On reducible trinomials, II

By ANDRZEJ SCHINZEL (Warszawa)
To Professor Kálmán Györy on his 60th birthday

Abstract. It is shown that if a trinomial has a binomial factor then under certain conditions the cofactor is irreducible.

1. Introduction

This paper is a sequel to [5]. In that paper we considered an arbitrary field K of characteristic π, the rational function field $K(\mathbf{y})$, where \mathbf{y} is a variable vector, a finite algebraic extension L of $K\left(y_{1}\right)$ and a trinomial
(i) $\quad T(x ; A, B)=x^{n}+A x^{m}+B, \quad$ where $n>m>0, \pi \nmid m n(n-m)$
and either $A, B \in K(\mathbf{y})^{*}, A^{-n} B^{n-m} \notin K$ or $A, B \in L, A^{-n} B^{n-m} \notin \bar{K}$.
A necessary and sufficient condition was given for reducibility of $T(x ; A, B)$ over $K(\mathbf{y})$ or L respectively, provided in the latter case that L is separable (This proviso was only made in the errata [6].). As a consequence a criterion was derived for reducibility of $T(x ; a, b)$ over an algebraic number field containing a, b. In each case it was assumed that $n \geq 2 m$, but this involved no loss of generality, since $x^{n}+A x^{m}+B$ and $x^{n}+A B^{-1} x^{n-m}+B^{-1}$ are reducible simultaneously. Let

$$
\begin{equation*}
n_{1}=n /(n, m), \quad m_{1}=m /(n, m) \tag{ii}
\end{equation*}
$$

Mathematics Subject Classification: 12E05, 12E10, 11R09.
Key words and phrases: reducibility, trinomials.

One case of reducibility of $T(x ; A, B)$ over the field $\Omega=K(\mathbf{y})$ or L is that $x^{n}+A x^{m_{1}}+B$ has in $\Omega[x]$ a linear factor. The aim of this paper is to prove that if n_{1} is sufficiently large and $x^{n_{1}}+A x^{m_{1}}+B$ has in $\Omega[x]$ a linear factor $F(x)$, but not a quadratic factor, then $T(x ; A, B) F\left(x^{(m, n)}\right)^{-1}$ is irreducible over Ω. More precisely, we shall prove using the notation introduced in (i) and (ii) the following three theorems.

Theorem 1. Let $n_{1}>5$ and $A, B \in K(\mathbf{y})^{*}, A^{-n} B^{n-m} \notin K$. If $x^{n_{1}}+A x^{m_{1}}+B$ has in $K(\mathbf{y})[x]$ a linear factor, $F(x)$, but not a quadratic factor, then $T(x ; A, B) F\left(x^{(m, n)}\right)^{-1}$ is irreducible over $K(\mathbf{y})$.

Theorem 2. Let $n_{1}>3$ and $A, B \in L^{*}$, where L is a finite separable extension of $K\left(y_{1}\right)$ with $\bar{K} L$ of genus g and $A^{-n} B^{n-m} \notin \bar{K}$. If $x^{n_{1}}+$ $A x^{m_{1}}+B$ has in $L[x]$ a linear factor $F(x)$, but not a quadratic factor, then

$$
\begin{equation*}
T(x ; A, B) F\left(x^{(m, n)}\right)^{-1} \quad \text { is reducible over } L \tag{iii}
\end{equation*}
$$

if and only if there exists an integer l such that

$$
\left\langle\frac{n}{l}, \frac{m}{l}\right\rangle=:\langle\nu, \mu\rangle \in \mathbb{N}^{2}: \nu<\max \{17,8 g\}
$$

and $\frac{x^{\nu}+A x^{\mu}+B}{F\left(x^{(\mu, \nu)}\right)}$ is reducible over L. Moreover, if $g=1$, then (iii) implies $n_{1} \leq 6$.

Theorem 3. Let $n_{1}>6, K$ be an algebraic number field and $a, b \in$ K^{*}. If the trinomial $x^{n_{1}}+a x^{m_{1}}+b$ has in $K[x]$ a monic linear factor $F(x)$, but not a quadratic factor, then $T(x ; a, b) F\left(x^{(m, n)}\right)^{-1}$ is reducible over K if and only if there exists an integer l such that $\langle n / l, m / l\rangle=:\langle\nu, \mu\rangle \in \mathbb{N}^{2}$ and $a=u^{\nu-\mu} a_{0}, b=u^{\nu} b_{0}, F=u F_{0}\left(\frac{x}{u}\right)$, where $u \in K^{*},\left\langle a_{0}, b_{0}, F_{0}\right\rangle \in F_{\nu, \mu}^{1}(K)$ and $F_{\nu, \mu}^{1}(K)$ is a certain finite set, possibly empty.

There is no principal difficulty in determining in Theorems 1,2 for $g=1$, and 3 all cases of reducibility when $n_{1} \leq 6$ in much the same way as it was done in [5] for $T(x ; A, B)$ or $T(x ; a, b)$, however this seems of secondary interest. On the other hand, it is natural to ask what happens when $x^{n_{1}}+A x^{m_{1}}+B$ has a quadratic factor. We intend to return to this question in the next paper of this series.

In analogy with a conjecture proposed in [5] we formulate

Conjecture. For every algebraic number field one can choose sets $F_{\nu, \mu}^{1}(K)$ such that the set

$$
\sum^{1}=\bigcup_{\nu, \mu, F} \bigcup_{\langle a, b, F\rangle \in F_{\nu, \mu}^{1}}\left\{x^{\nu}+a x^{\mu}+b\right\} \text { is finite. }
$$

2. 16 lemmas to Theorems 1-2

Lemma 1. If in a transitive permutation group G the length of a cycle $C \in G$ is at least equal to the length of a block of imprimitivity, then it is divisible by the latter.

Proof. Let $C=\left(a_{1}, \ldots, a_{\nu}\right), a_{\nu+i}:=a_{i}(i=1,2 \ldots)$ and let B_{1}, B_{2}, \ldots be conjugate blocks of imprimitivity. Let μ be the least positive integer such that for some i, a_{i} and $a_{i+\mu}$ belong to the same block B. If $\mu=1$, then by induction $a_{i} \in B$ for all i, hence $\nu \leq|B|$ and, since $\nu \geq|B|$ by the assumption, we have $\nu=|B|$.

If $\mu>1$ we may assume, changing if necessary the numeration of the a_{i} and of the blocks, that

$$
a_{i} \in B_{i}(1 \leq i \leq \mu), \quad a_{\mu+1} \in B_{1}
$$

It follows by induction on i that

$$
\begin{equation*}
a_{k \mu+i} \in B_{i}(1 \leq i \leq \mu, k=0,1, \ldots), \tag{1}
\end{equation*}
$$

hence, in particular, $i \equiv j \bmod \nu \operatorname{implies} i \equiv j \bmod \mu$, thus $\mu \mid \nu$.
If $a \in B_{1}$ then $C(a) \in B_{2}$, hence $C(a) \neq a$ and there exists a_{j} such that $a=a_{j}$. By (1) we have

$$
j \equiv 1 \bmod \mu
$$

Thus among $a_{j}(1 \leq j \leq \nu, j \equiv 1 \bmod \mu)$ occur all elements of B_{1} and only such elements. However a_{j} in question are distinct, hence

$$
\frac{\nu}{\mu}=\left|B_{1}\right| \quad \text { and } \quad\left|B_{1}\right| \mid \nu
$$

Lemma 2. If $(m, n)=1$ the polynomial $R_{1}(x, t)=\frac{x^{n}+t x^{m}-(1+t)}{x-1}$ is absolutely irreducible. The algebraic function $x(t)$ defined by the equation $R_{1}(x, t)=0$ has just $n-2$ branch points $t_{i} \neq-1, \infty$ with one 2 -cycle given by the Puiseux expansions

$$
x(t)=\xi_{i} \pm\left(t-t_{i}\right)^{1 / 2} P_{i 1}\left(\pm\left(t-t_{i}\right)^{1 / 2}\right), \quad \xi_{i} \neq 0(1 \leq i \leq n-2)
$$

and the remaining expansions

$$
x(t)=P_{i j}\left(t-t_{i}\right)(2 \leq j \leq n-2)
$$

At the branch point $-1 x(t)$ has one m-cycle given by the Puiseux expansions

$$
x(t)=\zeta_{2 m}^{2 i+1}(t+1)^{1 / m} P_{n-1,1}\left(\zeta_{2 m}^{2 i+1}(t+1)^{1 / m}\right)(0 \leq i<m)
$$

and the remaining expansions at this point are

$$
x(t)=P_{n-1, j}(t+1)(2 \leq j \leq n-m)
$$

At the branch point $\infty x(t)$ has one $(n-m)$-cycle given by the Puiseux expansions

$$
x(t)=\zeta_{2(n-m)}^{2 i+1} t^{1 /(n-m)} P_{n 1}\left(\zeta_{2(n-m)}^{2 i+1} t^{1 /(n-m)}\right)
$$

and the remaining expansions at this point are

$$
x(t)=P_{n j}\left(t^{-1}\right) \quad(2 \leq j \leq m)
$$

Here $P_{i j}$ are ordinary formal power series with $P_{i j}(0) \neq 0$ and ζ_{q} is a primitive root of unity of order q. For a fixed i the values ξ_{i} and $P_{i j}(0)$ $(j>1)$ are distinct.

Proof. The polynomial $R_{1}(x, t)$ is absolutely irreducible since it can be written as

$$
\frac{x^{n}-1}{x-1}+t \frac{x^{m}-1}{x-1}
$$

and, since $(m, n)=1$, we have $\left(\frac{x^{n}-1}{x-1}, \frac{x^{m}-1}{x-1}\right)=1$.

If τ is a finite branch point of the algebraic function $x(t)$ we have for some ξ

$$
\begin{equation*}
R_{1}(\xi, \tau)=R_{1 x}^{\prime}(\xi, \tau)=0, \tag{2}
\end{equation*}
$$

hence also $T(\xi ; \tau,-\tau-1)=T_{x}^{\prime}(\xi ; \tau,-\tau-1)=0$, which gives either $\xi=0$, $\tau=-1$ or

$$
\tau \neq 0, \quad \xi^{n-m}=-\frac{m}{n} \tau, \quad \xi^{m}=\frac{n}{n-m} \frac{\tau+1}{\tau} .
$$

If $\tau=-\frac{n}{m}$, then $\xi^{n-m}=1, \xi^{m}=1$ and, since $(m, n)=1, \xi=1$.
However $R_{1 x}^{\prime}\left(1,-\frac{n}{m}\right)=\frac{n(n-1)}{2}-\frac{n}{m} \cdot \frac{m(m-1)}{2}=\frac{n(n-m)}{2} \neq 0$ thus for $\tau \neq-1$ (2) implies $\left(-\frac{m}{n} \tau\right)^{m}=\left(\frac{n}{n-m} \frac{\tau+1}{\tau}\right)^{n-m}, \tau \neq-\frac{n}{m}$, which gives

$$
(-m)^{m}(n-m)^{n-m} \tau^{n}-n^{n}(\tau+1)^{n-m}=0 .
$$

The only multiple root of this equation is $\tau=-\frac{n}{m}$ and it has multiplicity 2 . Denoting the remaining roots by $t_{i}(1 \leq i \leq n-2)$ we find $t_{i} \neq 0,-1$,

$$
\left(-\frac{m}{n} t_{i}\right)^{m}=\left(\frac{n}{n-m} \frac{t_{i}+1}{t_{i}}\right)^{n-m}
$$

hence for a uniquely determined $\xi_{i} \neq 0,1$

$$
\xi_{i}^{n-m}=-\frac{m}{n} t_{i}, \xi_{i}^{m}=\frac{n}{n-m} \frac{t_{i}+1}{t_{i}}
$$

and $R_{1}\left(\xi_{i}, t_{i}\right)=R_{1 x}^{\prime}\left(\xi_{i}, t_{i}\right)=0$.
Further,

$$
\begin{gathered}
R_{1 x}^{\prime \prime}\left(\xi_{i}, t_{i}\right) \\
=\frac{n(n-1) \xi_{i}^{n-1}-n(n-1) \xi_{i}^{n-2}+m(m-1) t_{i} \xi_{i}^{m-1}-m(m-1) t_{i} \xi_{i}^{m-2}}{\left(\xi_{i}-1\right)^{2}} \\
=\frac{n(n-1) \xi_{i}^{n-2}+m(m-1) t_{i} \xi_{i}^{m-2}}{\xi_{i}-1}=\xi_{i}^{m-2} \frac{m(m-n) t_{i}}{\xi_{i}-1} \neq 0
\end{gathered}
$$

and

$$
R_{1 t}^{\prime}\left(\xi_{i}, t_{i}\right)=\frac{\xi_{i}^{m}-1}{\xi_{i}-1}=\frac{m t_{i}+n}{\left(\xi_{i}-1\right)(n-m)} \neq 0 .
$$

It follows that the Taylor expansion of $R_{1}(x, t)$ at $\left\langle\xi, t_{i}\right\rangle$ has the lowest terms

$$
\frac{1}{2} R_{1 x}^{\prime \prime}\left(\xi_{i}, t_{i}\right)\left(x-\xi_{i}\right)^{2} \quad \text { and } \quad R_{1 t}^{\prime}\left(\xi_{i}, t_{i}\right)\left(t-t_{i}\right)
$$

which implies the existence at the point t_{i} of the two-cycle with the expansions given in the lemma. The remaining expansions are obtained using the fact that $R_{1}\left(x, t_{i}\right)$ has $n-3$ distinct zeros, different from 0 and ξ_{i}. These zeros are $P_{i j}(0)(2 \leq j \leq n-2)$. The assertions concerning branch points -1 and ∞ are proved in a standard way.

Lemma 3. If $(m, n)=1$, the discriminant $D_{1}(t)$ of $R_{1}(x, t)$ with respect to x equals

$$
c(t+1)^{m-n} \prod_{i=1}^{n-2}\left(t-t_{i}\right), \quad c \in K^{*}
$$

Proof. Since R_{1} is monic with respect to x we have

$$
D_{1}(t)=\prod_{i<j}\left(x_{i}-x_{j}\right)^{2},
$$

where $R_{1}(x, t)=\prod_{j=1}^{n-1}\left(x-x_{j}\right)$. Using Lemma 2 we find that the only possible zeros of $D_{1}(t)$ are $t_{i}(1 \leq i \leq-2)$ and -1 . Taking for x_{j} the Puiseux expansion of $x(t)$ at these points we find the exponents with which $t-t_{i}$ and $t+1$ divide $D_{1}(t)$.

Lemma 4. If $(m, n)=1$ the Galois group of the polynomial $R_{1}(x, t)$ over $\bar{K}(t)$ is the symmetric group S_{n-1}.

Proof. Since, by Lemma 2, $R_{1}(x, t)$ is absolutely irreducible, the group G in question is transitive. By Lemma 1(c) of [5] and Lemma 2 G contains a transposition (for $n>2$), an m-cycle and an $(n-m)$-cycle, where we may assume $m \leq n-m$. If G were imprimitive with blocks of imprimitivity of length $b, 1<b<n-1$ we should have $2 b \leq n-1, b \leq n-m$ and by Lemma $1, b \mid m$ and $b \mid(n, m), b=1$, a contradiction. Thus G is primitive and since it contains a transposition it must be symmetric by Theorem 14 in Chapter 1 of [7].

Definition 1. Let $(m, n)=1, R_{1}(x, t)=\prod_{i=1}^{n-1}\left(x-x_{i}(t)\right)$. We set

$$
\begin{aligned}
& L_{1}(k, m, n)=K\left(t, \tau_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, \tau_{k}\left(x_{1}, \ldots, x_{k}\right)\right) \\
& L_{1}^{*}(k, m, n)=\bar{K}\left(t, \tau_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, \tau_{k}\left(x_{1}, \ldots, x_{k}\right)\right),
\end{aligned}
$$

where τ_{j} is the j-th fundamental symmetric function.
Remark. By Lemma 4 the fields $L_{1}(k, m, n)$ and $L_{1}^{*}(k, m, n)$ are determined by k, m, n up to an isomorphism fixing $K(t)$ and $\bar{K}(t)$, respectively.

Lemma 5. The numerator of $t-t_{i}$ in $L_{1}^{*}(k, m, n)$ has $\binom{n-3}{k-1}$ prime divisors in the second power and none in the higher ones.

Proof. The proof is analogous to the proof of Lemma 5 in [5].
Lemma 6. The numerator of $t+1$ in $L_{1}^{*}(k, m, n)$ has

$$
\frac{1}{m} \sum_{l=0}^{k}\binom{n-m-1}{k-l} \sum_{d \mid(m, l)} \varphi(d)\binom{m / d}{l / d}
$$

distinct prime divisors.
Proof. By Lemma 1(a) of [5] the prime divisors of the numerator of $t+1$ are in one-to-one correspondence with the cycles of the Puiseux expansions of a generating element of $L_{1}^{*}(k, m, n)$ at $t=-1$ provided the lengths of these cycles are not divisible by π. For the generating element we take $y(t)=\sum_{j=1}^{k} a^{j} \tau_{j}\left(x_{1}, \ldots, x_{k}\right)$, where $a \in \bar{K}$ if K is finite and $a \in K$ otherwise, is chosen so that $\sum_{j=1}^{k} a^{j} \tau_{j}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)=$ $\sum_{j=1}^{k} a^{j} \tau_{j}\left(x_{1}, \ldots, x_{k}\right)$ implies $\left\{i_{1}, \ldots, i_{k}\right\}=\{1, \ldots, k\}$. By Lemma 4 for each set $\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, n-1\}$ there is an automorphism of the extension $\bar{K}\left(t, x_{1}(t), \ldots, x_{n-1}(t)\right) / \bar{K}(t)$ taking $x_{1}(t), \ldots, x_{k}(t)$ into $x_{i_{1}}(t), \ldots$ $\ldots, x_{i_{k}}(t)$, respectively. Thus at $t=-1$ we obtain the following Puiseux expansions for $y(t)$

$$
\begin{gathered}
Q\left(t, l, i_{1}, \ldots, i_{k}\right)=\sum_{j=1}^{k} a^{j} \tau_{j}\left(\zeta_{2 m}^{2 i_{1}+1}(t+1)^{1 / m} P_{n-1,1}\left(\zeta_{2 m}^{2 i_{1}+1}(t+1)^{1 / m}\right), \ldots,\right. \\
\\
\zeta_{2 m}^{2 i_{i}+1}(t+1)^{1 / m} P_{n-1,1}\left(\zeta_{2 m}^{2 i_{l}+1}(t+1)^{1 / m}\right) \\
\left.P_{n-1, i_{l+1}}(t+1), \ldots, P_{n-1, i_{k}}(t+1)\right)
\end{gathered}
$$

where l runs from 0 to $k,\left\{i_{1}, \ldots, i_{l}\right\}$ runs through all subsets of $\{0,1, \ldots, m-1\}$ of cardinality l and $\left\{i_{l+1}, \ldots, i_{k}\right\}$ runs through all subsets of $\{2,3, \ldots, n-m\}$ of cardinality $k-l$.

To see this note that the fundamental symmetric functions of $Q\left(t, l, i_{1}, \ldots, i_{k}\right)$ coincide with the fundamental symmetric functions of the conjugates of $y(t)$ over $\bar{K}(t)$.

If P is an ordinary formal power series, the conjugates of $P\left((t+1)^{1 / m}\right)$ over $\bar{K}\left(\left((t+1)^{1 / d}\right)\right)$, where $d \mid m$ are $P\left(\zeta_{m}^{d e}(t+1)^{1 / m}\right),(0 \leq e<m / d)$. Therefore

$$
Q\left(t, l, i_{1}, \ldots, i_{k}\right) \in \bar{K}\left(\left((t+1)^{1 / d}\right)\right), \quad \text { where } d \mid m
$$

if and only if
$Q\left(t, l, i_{1}, \ldots, i_{k}\right)=Q\left(t, l, i_{1}+e d, \ldots, i_{l}+e d, i_{l+1}, \ldots, i_{k}\right) \quad(0 \leq e<m / d)$, hence by the choice of a if and only if

$$
\left\{i_{1}, \ldots, i_{l}\right\}+d \equiv\left\{i_{1}, \ldots, i_{l}\right\} \bmod m
$$

It follows by Lemma 7 of [5] that $y(t)$ has at $t=-1$ exactly

$$
\sum_{l=0}^{k} f(m, l, d)\binom{n-m-1}{k-l}
$$

expansions belonging to $\bar{K}\left(\left((t+1)^{1 / d}\right)\right) \backslash \bigcup_{\delta<d} \bar{K}\left(\left((t+1)^{1 / \delta}\right)\right)$, where $d \mid m$ and

$$
f(m, l, d)= \begin{cases}\sum_{\delta \mid(d, d l / m)} \mu(\delta)\binom{d / \delta}{\frac{d l / \delta}{m}} & \text { if } m \mid d l, \\ 0 & \text { otherwise } .\end{cases}
$$

These expansions split into cycles of d conjugate expansions each, where $m \mid d l$, i.e.

$$
d=e \frac{m}{(m, l)}, e \mid(m, l) .
$$

Hence the number of distinct prime divisors of the numerator of $t+1$ is

$$
\sum_{l=0}^{k} \frac{m}{(m, l)} \sum_{e \mid(m, l)} \frac{1}{e} f\left(m, l, \frac{e m}{(m, l)}\right)\binom{n-m-1}{k-l}
$$

which, by the formula (1) of [5], equals

$$
\frac{1}{m} \sum_{l=0}^{k}\binom{n-m-1}{k-l} \sum_{d \mid(m, l)} \varphi(d)\binom{m / d}{l / d} .
$$

Lemma 7. The denominator of t in $L_{1}^{*}(k, m, n)$ has

$$
\frac{1}{n-m} \sum_{l=0}^{k}\binom{m-1}{k-l} \sum_{d \mid(n-m, l)} \varphi(d)\binom{(n-m) / d}{l / d}
$$

distinct prime divisors.
Proof. The proof is analogous to the proof of Lemma 6.
Lemma 8. If $n \geq 6,(m, n)=1, n-1 \geq 2 k \geq 4$, the genus $g_{1}^{*}(k, m, n)$ of $L_{1}^{*}(k, m, n)$ satisfies $g_{1}^{*}(k, m, n) \geq \frac{n}{6}$.

Proof. By Lemma 2 the only branch points of $y(t)$ may be $t_{i}(1 \leq$ $i \leq n-2),-1$ and ∞. It follows now from Lemma 2(a) of [5], 5, 6 and 7 that

$$
\begin{aligned}
g_{1}^{*}(k, m, n)= & \frac{1}{2}\binom{n-3}{k-1}(n-2)-\frac{1}{2 m} \sum_{l=0}^{k}\binom{n-m-1}{k-l} \sum_{d \mid(m, l)} \varphi(d)\binom{m / d}{l / d} \\
& -\frac{1}{2(n-m)} \sum_{l=0}^{k}\binom{m-1}{k-l} \sum_{d \mid(n-m, l)} \varphi(d)\binom{(n-m) / d}{l / d}+1 .
\end{aligned}
$$

Using this formula we verify the lemma by direct calculation for $n=6,7,8$. To proceed further we first establish the inequality

$$
\begin{equation*}
g_{1}^{*}(k, m, n) \geq 1+\frac{1}{2(n-1)}\binom{n-1}{k} p_{1}(k, m, n) \tag{3}
\end{equation*}
$$

where
$p_{1}(k, m, n)=k(n-k-1)- \begin{cases}\frac{n^{2}-n+3.5}{n-1} & \text { if } m=1, n-1, \\ \frac{(n-1)\left(n^{2}-3 n+5.5\right)}{(n-2)^{2}} & \text { if } m=2, n-2, \\ n\left(1+\frac{3.5}{m(n-m)}\right) & \text { if } 2<m<n-2 .\end{cases}$

Indeed, by Lemma 13 of [5] we have for $l>0$

$$
\sum_{d \mid(m, l)} \varphi(d)\binom{m / d}{l / d} \leq\left(1+\frac{3.5}{m}\right)\binom{m}{l}
$$

and trivially for $l \geq 0$

$$
\sum_{d \mid(m, l)} \varphi(d)\binom{m / d}{l / d} \leq m\binom{m}{l} .
$$

Similar inequalities hold with m replaced by $n-m$. Hence, for $m=1$

$$
\begin{aligned}
g_{1}^{*}(k, m, n)= & \frac{1}{2}\binom{n-3}{k-1}(n-2)-\frac{1}{2} \sum_{l=0}^{1}\binom{n-2}{k-l} \\
& -\frac{1}{2(n-1)} \sum_{d \mid(n-1, k)} \varphi(d)\binom{n-1) / d}{k / d}+1 \\
\geq & 1+\frac{k(n-k-1)}{2(n-1)}\binom{n-1}{k}-\frac{1}{2}\binom{n-1}{k} \\
& -\frac{1}{2(n-1)}\left(1+\frac{3.5}{n-1}\right)\binom{n-1}{k}
\end{aligned}
$$

for $m=2$

$$
\begin{aligned}
g_{1}^{*}(k, m, n) \geq & \frac{1}{2}\binom{n-3}{k-1}(n-2)-\frac{1}{2} \sum_{l=0}^{2}\binom{n-3}{k-l}\binom{2}{l} \\
& -\frac{1}{2(n-1)} \sum_{l=k-1}^{k}\left(1+\frac{3.5}{n-2}\right)\binom{n-2}{l}+1 \\
= & 1+\frac{k(n-k-1)}{2(n-1)}\binom{n-1}{k}-\frac{1}{2}\binom{n-1}{k} \\
& -\frac{1}{2(n-2)}\left(1+\frac{3.5}{n-2}\right)\binom{n-1}{k}
\end{aligned}
$$

for m between 2 and $n-2$

$$
\begin{aligned}
& m-1-\frac{3.5}{m}>0, n-m-1-\frac{3.5}{n-m}>0, \\
& \binom{n-m-1}{k} \leq \frac{n-m-1}{n-1}\binom{n-1}{k}, \quad\binom{m-1}{k} \leq \frac{m-1}{n-1}\binom{n-1}{k} ; \\
& g_{1}^{*}(k, m, n) \geq \frac{1}{2}\binom{n-3}{k-1}(n-2)-\frac{1}{2 m}\binom{n-m-1}{k} m \\
& -\frac{1}{2 m} \sum_{l=1}^{k}\binom{n-m-1}{k-l}\left(1+\frac{3.5}{m}\right)\binom{m}{l}-\frac{1}{2(n-m)}\binom{m-1}{k}(n-m) \\
& -\frac{1}{2(n-m)} \sum_{l=1}^{k}\binom{m-1}{k-l}\left(1+\frac{3.5}{n-m}\right)\binom{n-m}{l}+1 \\
& =\frac{1}{2}\binom{n-3}{k-1}(n-2)-\frac{1}{2 m}\binom{n-m-1}{k}\left(m-1-\frac{3.5}{m}\right) \\
& -\frac{1}{2 m}\left(1+\frac{3.5}{m}\right) \sum_{l=0}^{k}\binom{n-m-1}{k-l}\binom{m}{l} \\
& -\frac{1}{2(n-m)}\binom{m-1}{k}\left(n-m-1-\frac{3.5}{n-m}\right) \\
& -\frac{1}{2(n-m)}\left(1+\frac{3.5}{n-m}\right) \sum_{l=0}^{k}\binom{m-1}{k-l}\binom{n-m}{l}+1 \\
& \geq 1+\frac{k(n-k-1)}{2(n-1)}\binom{n-1}{k} \\
& -\frac{n-m-1}{2 m(n-1)}\binom{n-1}{k}\left(m-1-\frac{3.5}{m}\right)-\frac{1}{2 m}\left(1+\frac{3.5}{m}\right)\binom{n-1}{k} \\
& -\frac{m-1}{2(n-m)(n-1)}\binom{n-1}{k}\left(n-m-1-\frac{3.5}{n-m}\right) \\
& -\frac{1}{2(n-m)}\left(1+\frac{3.5}{n-m}\right)\binom{n-1}{k} .
\end{aligned}
$$

In each case the right hand side of the obtained inequality coincides with
the right hand side of (3). Now for $n \geq 9, p_{1}(k, m, n) \geq p_{1}(2, \min \{m, 3\}, n) \geq$ $\min _{m \leq 3} p_{1}(2, m, 9)=1.25$, hence by (3)

$$
g_{1}^{*}(k, m, n) \geq 1+\frac{1.25}{2(n-1)}\binom{n-1}{2}>\frac{n}{4} .
$$

Lemma 9. Let $n \geq 3,(m, n)=1, R_{1}(x, t)=\prod_{i=1}^{n-1}\left(x-x_{i}(t)\right)$. In the field $\bar{K}\left(t, x_{1}(t), x_{2}(t)\right)$ we have the factorizations

$$
\begin{aligned}
t+1 & \cong \frac{\prod_{i=1}^{m-1} \mathfrak{p}_{i}^{m} \prod_{j=1}^{n-m-1} \mathfrak{q}_{j}^{m} \prod_{j=1}^{n-m-1} \mathfrak{r}_{j}^{m} \prod_{k=1}^{(n-m-1)(n-m-2)} \mathfrak{s}_{k}}{\prod_{j=1}^{n-m-1} \mathfrak{t}_{j}^{n-m} \prod_{i=1}^{m-1} \mathfrak{u}_{i}^{n-m} \prod_{i=1}^{m-1} \mathfrak{v}_{i}^{n-m} \prod_{l=1}^{(m-1)(m-2)} \mathfrak{w}_{l}}, \\
x_{1}(t) & \cong \frac{\prod_{i=1}^{m-1} \mathfrak{p}_{i} \prod_{j=1}^{n-m-1} \mathfrak{q}_{j}}{\prod_{j=1}^{n-m-1} \mathfrak{t}_{j} \prod_{i=1}^{m-1} \mathfrak{u}_{i}}, \\
x_{2}(t) & \cong \frac{\prod_{i=1}^{m-1} \mathfrak{p}_{i} \prod_{j=1}^{n-m-1} \mathfrak{r}_{j}}{\prod_{j=1}^{n-m-1} \mathfrak{t}_{j} \prod_{i=1}^{m-1} \mathfrak{v}_{i}}
\end{aligned}
$$

where $\mathfrak{p}_{i}, \mathfrak{q}_{j}, \mathfrak{r}_{j}, \mathfrak{s}_{k}, \mathfrak{t}_{j}, \mathfrak{u}_{i}, \mathfrak{v}_{i}, \mathfrak{w}_{l}$ are distinct prime divisors. For t_{i} defined in Lemma 2 the numerators of $t-t_{i}$ has $(n-3)(n-4)$ factors in the first power only, the remaining factors are double.

Proof. By Lemma 1(a)(b) of [5] the prime divisors of the numerator or the denominator of $t-c$ are in one-to-one correspondence with the cycles of the Puiseux expansions of a generating element of $\bar{K}\left(t, x_{1}(t), x_{2}(t)\right) / \bar{K}(t)$ at $t=c$ or $t=\infty$, respectively, provided the lengths of the cycles are not divisible by π. For the generating element we take $y(t)=a x_{1}(t)+b x_{2}(t)$, where $a, b \in \bar{K}$ are chosen so that for all $i<n, j<n, i \neq j$ we have either $a x_{i}(t)+b x_{j}(t) \neq a x_{1}(t)+b x_{2}(t)$ or $\langle i, j\rangle=\langle 1,2\rangle$. By Lemma 4 for each pair $\langle i, j\rangle$ with $i<n, j<n$ there is an automorphism of the extension $\bar{K}\left(t, x_{1}(t), \ldots, x_{n}(t)\right) / \bar{K}(t)$ taking $x_{1}(t), x_{2}(t)$ into $x_{i}(t), x_{j}(t)$, respectively. At $t=-1$ we obtain for $y(t)$ the expansions

$$
\begin{aligned}
& a \zeta_{2 m}^{2 i+1}(1+t)^{1 / m} P_{n-1}\left(\zeta_{2 m}^{2 i+1}(1+t)^{1 / m}\right) \\
& +b \zeta_{2 m}^{2 j+1}(1+t)^{1 / m} P_{n-1}\left(\zeta_{2 m}^{2 j+1}(1+t)^{1 / m}\right) \\
& \quad(0 \leq i<m, 0 \leq j<m, i \neq j)
\end{aligned}
$$

$$
\begin{aligned}
& a \zeta_{2 m}^{2 i+1}(1+t)^{1 / m} P_{n-1}\left(\zeta_{2 m}^{2 i+1}(1+t)^{1 / m}\right)+b P_{n-1}(1+t) \\
& \quad(0 \leq i<m, 2 \leq j \leq n-m) \\
& a P_{n-1}(1+t)+b \zeta_{2 m}^{2 i+1}(1+t)^{1 / m} P_{n-1}\left(\zeta_{2 m}^{2 i+1}(1+t)^{1 / m}\right) \\
& \quad(0 \leq i<m, 2 \leq j \leq n-m), \\
& a P_{n-1}(1+t)+b P_{n-1}(1+t) \quad(2 \leq i \leq n-m, 2 \leq j \leq n-m, i \neq j)
\end{aligned}
$$

The $m(m-1)$ expansions of the first set form $m-1 m$-cycles corresponding to the divisors $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m-1}$, that divide the numerators of $x_{1}(t), x_{2}(t)$ in exactly first power. (Note that $\operatorname{ord}_{\mathfrak{p}_{\mu}} x_{1}=m \operatorname{ord}_{t+1}(1+$ $t)^{1 / m} P_{n-1}\left(\zeta_{2 m}^{2 i+1}(1+t)^{1 / m}\right)$ for $\mu<m$ and similarly for $\left.x_{2}\right)$. The $m(n-$ $m-1$) expansions of the second set form $n-m-1 m$-cycles corresponding to the divisors $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n-m-1}$, that divide the numerator of $x_{1}(t)$ in exactly first power and do not divide the numerator of $x_{2}(t)$.

The $m(n-m-1)$ expansions of the third set form $n-m-1 m$-cycles corresponding to the divisors $\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{n-m-1}$ that divide the numerator of $x_{2}(t)$ in exactly first power and do not divide the numerator of $x_{1}(t)$. The $(n-m-1)(n-m-2)$ expansions of the fourth set form as many 1-cycles corresponding to the divisors that divide the numerator of $1+t$ in exactly first power and divide the numerator of neither $x_{1}(t)$ nor $x_{2}(t)$.

Since $x_{1}(t)=0$ implies $t=-1$ we have found all factors of the numerator of $x_{1}(t)$ and similarly of $x_{2}(t)$.

At $t=\infty$ we obtain for $y(t)$ again four sets of expansions that correspond to the four sets of divisors: $\mathfrak{t}_{j}(1 \leq j \leq n-m-1)$, \mathfrak{u}_{i}, \mathfrak{v}_{i} $(1 \leq j \leq m-1)$ and $\mathfrak{w}_{l}(1 \leq j \leq(m-1)(m-2))$ occurring in the denominator of $1+t, x_{1}(t)$ and $x_{2}(t)$.

Since $x_{1}(t)=\infty$ implies $t=\infty$ no other divisor occurs in the denominator of $x_{1}(t)$, or of $x_{2}(t)$.

At $t=t_{i}$ we obtain for $y(t)$ among others the expansions

$$
a P_{i}+b P_{i}(1 \leq i \leq n-2,2 \leq j \leq n-2,2 \leq k \leq n-2, j \neq k)
$$

which form $(n-3)(n-4) 1$-cycles corresponding to $(n-3)(n-4)$ simple factors of the numerator of $t-t_{i}$. All the remaining expansions contain $\left(t-t_{i}\right)^{1 / 2}$.

Lemma 10. If $(m, n)=1$, for all primes p

$$
\sqrt[p]{t+1} \notin \bar{K}\left(t, x_{1}(t), \ldots, x_{n-1}(t)\right)=: \Omega .
$$

Proof. The argument used in the proof of Lemma 9 applied to the field Ω gives that the multiplicity of every prime divisor of the numerator and the denominator of $t+1$ divides m and $n-m$, respectively. Since (m, n) $=1$ we cannot have $1+t=\gamma^{p}, \gamma \in \Omega$.

Lemma 11. Let $(m, n)=1, n \geq 3$. For every positive integer $q \not \equiv 0 \bmod \pi$ and for every choice of q th roots we have

$$
\left[\bar{K}\left(\sqrt[q]{x_{1}(t)}, \ldots, \sqrt[q]{x_{n-1}(t)}\right): \bar{K}\left(t, x_{1}(t), \ldots, x_{n-1}(t)\right)\right]=q^{n-1}
$$

Proof. By Theorem 1 of [4] it is enough to prove that for every prime $p \mid q$

$$
\begin{equation*}
\prod_{j=1}^{n-1} x_{j}^{\alpha_{j}}=\gamma^{p}, \gamma \in \Omega=\bar{K}\left(t, x_{1}(t), \ldots, x_{n-1}(t)\right) \tag{4}
\end{equation*}
$$

implies $\alpha_{j} \equiv 0 \bmod p$ for all $j<n$. Assume that (4) holds, but say $\alpha_{1} \not \equiv 0 \bmod p$.

If for all j we have $\alpha_{j} \equiv \alpha_{1} \bmod p$ it follows from (4) that

$$
\left(\prod_{j=1}^{n-1} x_{j}\right)^{\alpha_{1}}=\gamma^{\prime p}, \gamma \in \Omega,
$$

and since

$$
\prod_{j=1}^{n-1} x_{j}=(-1)^{n-1}(t+1)
$$

we obtain $\sqrt[p]{t+1} \in \Omega$, contrary to Lemma 10 . Therefore, there exists an $i \leq n-1$ such that $\alpha_{i} \not \equiv \alpha_{1} \bmod p$, and in particular $n \geq 3$. Changing, if necessary, the numeration of x_{i} we may assume that $i=2$. By Lemma 4 there exists an automorphism τ of $\Omega / \bar{K}(t)$ such that $\tau\left(x_{1}\right)=x_{2}, \tau\left(x_{2}\right)=$ $x_{1}, \tau\left(x_{i}\right)=x_{i}(i \neq 1,2)$. Applying τ to (4) we obtain

$$
x_{1}^{\alpha_{2}} x_{2}^{\alpha_{1}} \prod_{j=1}^{n-1} x_{j}^{a_{j}}=\left(\gamma^{\tau}\right)^{p},
$$

hence on division

$$
\left(\frac{x_{1}}{x_{2}}\right)^{\alpha_{1}-\alpha_{2}}=\left(\frac{\gamma}{\gamma^{\tau}}\right)^{p}
$$

Since $\alpha_{1}-\alpha_{2} \not \equiv 0 \bmod p$ it follows that

$$
\begin{equation*}
\frac{x_{1}}{x_{2}}=\delta^{p}, \quad \delta \in \Omega \tag{5}
\end{equation*}
$$

The extension $\bar{K}\left(t, x_{1}, x_{2}, \delta\right) / \bar{K}\left(t, x_{1}, x_{2}\right)$ is a normal subextension of $\Omega / \bar{K}\left(t, x_{1}, x_{2}\right)$ of degree 1 or p and, since by Lemma 4 the latter has the symmetric Galois group, we have either $\delta \in \bar{K}\left(t, x_{1}, x_{2}\right)$, or $p=2$,

$$
\delta \in \bar{K}\left(t, x_{1}, x_{2} \prod_{\substack{\mu, \nu=3 \\ \nu>\mu}}^{n-1}\left(x_{\nu}-x_{\mu}\right)\right) \backslash \bar{K}\left(t, x_{1}, x_{2}\right)
$$

In the former case we compare the divisors on both sides of (5) and obtain

$$
\delta^{p} \cong \frac{\prod_{j=1}^{n-m-1} \mathfrak{q}_{j} \prod_{i=1}^{m-1} \mathfrak{v}_{i}}{\prod_{j=1}^{n-m-1} \mathfrak{r}_{j} \prod_{j=1}^{m-1} \mathfrak{u}_{i}},
$$

a contradiction.
In the latter case, since the conjugates of δ with respect to $\bar{K}\left(t, x_{1}, x_{2}\right)$ are $\pm \delta$ we have

$$
\delta=\varepsilon \prod_{\substack{\mu, \nu=3 \\ \nu>\mu}}^{n-1}\left(x_{\nu}-x_{\mu}\right), \quad \varepsilon \in \bar{K}\left(t, x_{1}, x_{2}\right),
$$

hence

$$
\begin{aligned}
\delta & =\varepsilon \prod_{\substack{\mu, \nu=3 \\
\nu>\mu}}^{n-1}\left(x_{\nu}-x_{\mu}\right) \cdot \frac{x_{1}-x_{2}}{\prod_{\nu>1}\left(x_{\nu}-x_{1}\right) \cdot \prod_{\nu \neq 2}\left(x_{\nu}-x_{2}\right)} \\
& =\eta \prod_{\substack{\mu, \nu=1 \\
\nu>\mu}}^{n-1}\left(x_{\nu}-x_{\mu}\right), \quad \eta \in K\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

It follows by (5) and Lemma 3 that

$$
\frac{x_{1}}{x_{2}}=\eta^{2} \operatorname{disc}_{x} R_{1}(x, t)=\mathrm{const} \eta^{2}(t+1)^{m-1} \prod_{i=1}^{n-2}\left(t-t_{i}\right)
$$

For $n \geq 5$, by Lemma $9, t-t_{1}$ has at least one simple factor, which occurs with a non-zero exponent on the right-hand side, but not on the left, a contradiction. On the other hand for $n=3$ or 4 the divisor of the right hand side is a square, of the left hand side is not.

Lemma 12. Let $n \geq 3,(n, m)=1, q \neq 0 \bmod \pi, q \geq 2$ and $y_{i q}^{q}=x_{i}(t)$ $(1 \leq i<n)$. Then

$$
\left[\bar{K}\left(t,\left(\sum_{i=1}^{n-1} y_{i q}\right)^{q}\right): \bar{K}(t)\right]=q^{n-2}
$$

Proof. By Lemmas 4 and 11 all embeddings of $\bar{K}\left(t, y_{1 q}, \ldots, y_{n-1, q}\right) /$ $\bar{K}(t)$ into $\overline{K(t)} / \bar{K}(t)$ are given by

$$
\begin{equation*}
y_{i q} \rightarrow \zeta_{q}^{\alpha_{i}} y_{\sigma(i) q} \quad(1 \leq i<n), \tag{6}
\end{equation*}
$$

where σ is a permutation of $\{1,2, \ldots, n-1\}$ and

$$
\begin{equation*}
\left\langle\alpha_{1}, \ldots, \alpha_{n-1}\right\rangle \in(\mathbb{Z} / q \mathbb{Z})^{n-1} \tag{7}
\end{equation*}
$$

We shall show that there are exactly q^{n-2} distinct images of $\left(\sum_{i=1}^{n-1} y_{i q}\right)^{q}$ under transformations (6). Indeed, if we apply (7) with $\sigma(i)=i$ to $\left(\sum_{i=1}^{n-1} y_{i q}\right)^{q}$ we obtain

$$
\left(\sum_{i=1}^{n-1} \zeta_{q}^{\alpha_{i}} y_{i q}\right)^{q}
$$

If this were equal to $\left(\sum_{i=1}^{n-1} \zeta_{q}^{\beta_{i}} y_{i q}\right)^{q}$ for a vector $\left\langle\beta_{1}, \ldots, \beta_{n-1}\right\rangle \in$ $(\mathbb{Z} / q \mathbb{Z})^{n-1}$ with $\beta_{j}-\beta_{1} \neq \alpha_{j}-\alpha_{1}$ for a certain j we should obtain

$$
y_{1 q} \in \bar{K}\left(y_{2 q}, \ldots, y_{n-1, q}\right), \text { or } y_{j q} \in \bar{K}\left(y_{1 q}, \ldots, y_{j-1, q}, y_{j+1, q}, \ldots, y_{n-1, q}\right),
$$

contrary to Lemma 11. Thus the number of distinct images is at least equal to the number of vectors satisfying (7) with $\alpha_{1}=0$, thus to q^{n-2}. On the other hand, $\left(\sum_{i=1}^{n-1} y_{i q}\right)^{q}$ is invariant under transformations (6) with $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n-1}$, which form a group, hence the number in question does not exceed q^{n-2}.

Definition 2. Let $(m, n)=1, q \not \equiv 0 \bmod \pi$ and $y_{i q}^{q}=x_{i}(t)$, where $x_{i}(t)$ are defined in Definition 1. We set

$$
M_{1}(m, n, q)=K\left(t,\left(\sum_{i=1}^{n-1} y_{i q}\right)^{q}\right), \quad M_{1 *}(m, n, q)=\bar{K}\left(t,\left(\sum_{i=1}^{n-1} y_{i q}\right)^{q}\right)
$$

Remark. By Lemma 12 , for $n \geq 3, M_{1}(m, n, q)$ and $M_{1 *}(m, n, q)$ are determined by m, n, q up to an isomorphism which fixes $K(t)$ and $\bar{K}(t)$, respectively.

Lemma 13. For $n>3$ the numerator of $t-t_{i}$ has in $M_{1 *}(m, n, q) \times$ $\left(q^{n-2}-q^{n-3}\right) / 2$ factors in the second power.

Proof. Let us put for each $i \leq n-2$

$$
\begin{aligned}
& y_{i 1 q}=\xi_{i}^{1 / q} \sum_{k=0}^{\infty}\binom{1 / q}{k} \xi^{-k / q}\left(t-t_{i}\right)^{k / 2} P_{i 1}\left(\left(t-t_{i}\right)^{1 / 2}\right)^{k}, \\
& y_{i 2 q}=\xi_{i}^{1 / q} \sum_{k=0}^{\infty}(-1)^{k}\binom{1 / q}{k} \xi^{-k / q}\left(t-t_{i}\right)^{k / 2} P_{i 1}\left(-\left(t-t_{i}\right)^{1 / 2}\right)^{k},
\end{aligned}
$$

so that for $j=1,2$

$$
\begin{gather*}
y_{i j q}^{q}=\xi_{i}+(-1)^{j-1}\left(t-t_{i}\right)^{1 / 2} P_{i 1}\left((-1)^{j-1}\left(t-t_{i}\right)\right), \\
y_{i 1 q}+y_{i 2 q} \in \bar{K}\left(\left(t-t_{i}\right)\right), \tag{8}\\
\left(y_{i 1 q}-y_{i 2 q}\right)\left(t-t_{i}\right)^{1 / 2} \in \bar{K}\left(\left(t-t_{i}\right)\right) \tag{9}
\end{gather*}
$$

and choose in an arbitrary way

$$
\begin{equation*}
y_{i j q}=\left(P_{i, j-1}\left(t-t_{i}\right)\right)^{1 / q} \in \bar{K}\left(\left(t-t_{i}\right)\right) \quad(2<j<n) . \tag{10}
\end{equation*}
$$

It follows from Lemma 2 that over the field $\bar{K}\left(\left(t-t_{i}\right)\right)$

$$
\prod_{j=1}^{n-1} \prod_{\alpha=0}^{q-1}\left(x-\zeta_{q}^{\alpha} y_{j q}\right)=R_{1}\left(x^{q}, t\right)=\prod_{j=1}^{n-1} \prod_{\alpha=0}^{q-1}\left(x-\zeta_{q}^{\alpha} y_{i j q}\right)
$$

thus the corresponding fundamental symmetric functions of $\zeta_{q}^{\alpha} y_{j q}(1 \leq$ $j<n, 0 \leq \alpha<q)$ and of $\zeta_{q}^{\alpha} y_{i j q}$ coincide. Hence

$$
\begin{aligned}
& \prod_{\alpha_{2}=0}^{q-1} \cdots \prod_{\alpha_{n-1}=0}^{q-1}\left(x-\left(y_{1 q}+\sum_{j=2}^{n-1} \zeta_{q}^{\alpha_{j}} y_{j q}\right)^{q}\right) \\
= & \prod_{\alpha_{2}=0}^{q-1} \cdots \prod_{\alpha_{n-1}=0}^{q-1}\left(x-\left(y_{i 1 q}+\sum_{j=2}^{n-1} \zeta_{q}^{\alpha_{j}} y_{i j q}\right)^{q}\right)
\end{aligned}
$$

which means that $\left(\sum_{i=1}^{n-1} y_{j q}\right)^{q}$ has the following Puiseux expansions at $t=t_{i}$

$$
\left(y_{i 1 q}+\zeta_{q}^{\alpha_{2}} y_{i 2 q}+\sum_{j=3}^{n-1} \zeta_{q}^{\alpha_{j}} y_{i j q}\right)^{q},\left\langle\alpha_{2}, \ldots, \alpha_{n-1}\right\rangle \in(\mathbb{Z} / q \mathbb{Z})^{n-2} .
$$

If such an expansion belongs to $\bar{K}\left(\left(t-t_{i}\right)\right)$, then either

$$
y_{i 1 q}+\zeta_{q}^{\alpha_{2}} y_{i 2 q}+\sum_{j=3}^{n-1} \zeta_{q}^{\alpha_{j}} y_{i j q} \in \bar{K}\left(\left(t-t_{i}\right)\right)
$$

or $2 \mid q$ and

$$
\left(y_{i 1 q}+\zeta_{q}^{\alpha_{2}} y_{i 2 q}+\sum_{j=3}^{n-1} \zeta_{q}^{\alpha_{j}} y_{i j q}\right)\left(t-t_{i}\right)^{\frac{1}{2}} \in \bar{K}\left(\left(t-t_{i}\right)\right)
$$

In the former case, by (8) and (10)

$$
\left(1-\zeta_{q}^{\alpha_{2}}\right) y_{i 1 q} \in \bar{K}\left(\left(t-t_{i}\right)\right)
$$

and since $P_{i 1}(0) \neq 0, \alpha_{2}=0$.
In the latter case, by (9), on multiplying it by $\left(\zeta_{q}^{\alpha_{i}}-1\right) / 2$ and adding

$$
\left(\frac{1+\zeta_{q}^{\alpha_{2}}}{2}\left(y_{i 1 q}+y_{i 2 q}\right)+\sum_{j=3}^{n-1} \zeta_{q}^{\alpha_{j}} y_{i j q}\right)\left(t-t_{i}\right)^{1 / 2} \in \bar{K}\left(\left(t-t_{i}\right)\right)
$$

and, since

$$
\frac{1+\zeta_{q}^{\alpha_{2}}}{2}\left(y_{i 1 q}+y_{i 2 q}\right)+\sum_{j=3}^{n-1} \zeta_{q}^{\alpha_{j}} y_{i j q} \in \bar{K}\left(\left(t-t_{i}\right)\right)
$$

by (8) and (10), we obtain

$$
\begin{equation*}
\frac{1+\zeta_{q}^{\alpha_{2}}}{2}\left(y_{i 1 q}+y_{i 2 q}\right)+\sum_{j=3}^{n-1} \zeta_{q}^{\alpha_{j}} y_{i j q}=0 \tag{11}
\end{equation*}
$$

However the left hand side is an expansion at $t=t_{i}$ of

$$
\frac{1+\zeta_{q}^{\alpha_{2}}}{2}\left(y_{i q}+y_{2 q}\right)+\sum_{j=3}^{n-1} \zeta_{q}^{\alpha_{j}} y_{j q}
$$

hence (11) contradicts for $n>3$ the linear independence of $y_{j q}(1 \leq j<n)$ over \bar{K} resulting from Lemma 11.

Therefore for $n>3$ we obtain $q^{n-2}-q^{n-3}$ expansions for $\left(\sum_{j=3}^{n-1} y_{j q}\right)^{q}$ belonging to $\bar{K}\left(\left(\left(t-t_{i}\right)^{1 / 2}\right)\right) \backslash \bar{K}\left(\left(t-t_{i}\right)\right)$, which correspond to $\left(q^{n-2}-\right.$ $\left.q^{n-3}\right) / 2$ distinct prime divisors of the numerator of $t-t_{i}$ in $M_{1 *}(m, n, q)$.

Lemma 14. The numerator of $t+1$ in $M_{1 *}(m, n, q)$ has at most

$$
\frac{q^{\max \{n-3, m-1\}}}{m}\left(1+\frac{m-1}{q^{\varphi(m q) / \varphi(q)}}\right)
$$

distinct prime divisors.
Proof. By Lemma 1(a) in [5] the prime divisors of the numerator of $t+1$ correspond to the cycles of the Puiseux expansions of $\left(\sum_{i=1}^{n-1} y_{j q}\right)^{q}$ at $t=-1$ provided the lenghts of these cycles are not divisible by π. By Lemma 2 and the argument about symmetric functions used in the proof of Lemma 13 we obtain the expansions

$$
\begin{gather*}
\left(\sum_{j=1}^{m} \zeta_{q}^{\alpha_{j}} \zeta_{2 m q}^{2 j-1}(t+1)^{1 / q m} P_{n-1,1}\left(\zeta_{2 m}^{2 j-1}(t+1)^{1 / q}\right)^{1 / q}\right. \\
\left.\quad+\sum_{j=m+1}^{n-1} \zeta_{q}^{\alpha_{j}} P_{n-1, j-m+1}(t+1)^{1 / q}\right)^{q} \tag{12}
\end{gather*}
$$

where $\left\langle\alpha_{1}, \ldots, \alpha_{n-1}\right\rangle \in(\mathbb{Z} / q \mathbb{Z})^{n-1}, \alpha_{1}=0$. Note that $q m \not \equiv 0 \bmod \pi$. Let S be the set of vectors $\left\langle\alpha_{2}, \ldots, \alpha_{m}\right\rangle \in(\mathbb{Z} / q \mathbb{Z})^{m-1}$ such that

$$
1+\sum_{j=2}^{m} \zeta_{q}^{\alpha_{j}} \zeta_{q m}^{j-1}=0
$$

By Lemma 21 of [5]

$$
\begin{equation*}
\operatorname{card} S \leq q^{m-\varphi(q m) / \varphi(q)-1} . \tag{13}
\end{equation*}
$$

If $n \geq m+2$ and $\left\langle\alpha_{2}, \ldots, \alpha_{m}\right\rangle \notin S$ the least power of $t+1$ occurring in the first or the second sum in (12) is $(t+1)^{1 / q m}$ and $(t+1)^{\nu_{0}}$, respectively, where ν_{0} is a nonnegative integer. Hence the expansion (12) contains with a non-zero coefficient

$$
\begin{equation*}
(t+1)^{1 / m} \text { and }(t+1)^{(q-1) / q m+\nu_{0}} . \tag{14}
\end{equation*}
$$

Indeed, if we had for some nonnegative integers $a_{\mu}(\mu=0,1, \ldots)$

$$
\sum_{\mu=0}^{\infty} a_{\mu}=q \text { and } \sum_{\mu=0}^{\infty} a_{\mu}\left(\frac{1}{q m}+\frac{\mu}{m}\right)=\frac{q-1}{q m}+\nu_{0}
$$

it would follow from the second formula that $\sum_{\mu=0}^{\infty} a_{\mu} \equiv q-1 \bmod q$, contrary to the first formula.

The least common denominator of the two exponents in (14) is

$$
\left[m, \frac{q m}{(q m, q-1)}\right]=\frac{q^{2} m}{\left(q^{2} m,(q-1) m, q m\right)}=q m,
$$

hence we obtain at most

$$
\frac{\left(q^{m-1}-\operatorname{card} S\right) q^{n-m-1}}{q m}
$$

$q m$-cycles.
If $n \geq m+2$ and $\left\langle\alpha_{2}, \ldots, \alpha_{m}\right\rangle \in S$ the least power of $t+1$ occurring in the first or the second sum in (12) is $(t+1)^{\frac{1}{q m}+\frac{\mu_{0}}{m}}$ and $(t+1)^{\nu_{0}}$, respectively, where $\mu_{0} \in \mathbb{N}$ and $\nu_{o} \in \mathbb{N}$. Hence the expansion (12) contains with a nonzero coefficient

$$
(t+1)^{\frac{q-1}{q m}+\frac{(q-1) \mu_{0}}{m}+\nu_{0}} \quad \text { if } \frac{1}{q m}+\frac{\mu_{0}}{m}<\nu_{0}
$$

and

$$
(t+1)^{\frac{1}{q m}+\frac{\mu_{0}}{m}+(q-1) \nu_{0}}, \quad \text { otherwise. }
$$

Since both exponents in the reduced form have q in the denominator we obtain at most

$$
\frac{\operatorname{card} S \cdot q^{n-m-1}}{q}
$$

q-cycles.
If $n=m+1$ and $\left\langle\alpha_{2}, \ldots, \alpha_{m}\right\rangle \notin S$ the least power of $t+1$ occurring in the parentheses in (12) is $(t+1)^{1 / q m}$, thus the expresion (12) contains with a non-zero exponent $(t+1)^{1 / m}$ and we obtain at most $\frac{q^{m-1}-\text { card } S}{m}$ m-cycles.

Finally if $n=m+1$ and $\left\langle\alpha_{2}, \ldots, \alpha_{m}\right\rangle$ runs through S we bound the number of cycles by card S. Therefore by (13), if $n \geq m+2$ the total number of cycles does not exceed

$$
\begin{gathered}
\frac{\left(q^{m-1}-\operatorname{card} S\right) q^{n-m-1}}{q m}+\frac{\operatorname{card} S \cdot q^{n-m-1}}{q} \\
=\frac{q^{n-3}}{m}\left(1+\frac{(m-1) \operatorname{card} S}{q^{m-1}}\right) \leq \frac{q^{n-3}}{m}\left(1+\frac{m-1}{q^{\varphi(q m) / \varphi(q)}}\right),
\end{gathered}
$$

if $n=m+1$ the total number of cycles does not exceed

$$
\begin{aligned}
\frac{\left(q^{m-1}-\operatorname{card} S\right)}{m}+\operatorname{card} S & =\frac{q^{m-1}}{m}\left(1+\frac{(m-1) \operatorname{card} S}{q^{m-1}}\right) \\
& =\frac{q^{m-1}}{m}\left(1+\frac{m-1}{q^{\varphi(q m) / \varphi(q)}}\right)
\end{aligned}
$$

Lemma 15. The denominator of t has in $M_{1 *}(m, n, q)$ at most

$$
\frac{q^{\max \{n-3, n-m-1\}}}{n-m}\left(1+\frac{n-m-1}{q^{\varphi(q(n-m)) / \varphi(q)}}\right)
$$

distinct prime divisors.
Proof. Proof is analogous to the proof of Lemma 14.
Lemma 16. For all positive integers m, n and q where $n>3, n>m$, $(n, m)=1, q n m(n-m) \not \equiv 0 \bmod \pi$ and $q \geq 2$ the genus $g_{1 *}(m, n, q)$ of $M_{1 *}(m, n, q)$ is greater than $\frac{n q}{8}$ unless $n q \leq 16$. Moreover $g_{1 *}(m, n, q)>1$ unless $n<6$.

Proof. By Lemma 2(a) of [5] and by Lemmas 13-15 we have

$$
\begin{aligned}
g_{1 *}(m, n, q) \geq 1 & +\frac{q^{n-3}}{2}\left(\frac{q-1}{2}(n-2)-\frac{q^{\max \{0, m-n+2\}}}{m}\left(1+\frac{m-1}{q^{\varphi(q m) / \varphi(q)}}\right)\right. \\
& \left.-\frac{q^{\max \{0,2-m\}}}{n-m}\left(1+\frac{n-m-1}{q^{\varphi(q(n-m)) / \varphi(q)}}\right)\right) .
\end{aligned}
$$

Hence, by Lemma 24 of [5]

$$
g_{1 *}(m, n, q) \geq 1+\frac{q^{n-3}}{2} \gamma_{1}(q, n, m)
$$

where

$$
\gamma_{1}(q, n, m)=\left\{\begin{array}{l}
\frac{q-1}{2}(n-2)-1-\frac{q+1}{n-1} \quad \text { if } m=1 \text { or } m=n-1, \\
\frac{q-1}{2}(n-2)-\left(\frac{1}{m}+\frac{1}{n-m}\right)\left(1+\frac{1}{q}\right) \quad \text { otherwise. }
\end{array}\right.
$$

For $n \geq 6$ we have $q^{n-3} \geq \frac{2}{3} n q, \gamma_{1}(q, n, m) \geq \frac{2}{5}$, hence $g_{1 *}(m, n, q)>$ $\frac{2 n q}{15}>\frac{n q}{8}>1$; for $6>n>3 g_{1}^{*}(m, n, q) \leq \frac{n q}{8}$ implies $n q \leq 16$.

3. Proof of Theorem 1

Let $F(x)=x-C$, where $C \in K(\mathbf{y})$. Since $F(x) \mid x^{n_{1}}+A x^{m_{1}}+B$ we obtain $B=-C^{n_{1}}-A C^{m_{1}}, C \neq 0$. From $A^{-n} B^{n-m} \notin K$ we infer that $t:=A C^{m_{1}-n_{1}} \notin K$. We have the identity

$$
\begin{align*}
Q(x) & :=\frac{x^{n_{1}}+A x^{m_{1}}+B}{F(x)} \tag{15}\\
& =C^{n_{1}-1} \frac{\left(C^{-1} x\right)^{n_{1}}+t\left(C^{-1} x\right)^{m_{1}}-(t+1)}{C^{-1} x-1} .
\end{align*}
$$

If $T(x ; A, B) F\left(x^{(m, n)}\right)^{-1}$ is reducible over $K(\mathbf{y})$, then by Capelli's Lemma (see e.g. [1], p. 662) either

$$
\begin{equation*}
Q(x) \text { is reducible over } K(\mathbf{y}), \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{(m, n)}-\xi \text { is reducible over } K(\mathbf{y}, \xi), \text { where } \xi \text { is a zero of } Q(x) . \tag{17}
\end{equation*}
$$

In the former case $Q(x)$ has in $K(\mathbf{y})[x]$ a factor $x^{k}+\sum_{i=1}^{k} a_{i} x^{k-i}$, where, by the assumption, $2 \leq k \leq \frac{n_{1}-1}{2}$. The identity (15) implies that the field $L_{1}^{*}\left(k, m_{1}, n_{1}\right)$ defined in Definition 1 is a rational function field parametrized as follows:

$$
t=A C^{m_{1}-n_{1}}, \tau_{i}\left(x_{1}, \ldots, x_{k}\right)=(-1)^{i} a_{i} C^{-i} \quad(1 \leq i \leq k)
$$

By Lemma 2(b) of [5] $g_{1}^{*}\left(k, m_{1}, n_{1}\right)=0$.
Assume now that we have (17) but not (16). It follows by Capelli's theorem that either

$$
\begin{equation*}
\xi=\eta^{p}, \text { where } p \text { is a prime, } p \mid(m, n), \eta \in K(\mathbf{y}, \xi) \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
\xi=-4 \eta^{4}, \text { where } 4 \mid(m, n), \eta \in K(\mathbf{y}, \xi), \tag{19}
\end{equation*}
$$

Let

$$
\frac{x^{n_{1}}+t x^{m_{1}}-(t+1)}{x-1}=\prod_{j=1}^{n_{1}-1}\left(x-x_{j}\right), y_{j q}^{q}=x_{j}
$$

It follows from (15) that if $t=A C^{m_{1}-n_{1}}$ one can take

$$
\begin{array}{ll}
q=p, y_{j q}=C^{-1 / p} \eta_{j} & \text { if (18) holds, } \\
q=4, y_{j q}=\left(1+\zeta_{4}\right) C^{-1 / 4} \eta_{j} & \text { if (19) holds }
\end{array}
$$

where η_{j} are conjugates of η over $K(\mathbf{y})$. Hence the field

$$
M_{1 *}\left(m_{1}, n_{1}, q\right)=\bar{K}\left(t,\left(y_{1 q}+\cdots+y_{n_{1}-1, q}\right)^{q}\right)
$$

is parametrized by rational functions as follows

$$
\begin{gathered}
t=A C^{m_{1}-n_{1}}, \\
\left(y_{1 q}+\cdots+y_{n_{1}-1, q}\right)^{q}= \begin{cases}C^{-1}\left(\eta_{1}+\cdots+\eta_{n_{1}-1}\right)^{p} & \text { if }(18) \text { holds } \\
-4 C^{-1}\left(\eta_{1}+\cdots+\eta_{n_{1}-1}\right)^{4} & \text { if }(19) \text { holds }\end{cases}
\end{gathered}
$$

and, by Lemma 2(b) of [5], $g_{1 *}\left(m_{1}, n_{1}, q\right)=0$, contrary to Lemma 16 .
Proof of Theorem 2. The sufficiency of the condition is obvious. The proof of the necessity is similar to that of Theorem 1.

Let $F(x)=x-C$, where $C \in L$,

$$
Q(x ; A, B)=\frac{x^{n_{1}}+A x^{m_{1}}+B}{F(x)} .
$$

Since $F(x) \mid x^{n_{1}}+A x^{m_{1}}+B$ and $B \neq 0$ we have $C \neq 0, B=-C^{n_{1}}-A C^{m_{1}}$. Since $A^{-n} B^{n-m} \notin \bar{K}$, we have $t:=A C^{m_{1}-n_{1}} \notin \bar{K}$.

If $T(x ; A, B) F\left(x^{(m, n)}\right)^{-1}=Q\left(x^{(m, n)} ; A, B\right)$ is reducible over L then either

$$
\begin{equation*}
Q(x):=Q(x ; A, B) \text { is reducible over } L \tag{20}
\end{equation*}
$$

or
(21) $\quad x^{(m, n)}-\xi$ is reducible over $L(\xi)$ where ξ is a zero of Q.

In the former case Q has in $L[x]$ a factor of degree k, where by the assumption $2 \leq k \leq \frac{n_{1}-1}{2}$ and it follows from the identity (15) that the field $L_{1}^{*}\left(k, m_{1}, n_{1}\right)$ is isomorphic to a subfield of $\bar{K} L$. Hence, by Lemma 2(c) of [5], $g_{1}^{*}\left(k, m_{1}, n_{1}\right) \leq g$ and, by Lemma $8, n_{1} \leq 6 \max \{1, g\}$. In particular, for $g=1$ we have $n_{1} \leq 6$. The condition given in the theorem holds with $l=(m, n),\langle\nu, \mu\rangle=\left\langle n_{1}, m_{1}\right\rangle$.

Assume now that we have (21), but not (20). Then in the same way as in the proof of Theorem 1 we infer that for a certain $q \mid(m, n), q=4$ or a prime

$$
\begin{equation*}
x^{q}-\xi \text { is reducible over } L(\xi) \tag{22}
\end{equation*}
$$

and the field $M_{1 *}\left(m_{1}, n_{1}, q\right)$ is isomorphic to a subfield of $\bar{K} L$. Hence, by Lemma 2 (c) of [5], we have $g_{1 *}\left(m_{1}, n_{1}, q\right) \leq g$, thus by Lemma 16 for $n_{1}>3$ we have $n_{1} q<\max \{17,8 g\}$ and $g>1$ for $n_{1} \geq 6$. On the other hand, by (22), $Q\left(x^{q}\right)$ is reducible over L. Hence the condition given in the theorem holds with $l=\frac{(m, n)}{q},\langle\nu, \mu\rangle=\left\langle n_{1} q, m_{1} q\right\rangle$.

4. 2 lemmas to Theorem 3

Lemma 17. Let L be a finite extension of a field K, q a prime different from char K. There exists a finite subset $F=F(q, L / K)$ of K^{*} of cardinality at most $q^{\operatorname{ord}_{q}[L: K]}$ such that if

$$
\begin{equation*}
c \in K^{*}, \gamma \in L, \quad c=\gamma^{q}, \tag{23}
\end{equation*}
$$

then there exist $f \in F$ and $e \in K^{*}$ such that

$$
\begin{equation*}
c=f e^{q} \tag{24}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
A=\left\{a \in K^{*}: a=\alpha^{q}, \alpha \in L\right\} \tag{25}
\end{equation*}
$$

and let B be a finite subset of A with the property that for all functions $x: B \rightarrow \mathbb{Z}$

$$
\begin{equation*}
\prod_{a \in B} a^{x(a)}=b^{q}, b \in K \text { implies } x(a) \equiv 0 \bmod q \text { for all } a \in B . \tag{26}
\end{equation*}
$$

It follows from Theorem 1 of [4] that for every choice of q-th roots

$$
[K(\sqrt[q]{a}: a \in B): K]=q^{\operatorname{card} B}
$$

hence by (25), in view of $B \subset A$,

$$
q^{\operatorname{card} B} \mid[L: K]
$$

and card $B \leq \operatorname{ord}_{q}[L: K]$. Among all subsets B of A with the property (26) let us choose one of maximal cardinality and denote it by A_{0}. We assert that the set

$$
F=\left\{\prod_{a \in A_{0}} a^{x(a)}: x\left(A_{0}\right) \subset\{0,1, \ldots, q-1\}\right\}
$$

has the property asserted in the lemma. Indeed

$$
\operatorname{card} F=q^{\operatorname{card} A_{0}} \leq q^{\operatorname{ord}_{q}[L: K]} .
$$

On the other hand, if $c \in A_{0}$, (24) holds with $d=c, e=1$. If $c \notin A_{0}$ the set $B=A_{0} \cup\{c\}$ has more elements than A_{0}. By definition of A_{0} it has not the property (26). Hence there exist integers $x(a)\left(a \in A_{0}\right)$ and $x(c)$ such that $c^{x(c)} \prod_{a \in A_{0}} a^{x(a)}=b^{q}, b \in K$ and either
(27) $x(c) \equiv 0 \bmod q$ and for at least one $a \in A_{0}: x(a) \not \equiv 0 \bmod q$
or
(28) $x(c) \not \equiv 0 \bmod q$.

The case (27) is impossible, since it implies

$$
\prod_{a \in A_{0}} a^{x(a)}=\left(b c^{-\frac{x(c)}{q}}\right)^{q},
$$

contrary to the choice of A_{0}.
In the case (28) there exist integers y and z such that

$$
-x(c) y=1+q z
$$

and we obtain (24) with

$$
f=\prod_{a \in A_{0}} a^{q\left\{\frac{x(a) y}{q}\right\}}, \quad e=b^{-y} c^{-z} \prod_{a \in A_{0}} a^{\left[\frac{x(a) y}{q}\right]},
$$

where $\{\cdot\}$ and $[\cdot]$ denote the fractional and the integral part, respectively.

Lemma 18. Let q be a prime or $q=4$. For every finite extension $K(\xi)$ of a field K there exists a finite subset $S(q, K, \xi)$ of K such that if $c \in K^{*}$ and

$$
\begin{array}{ll}
c \xi=\eta^{q}, \quad \eta \in K(\xi)^{*} & \text { if } q \text { is a prime, } \\
c \xi=-4 \eta^{4}, \eta \in K(\xi)^{*} & \text { if } q=4, \tag{29}
\end{array}
$$

then

$$
\begin{equation*}
c=d e^{q}, \quad \text { where } \quad d \in S(q, K, \xi), e \in K^{*} . \tag{30}
\end{equation*}
$$

Proof. Assume first that q is a prime. If there is no $c \in K^{*}$ such that (29) holds we put $S(q, K, \xi)=\emptyset$. Otherwise we have

$$
\begin{equation*}
c_{0} \xi=\eta_{0}^{q}, \quad \eta_{0} \in K(\xi)^{*}, c_{0} \in K^{*} \tag{31}
\end{equation*}
$$

and the equations (29) and (31) give

$$
c / c_{0}=\left(\eta / \eta_{0}\right)^{q} .
$$

Hence, by Lemma 17

$$
c / c_{0}=f e^{q}, \quad \text { where } \quad f \in F(q, K(\xi) / K), e \in K^{*}
$$

and in order to satisfy (30) it is enough to put

$$
S(q, K, \xi)=\left\{c_{0} f: f \in F(q, K(\xi) / K)\right\} .
$$

Assume now that $q=4$. Again if there is no c such that (29) holds we put $S(q, K, \xi)=\emptyset$. Otherwise, we have

$$
\begin{equation*}
c_{0} \xi=-4 \eta_{0}^{4}, \quad \eta_{0} \in K(\xi)^{*}, \quad c_{0} \in K^{*} \tag{32}
\end{equation*}
$$

and the equations (29) and (32) give

$$
\begin{equation*}
c / c_{0}=\left(\eta / \eta_{0}\right)^{4} . \tag{33}
\end{equation*}
$$

By Lemma 17 applied with $q=2$

$$
\begin{equation*}
c / c_{0}=f e^{2}, f \in F(2, K(\xi) / K), \quad e \in K^{*} . \tag{34}
\end{equation*}
$$

If for a given $f \in F(2, K(\xi) / K)$ there exists $e_{f} \in K^{*}$ such that

$$
\begin{equation*}
f e_{f}^{2}=\vartheta^{4}, \quad \vartheta \in K(\xi) \tag{35}
\end{equation*}
$$

the equations (33)-(35) give

$$
\left(e / e_{f}\right)^{2}=\left(\eta / \eta_{0} \vartheta\right)^{4}, \quad \text { hence } e / e_{f}= \pm\left(\eta / \eta_{0} \vartheta\right)^{2}
$$

and another application of Lemma 17 gives

$$
e / e_{f}= \pm f_{1} e_{1}^{2}, \quad f_{1} \in F(2, K(\xi) / K), \quad e_{1} \in K^{*}
$$

Hence, by (34)

$$
c / c_{0}=f e_{f}^{2} f_{1}^{2} e_{1}^{4}
$$

and in order to satisfy (30) it is enough to put

$$
S(q, K, \xi)=\bigcup_{\substack{f \in(2, K(\xi) / K) \\ e_{f} \text { exists }}}\left\{c_{0} f e_{f}^{2} f_{1}^{2}: f_{1} \in F(2, K(\xi) / K)\right\} .
$$

5. Proof of Theorem 3

We begin by defining the sets $F_{\nu, \mu}^{1}(K)$. This is done in three steps. First we put $q=(\mu, \nu), \nu_{1}=\nu / q, \mu_{1}=\mu / q$ and introduce the fields $L_{1}\left(k, \mu_{1}, \nu_{1}\right)$ and $M_{1}\left(\mu_{1}, \nu_{1}, q\right)$ as defined in Definitions 1, 2. Since K is infinite we have $L_{1}\left(k, \mu_{1}, \nu_{1}\right)=K(t, y(t))$, where $y(t)$ is defined up to a conjugacy over $K(t)$ in the proof of Lemma 6 . Let Φ_{k}^{1} be the minimal polynomial of $y(t)$ over $K(t)$. It follows from the definition of $y(t)$ that $\Phi_{k}^{1} \in K[t, z]$. By Lemma 12 the function $\left(y_{1 q}+\cdots+y_{\nu_{1}-1, q}\right)^{q}$ generating $M_{1}\left(\mu_{1}, \nu_{1}, q\right)$ over $K(t)$ is determined up to a conjugacy. Let Ψ_{q}^{1} be its minimal polynomial over $K(t)$. Since $y_{i q}$ are integral over $K[t]$ we have $\Psi_{q}^{1} \in K[t, z]$. If $\nu_{1}>6$ we put

$$
S_{\nu, \mu}^{1}(K)= \begin{cases}\bigcup_{2<2 k<\nu_{1}}\left\{t_{0} \in K: \Phi_{k}^{1}\left(t_{0}, z\right) \text { has a zero in } K\right\} & \text { if } q=1 \\ \left\{t_{0} \in K: \Psi_{q}^{1}\left(t_{0}, z\right) \text { has a zero in } K\right\} & \text { if } q>1\end{cases}
$$

Since for $\nu_{1}>6$ and $k>1$ or $q>1$ we have $g_{1}^{*}\left(k, \mu_{1}, \nu_{1}\right)>1$ or $g_{1 *}\left(\mu_{1}, \nu_{1}, q\right)>1$, respectively, it follows by the Faltings theorem that the sets $S_{\nu, \mu}^{1}(K)$ are finite. Now we put

$$
\begin{gathered}
T_{\nu, \mu}^{1}(K) \\
= \begin{cases}\bigcup_{t_{0} \in S_{\nu, \mu}^{1}(K)}\left\{\left\langle t_{0},-t_{0}-1,1\right\rangle\right\} & \text { if } q=1, \\
\bigcup_{t_{0} \in S_{\nu, \mu}^{1}(K)}\left\{\left\langle t_{0} d^{\nu_{1}-\mu_{1}},-\left(t_{0}+1\right) d^{\nu_{1}}, d\right\rangle: \exists_{\xi_{0}} d \in S\left(q, K, \xi_{0}\right),\right. \\
\left.\xi_{0}^{\nu_{1}}+t_{0} \xi_{0}^{\mu_{1}}-\left(t_{0}+1\right)=0\right\} & \text { if } q \text { is a prime or } q=4, \\
\emptyset & \text { otherwise }\end{cases}
\end{gathered}
$$

($S(q, K, \xi$) is defined in Lemma 18);

$$
F_{\nu, \mu}^{1}(K)=\left\{\langle a, b, x-d\rangle:\langle a, b, d\rangle \in T_{\nu, \mu}^{1}(K) \text { and } \frac{x^{\nu}+a x^{\mu}+b}{x^{q}-d}\right.
$$

is a polynomial reducible over $K\}$.
Since the sets $S_{\nu, \mu}^{1}(K)$ and the sets $S\left(q, K, \xi_{0}\right)$ are finite, so are the sets $F_{\nu, \mu}^{1}(K)$. We proceed to prove that they have all the other properties asserted in the theorem.

By the assumption $n_{1}>6$ and $x^{n_{1}}+a x^{m_{1}}+b$ has in $K[x]$ a linear factor $F(x)$ but not a quadratic factor. Let $F(x)=x-c$, where $c \in K^{*}$, so that $b=-c^{n_{1}}-a c^{m_{1}}$. Put

$$
\begin{equation*}
t_{0}=a c^{m_{1}-n_{1}}, Q(x ; a, b)=\frac{x^{n_{1}}+a x^{m_{1}}+b}{F(x)} . \tag{36}
\end{equation*}
$$

Assume that

$$
\frac{x^{n}+a x^{m}+b}{F\left(x^{(m, n)}\right)}=Q\left(x^{(m, n)} ; a, b\right) \text { is reducible over } K
$$

By Capelli's lemma either

$$
\begin{equation*}
Q(x ; a, b) \text { is reducible over } K \tag{37}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{(n, m)}-\xi \text { is reducible over } K, \text { where } Q(\xi ; a, b)=0 \tag{38}
\end{equation*}
$$

In the case (37) $Q(x ; a, b)$ has a factor in $K[x]$ of degree k such that $1<$ $k \leq \frac{n_{1}-1}{2}$, say $\prod_{i=1}^{k}\left(x-\xi_{i}\right)$. It follows from the identity

$$
\begin{equation*}
\frac{x^{n_{1}}+t_{0} x^{m_{1}}-\left(t_{0}+1\right)}{x-1}=c^{1-n_{1}} Q(c x ; a, b) \tag{39}
\end{equation*}
$$

that the left hand side has the factor $\prod_{i=1}^{k}\left(x-c^{-1} \xi_{i}\right)$, thus $\tau_{i}\left(c^{-1} \xi_{1}, \ldots\right.$ $\left.\ldots, c^{-1} \xi_{k}\right) \in K(1 \leq i \leq k)$ and at least one value of the algebraic function $y(t)$ at $t=t_{0}$ lies in K, hence $t_{0} \in S_{n_{1}, m_{1}}^{1}(K)$. It follows that $\left\langle t_{0},-t_{0}-\right.$ $1,1\rangle \in T_{n_{1}, m_{1}}^{1}(K),\left\langle t_{0},-t_{0}-1, x-1\right\rangle \in F_{n_{1}, m_{1}}^{1}(K)$ and the condition given in the theorem holds with $l=(m, n), \nu=n_{1}, \mu=m_{1}, a_{0}=t_{0}$, $b_{0}=-t_{0}-1, F_{0}=x-1, u=c$.

In the case (38) note that

$$
\begin{equation*}
Q(\xi ; a, b)=0, \quad \text { implies } \quad \xi \neq 0 \tag{40}
\end{equation*}
$$

Further, by Capelli's theorem, there exists a $q \mid(m, n)$ such that
either q is a prime and $\xi=\eta^{q}, \eta \in K(\xi)^{*}$ or $q=4$

$$
\begin{equation*}
\text { and } \xi=-4 \eta^{4}, \eta \in K(\xi)^{*} . \tag{41}
\end{equation*}
$$

If $\eta_{1}, \ldots, \eta_{n_{1}-1}$ are all the conjugates of η over K we have

$$
Q(x ; a, b)= \begin{cases}\prod_{i=1}^{n_{1}-1}\left(x-\eta_{i}^{q}\right) & \text { if } q \text { is a prime }, \\ \prod_{i=1}^{n_{1}-1}\left(x+4 \eta_{i}^{4}\right) & \text { if } q=4\end{cases}
$$

hence

$$
\begin{equation*}
Q\left(x^{q} ; a, b\right) \text { is reducible over } K . \tag{42}
\end{equation*}
$$

By the identity (39) it follows that

$$
\frac{x^{n_{1}}+t_{0} x^{m_{1}}-\left(t_{0}+1\right)}{x-1}= \begin{cases}\prod_{i=1}^{n_{1}-1}\left(x-c^{-1} \eta_{i}^{q}\right) & \text { if } q \text { is a prime }, \\ \prod_{i=1}^{n_{1}-1}\left(x+4 c^{-1} \eta_{i}^{4}\right) & \text { if } q=4 .\end{cases}
$$

Hence $\Psi_{q}^{1}\left(t_{0}, u_{0}\right)=0$, where

$$
u_{0}= \begin{cases}c^{-1}\left(\eta_{1}+\cdots+\eta_{n_{1}-1}\right)^{q} & \text { if } q \text { is a prime } \\ -4 c^{-1}\left(\eta_{1}+\cdots+\eta_{n_{1}-1}\right)^{4} & \text { if } q=4\end{cases}
$$

and, since $\eta_{1}+\cdots+\eta_{n_{1}-1} \in K$, we have $u_{0} \in K, t_{0} \in S_{n_{1}, m_{1}}(K)$.
Further, it follows from (39) and (40) that $\xi_{0}=c^{-1} \xi$ is a zero of $\frac{x^{n_{1}}+t_{0} x^{m}-\left(t_{0}+1\right)}{x-1}$ and, by (41), $c \xi_{0}=\eta^{q}$ or $-4 \eta^{4}$, where $\eta \in K\left(\xi_{0}\right)^{*}$ and q is a prime or $q=4$, respectively.

By Lemma $18 c=d e^{q}$, where $d \in S\left(q, K, \xi_{0}\right), e \in K$, hence

$$
\left\langle t_{0} d^{n_{1}-m_{1}},-\left(t_{0}+1\right) d^{n_{1}}, d\right\rangle \in T_{n_{1} q, m_{1} q}^{1}(K) .
$$

By (39)

$$
\frac{x^{n_{1} q}+t_{0} d^{n_{1}-m_{1}} x^{m_{1} q}-\left(t_{0}+1\right) d^{n_{1}}}{x^{q}-d}=\left(c d^{-1}\right)^{1-n_{1}} Q\left((e x)^{q} ; a, b\right)
$$

hence, by (42)

$$
\frac{x^{n_{1} q}+t_{0} d^{n_{1}-m_{1}} x^{m_{1} q}-\left(t_{0}+1\right) d^{n_{1}}}{x^{q}-d} \text { is reducible over } K
$$

and $\left\langle t_{0} d^{n_{1}-m_{1}},-\left(t_{0}+1\right) d^{n_{1}}, x-d\right\rangle \in F_{n_{1} q, m_{1} q}^{1}(K)$. Thus the condition given in the theorem holds with $l=(m, n) / q, \nu=n_{1} q, \mu=m_{1} q, a_{0}=$ $t_{0} d^{n_{1}-m_{1}}, b_{0}=-\left(t_{0}+1\right) d^{n_{1}}, F_{0}=x-d, u=e$.

Assume now that for an integer $l: n / l=\nu, m / l=\mu$ and $a=u^{\nu-\mu} a_{0}$, $b=u^{\nu} b_{0}, F(x)=u F_{0}\left(\frac{x}{u}\right)$, where $u \in K^{*},\left\langle a, b, F_{0}\right\rangle \in F_{\nu, \mu}^{1}(K)$. Then by the definition of $F_{\nu, \mu}^{1}(K)$

$$
\frac{x^{\nu}+a x^{\mu}+b}{F_{0}\left(x^{(\mu, \nu)}\right)} \text { is a polynomial reducible over } K
$$

and by the substitution $x \mapsto \frac{x^{l}}{u}$ we obtain reducibility of $T(x ; a, b) F\left(x^{(n, m)}\right)^{-1}$ over K.

The proof of Theorem 3 is complete.

6. Addenda and corrigenda to the paper [5]

The paper [5] has been corrected in [6]. Regretfully further corrections are needed.

Page 6, Table 1: $\quad A_{6,1}$ should read $4 v\left(v^{2}+3\right), B_{6,1}$ should read -$-\left(v^{2}+4 v-1\right)\left(v^{2}-4 v-1\right)$.
in $B_{7,2}$ for $v^{2}-v-1$ read $v^{2}-v+1$
(This correction is due to G. Turnwald).
in $A_{15,5}$ for $100 v^{2}$ read $10 v^{2}$
(This correction is due to J. Browkin).
Page 27, lines -13
to -1 : for $\bar{K}\left(x_{1}, \ldots\right)$ read $\bar{K}\left(t, x_{1}, \ldots\right)$ nine times.
Page 28, line -10: for $\sum_{i=1}^{n} y_{i q}$ read $\left(\sum_{i=1}^{n} y_{i q}\right)^{q}$.
Page 31, line -13 : for $\frac{1}{n}+\operatorname{read} 1+$.
Page 37, formula (24): for $n \operatorname{read}(m, n)$.
line -13 : for η_{4} read $\eta_{n_{1}}$.
Page 40, line -3 : for $(p-1) n$ read $(p-1) d$, not $p d$ as indicated in [6].
Page 41, line -14: after 2 insert 7 .
line -7 : for $v^{2}-v-1$ read $v^{2}-v+1$ (This and the previous correction are due to G. Turnwald).
Page 55, line - 2 : As pointed out in [6] (with a misprint) the following inclusion has been used

$$
\begin{equation*}
K_{0}(\mathbf{y})^{\text {sep }} \cap K_{1}(\mathbf{y}) \subset\left(K_{0}^{\text {sep }} \cap K_{1}\right)(\mathbf{y}), \tag{*}
\end{equation*}
$$

where K_{0} is a subfield of $K_{1}, \mathbf{y}=\left\langle y_{1}, \ldots, y_{r}\right\rangle$ is a variable vector, $K_{0}^{\text {sep }}$ and $K_{0}(\mathbf{y})^{\text {sep }}$ is the separable closure of K_{0} and $K_{0}(\mathbf{y})$, respectively.

Here is a proof of $(*)$ by induction on r. For $r=0(*)$ is obvious. Assume (*) is true for \mathbf{y} of $r-1$ coordinates and let

$$
t \in K_{0}(\mathbf{y})^{\mathrm{sep}} \cap K_{1}(\mathbf{y}) .
$$

We have $F(\mathbf{y}, t)=0$, where $F \in K_{0}[\mathbf{y}, T]$ and the discriminant $D(y)$ of $F(y, T)$ with respect to T is not zero. Let $a \in K_{0}[\mathbf{y}]$ be the leading coefficient of F with respect to T, so that

$$
\begin{equation*}
G(\mathbf{y}, a t)=0, \tag{**}
\end{equation*}
$$

where $G(\mathbf{y}, T):=a^{\operatorname{deg}_{T} F-1} F(\mathbf{y}, T / a)$ is monic with respect to T. We have at $\in K_{1}[\mathbf{y}]$, hence

$$
\binom{*}{* *} \quad a t=\sum_{\nu=0}^{n} a_{\nu} y_{r}^{n-\nu}, a_{\nu} \in K_{1}\left[y_{1}, \ldots, y_{r-1}\right] \quad(0 \leq \nu \leq n) \text {. }
$$

Choose $n+1$ distinct elements $\eta_{0}, \ldots, \eta_{n}$ of $K_{0}^{\text {sep }}$ such that
$\binom{* *}{* *} \quad a\left(y_{1}, \ldots, y_{r-1}, \eta_{i}\right) D\left(y_{1}, \ldots, y_{r-1}, \eta_{i}\right) \neq 0(0 \leq i \leq n)$.
Since by $(* *)$ and $\binom{*}{* *}$

$$
G\left(y_{1}, \ldots, y_{r-1}, \eta_{i}, \sum_{\nu=0}^{n} a_{\nu} \eta_{i}^{n-\nu}\right)=0
$$

and, by $\binom{* * *}{* *}$, the discriminant of $G\left(y_{1}, \ldots, y_{r-1}, \eta_{i}, T\right)$ with respect to T is not zero, we have

$$
\sum_{\nu=0}^{n} a_{\nu} \eta_{i}^{n-\nu} \in K_{0}\left(y_{1}, \ldots, y_{r-1}\right)^{\text {sep }}
$$

Since $\operatorname{det}\left(\eta_{i}^{n-\nu}\right) \neq 0$ we have $a_{\nu} \in K_{0}\left(y_{1}, \ldots, y_{r-1}\right)^{\operatorname{sep}}(0 \leq \nu \leq n)$. By the inductive assumption $a_{\nu} \in\left(K_{0}^{\text {sep }} \cap K_{1}\right)\left(y_{1}, \ldots, y_{r-1}\right)(0 \leq \nu \leq n)$ and by ($* *$)

$$
t \in\left(K_{0}^{\mathrm{sep}} \cap K_{1}\right)(\mathbf{y}) .
$$

Page 61, line -9: \quad for ν read ν_{1}.

Page 62, lines 10 and 11: The formulae make sense only for $u_{0} \neq 0$. If $u_{0}=0$ one should write instead, both for q prime and $q=4$, $\left\langle t_{0}^{\rho} d^{\nu-\mu) / q}, t_{0}^{\sigma} d^{\nu / q}\right\rangle$, where $d \in S\left(q, K, \xi_{0}\right)$ and $\xi_{0}^{\nu / q}+t_{0}^{\rho} \xi_{0}^{\mu / q}+t_{0}^{\sigma}=0$. $S(q, K, \xi)$ is the set defined in Lemma 18 above.

If $x^{n}+a x^{m}+b$ is reducible over K and $x^{n_{1}}+a x^{m_{1}}+b$ is irreducible over K, then retaining the notation of [5] and putting $\xi_{0}=a^{-s} b^{r} \xi$ we argue as follows.

Since $a^{s} b^{-r} \xi_{0}=\xi=\eta^{q}$ or $-4 \eta^{4}$, where $\eta \in K(\xi)^{*}$ and q is a prime or $q=4$, respectively, we have by Lemma 18 above

$$
a^{s} b^{-r}=d e^{q}, d \in S\left(q, K, \xi_{0}\right), e \in K
$$

Since, by (74) $t_{0}=a^{-n_{1}} b^{n_{1}-m_{1}}$ we obtain

$$
\begin{aligned}
& a=a^{s\left(n_{1}-m_{1}\right)-r n_{1}}=t_{0}^{r}\left(d e^{q}\right)^{n_{1}-m_{1}}=t_{0}^{r} d^{n_{1}-m_{1}} e^{n_{1} q-m_{1} q}, \\
& b=b^{s\left(n_{1}-m_{1}\right)-r n_{1}}=t_{0}^{s}\left(d e^{q}\right)^{n_{1}}=t_{0}^{r} d^{n_{1}} e^{q n_{1}} .
\end{aligned}
$$

By (75) $x^{n_{1} q}+t_{0}^{r} d^{n_{1}-m_{1}} x^{m_{1} q}+t_{0}^{s} d^{n_{1}}$ is reducible over K, hence
$\left\langle t_{0}^{r} d^{n_{1}-m_{1}}, t_{0}^{s} d^{n_{1}}\right\rangle \in F_{n_{1} q, m_{1} q}$ and (ix) holds with $l=\frac{(m, n)}{q}, \nu=n_{1} q$, $\mu=m_{1} q, u=e$.

Page 80, Table 5: Insert three new examples

Number	Trinomial	Factor	Discoverer
11a	$x^{10}+3^{6} \cdot 11 x+2 \cdot 3^{8}$	$x^{3}+3 x^{2}+9 x+18$	Cisłowska [2]
12a	$x^{10}+2^{6} \cdot 5 \cdot 7^{6} \cdot 11 \cdot 631 x$ $+2^{7} \cdot 7^{7} \cdot 17 \cdot 19 \cdot 73$	$x^{3}+14 x^{2}+392 x+3332$	Cisłowska [2]
36a	$x^{15}-3^{6} x^{6}+3^{9}$		

References

[1] S. Cha乇adus, Letter to the author of July 7, 1994.
[2] R. CisŁowska, Master dissertation, Siedlce University, 1995.
[3] L. Rédei, Algebra, Erster Teil, Leipzig, 1959.
[4] A. Schinzel, On linear dependence of roots, Acta Arith. 28 (1975), 161-175.
[5] A. Schinzel, On reducible trinomials, Dissert. Math. 329 (1993).
[6] A. Schinzel, Errata to [5], Acta Arith. 73 (1995), 399-400.
[7] N. Tschebotaröw, Grundzüge der Galoisschen Theorie, übersetzt und bearbeitet von H. Schwerdtfeger, Groningen-Djakarta, 1950.

ANDRZEJ SCHINZEL
MATHEMATICS INSTITUTE PAN
P.O. BOX 137, 00-950 WARSZAWA

POLAND
E-mail: schinzel@plearn.edu.pl
(Received July 26, 1999; revised January 10, 2000)

