where kν are the exceptional moduli of Theo-
rem A we can assure kν - kab2 for b | Q, since our condition k′ν - k2 implies
kν - k2Q2. Therefore we can apply our Theorem A for the quantities
Θ(x, kab2, 1) in (3.5). So we obtain

∣∣∣∣M(T )−
∑′

a|k
(−1)ω(a)

∑′

b|Q
(−1)ω(b) x

ϕ(k)aϕ(b2)

∣∣∣∣(3.8)

≤ ε
x

ϕ(k)

∑′

a|k

1
a

∑′

b|Q

1
ϕ(b2)

≤ c7εx

k

∏

p|k

(
1 +

2
p− 1

)
.

Further we have

(3.9)
∣∣∣∣
∑′

b|Q

(−1)ω(b)

ϕ(b2)
−

∞∑′

b=1; (b,k)=1

(−1)ω(b)

ϕ(b2)

∣∣∣∣ ≤
∑′

b≥T

1
ϕ(b2)

<
c5

T
.
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Collecting (3.5), 3.6), (3.8) and (3.9) we finally get

∣∣∣∣Θ0(x, k, 1)− x

ϕ(k)

∏

p|k

(
1− 1

p

) ∏

p-k

(
1− 1

p2 − p

)∣∣∣∣(3.10)

<
c8εx

k

∏

p|k

(
1 +

2
p− 1

)

which proves Theorem B. ¤

4. The Main Lemma

Using Theorem B we shall prove now a lemma (an improved version
of Proposition 10 of [APR] from which the final result will easily follow.)

Main Lemma. There is a positive, absolute, calculable constant c0

(c0 = 2.3013598 . . . ) such that for all x > 10 there is a square-free number

M < x with

(4.1)
∑

p−1|M ; p prime

1 > e(1+o(1)) log x/c0 log2 x.

Remark. Let a denote the unique number a ∈ (
0, 5

12

)
which satisfies

the equality

(4.2) z(a) =
12
5

log
(

1− 12a

5

)
− 7

5
log

(
1− 7

5
a

)
− log a = 1.

(Since lima→0 z(a) = +∞, lima→ 5
12−0 z(a) = −∞, and

z′(a) =
− (

12
5

)2

1− 12a
5

+

(
7
5

)2

1− 7
5a
− 1

a
<
− (

12
5

)2

1− 7
5a

+

(
7
5

)2

1− 7
5a

< 0,

there is really exactly one solution of (4.2).) Defining

y(a) =
(

1− 7
5
a

)
log

(
1− 7

5
a

)
(4.3)

−
(

1− 12a

5

)
log

(
1− 12a

5

)
− a log a
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we will see later that c0 can be chosen as

(4.4) c0 = 1/y(a).

Proof of the Main Lemma. We will actually show the Main Lemma
with the estimate M < x1+ε+o(1) which is clearly equivalent with the
original formulation due to the appearance of the factor 1 + o(1) in (4.1),
since ε is an arbitrary positive number here. Let us define with the choice
of a in (4.2) (a = 0.237218 . . . ), q running through the primes

u =
(

1− 7
5
a

)
log x, R = π(u)− π

(
u

log u

)
,(4.5)

v =
R

1− 7
5a

, k =
∏

u
log u <q<u

q, E = x
12
5 a(1+ε),

where ε > 0 is arbitrary. With these choices we have (using the prime
number theorem) clearly

k = eu(1+o(1)) = x(1− 7
5 a)(1+o(1)), R =

(1 + o(1))u
log u

,(4.6)

v =
1 + o(1)) log x

log2 x
.

We define D as follows,

(4.7) D = {d; d | k, ω(d) = [av]}, |D| = D, B = min
d∈D

d, F = max
d∈D

d.

Let A denote the number of solutions of

(4.8) m(p− 1) ≡ 0 (mod k)

where m ≤ k
B , p ≤ E is prime with p − 1 square-free. For each d ∈ D let

Ad denote the number of solutions of (4.8) with d | p− 1, (m, k) = k/d.
First we note that for every d ∈ D we have

(4.9) 1 ≤
∏

p|d

(
1 +

2
p− 1

)
≤ exp



c9

∑

u/ log u<p≤u

1
p



 = 1 + o(1)
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and

1 ≥ ψ(d) =
∏

p|d

(
1− 1

p2 − p

)
(4.10)

≥ exp
(
−c10

∑

u/ log u<p≤u

1
p2

)
= 1 + o(1).

Therefore if d2 is not divisible by any of kν = k′ν(E) then in view of

F ≤ uav = exp
(

aR log u
/ (

1− 7
5
a

))
(4.11)

= exp
{

a(1 + o(1))u
/(

1− 7
5
a

)}
= xa+o(1)

we have by Theorem B

Π0(E, d, 1) def=
∑

p<E; p≡1(d)

µ2(p− 1) ≥ Θ0(E, d, 1)
log E

(4.12)

≥
(

α

ψ(d)
− 2ε

)
E

d log E
>

c11E

du
.

Further, we have for any Y ≥ 1

(4.13) Y ≥
∑

n<Y ; (n,k)=1

1 ≥ Y −
∑

u
log u <p≤u

Y

p
≥ Y (1 + o(1)).

Therefore the number of m ≤ k
B , (m, k) = k/d is at least

(4.14) c12 · k

B
· d

k
= c12

d

B
.

Thus, if d ∈ D, k′ν - d2 (ν = 1, . . . c(ε)) then

(4.15) Ad > c11
E

du
· c12

d

B
= c13

E

uB
.
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Let us define now

(4.16) D∗ = {d; d ∈ D, k′ν(E) - d2(∀ν = 1 . . . c(ε))}, |D∗| = D∗.

Now, choosing for every k′ν (ν = 1, 2, . . . c(ε)) one prime-factor qν | k′ν with
qν ∈ (u/ log u, u] (if there is any) we obtain

(4.17) D∗ ≥
(

R− c(ε)
[av]

)
=

((
1− 7

5a
)
v − c(ε)

[av]

)

and using Stirling’s formula we get by (4.3)

(1 + o(1)) log D∗ ≥ v

{(
1− 7

5
a

)
log

(
1− 7

5
a

)
(4.18)

−
(

1− 12
5

a

)
log

(
1− 12

5
a

)
− a log a

}
= vy(a) = v/c0.

Now (4.15) and (4.18) together give

(4.19) A ≥
∑

d∈D∗
Ad ≥ c13

E

uB
e(1+o(1))v/c0 .

Clearly the number of integers n ≤ kE/B divisible by k is at most E/B,
and all solutions of (4.8) are of this form. Thus there exists some n0 ≤
kE/B, k | n0 which has at least

(4.20)
A

E/B
≥ c13u

−1e(1+o(1))v/c0 = e(1+o(1)) log x
c0 log2 x

representations as m(p − 1). If M denotes the largest square-free divisor
of n0, then M clearly satisfies (4.1), further similarly to (4.11)

(4.21) B ≥ u(1+o(1))av ≥ xa+o(1)

and so, by (4.5), (4.6)

(4.22) M ≤ n0
kE

B
= x1+ε+o(1)

which proves the Main Lemma. ¤
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5. Proof of the theorem

It is now very easy to finish the proof of the Theorem. Let us choose
with the ε > 0 stated in the Theorem

(5.1) x = (log n)(1+ε)c0 log3 n = exp{(1 + ε)c0 log2 n log3 n}.

Then the main lemma implies the existence of a square-free M ≤ x with

h(M) =
∑

p−1|M ; p prime

1 > exp
(

(1 + o(1)) log x

c0 log2 x

)
(5.2)

= exp
(

(1 + o(1))(1 + ε)c0 log2 n log3 n

c0(1 + o(1)) log3 n

)
> log n

and therefore

(5.3)
∏

p−1|M
p ≥ 2h(M) > 2log n >

√
n.

This immediately gives

(5.4) f(n) ≤ M ≤ x = (log n)(1+ε)c0 log3 n

and thus proves our Theorem.
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[P] K. Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form
p− 1 haben, Monatsh. Math. 59 (1955), 91–97.

[W] S. Wigert, Sur l’orde de grandeur du nombre des diviseurs d’un entier, Arkiw fur
Math. Astr. Fys. 3 no. 18 (1907), 1–9.

J. PELIKÁN
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