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Abstract. It is shown that if a trinomial has a binomial factor then under certain
conditions the cofactor is irreducible.

1. Introduction

This paper is a sequel to [5]. In that paper we considered an arbitrary
field K of characteristic π, the rational function field K(y), where y is a
variable vector, a finite algebraic extension L of K(y1) and a trinomial

(i) T (x; A,B) = xn + Axm + B, where n > m > 0, π - mn(n−m)

and either A, B ∈ K(y)∗, A−nBn−m /∈ K or A,B ∈ L, A−nBn−m /∈ K.
A necessary and sufficient condition was given for reducibility of

T (x; A,B) over K(y) or L respectively, provided in the latter case that
L is separable (This proviso was only made in the errata [6].). As a con-
sequence a criterion was derived for reducibility of T (x; a, b) over an al-
gebraic number field containing a, b. In each case it was assumed that
n ≥ 2m, but this involved no loss of generality, since xn + Axm + B and
xn + AB−1xn−m + B−1 are reducible simultaneously. Let

(ii) n1 = n/(n,m), m1 = m/(n,m).

Mathematics Subject Classification: 12E05, 12E10, 11R09.
Key words and phrases: reducibility, trinomials.
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One case of reducibility of T (x; A,B) over the field Ω = K(y) or L is that
xn + Axm1 + B has in Ω[x] a linear factor. The aim of this paper is to
prove that if n1 is sufficiently large and xn1 + Axm1 + B has in Ω[x] a
linear factor F (x), but not a quadratic factor, then T (x;A,B)F (x(m,n))−1

is irreducible over Ω. More precisely, we shall prove using the notation
introduced in (i) and (ii) the following three theorems.

Theorem 1. Let n1 > 5 and A, B ∈ K(y)∗, A−nBn−m /∈ K. If

xn1 + Axm1 + B has in K(y)[x] a linear factor, F (x), but not a quadratic

factor, then T (x;A,B)F (x(m,n))−1 is irreducible over K(y).

Theorem 2. Let n1 > 3 and A,B ∈ L∗, where L is a finite separable

extension of K(y1) with KL of genus g and A−nBn−m /∈ K. If xn1 +
Axm1 + B has in L[x] a linear factor F (x), but not a quadratic factor,

then

(iii) T (x; A,B)F (x(m,n))−1 is reducible over L

if and only if there exists an integer l such that

〈n

l
,
m

l

〉
=: 〈ν, µ〉 ∈ N2 : ν < max{17, 8g}

and xν+Axµ+B
F (x(µ,ν))

is reducible over L. Moreover, if g = 1, then (iii) implies

n1 ≤ 6.

Theorem 3. Let n1 > 6, K be an algebraic number field and a, b ∈
K∗. If the trinomial xn1 +axm1 +b has in K[x] a monic linear factor F (x),
but not a quadratic factor, then T (x; a, b)F (x(m,n))−1 is reducible over K if

and only if there exists an integer l such that 〈n/l,m/l〉 =: 〈ν, µ〉 ∈ N2 and

a = uν−µa0, b = uνb0, F = uF0

(
x
u

)
, where u ∈ K∗, 〈a0, b0, F0〉 ∈ F 1

ν,µ(K)
and F 1

ν,µ(K) is a certain finite set, possibly empty.

There is no principal difficulty in determining in Theorems 1, 2 for
g = 1, and 3 all cases of reducibility when n1 ≤ 6 in much the same way
as it was done in [5] for T (x; A,B) or T (x; a, b), however this seems of
secondary interest. On the other hand, it is natural to ask what happens
when xn1 + Axm1 + B has a quadratic factor. We intend to return to this
question in the next paper of this series.

In analogy with a conjecture proposed in [5] we formulate
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Conjecture. For every algebraic number field one can choose sets
F 1

ν,µ(K) such that the set

∑1
=

⋃

ν,µ,F

⋃

〈a,b,F 〉∈F 1
ν,µ

{xν + axµ + b} is finite.

2. 16 lemmas to Theorems 1–2

Lemma 1. If in a transitive permutation group G the length of a cycle

C ∈ G is at least equal to the length of a block of imprimitivity, then it is

divisible by the latter.

Proof. Let C = (a1, . . . , aν), aν+i := ai (i = 1, 2 . . . ) and let
B1, B2, . . . be conjugate blocks of imprimitivity. Let µ be the least positive
integer such that for some i, ai and ai+µ belong to the same block B. If
µ = 1, then by induction ai ∈ B for all i, hence ν ≤ |B| and, since ν ≥ |B|
by the assumption, we have ν = |B|.

If µ > 1 we may assume, changing if necessary the numeration of the
ai and of the blocks, that

ai ∈ Bi (1 ≤ i ≤ µ), aµ+1 ∈ B1.

It follows by induction on i that

(1) akµ+i ∈ Bi (1 ≤ i ≤ µ, k = 0, 1, . . . ),

hence, in particular, i ≡ j mod ν implies i ≡ j mod µ, thus µ | ν.
If a ∈ B1 then C(a) ∈ B2, hence C(a) 6= a and there exists aj such

that a = aj . By (1) we have

j ≡ 1 mod µ.

Thus among aj (1 ≤ j ≤ ν, j ≡ 1 mod µ) occur all elements of B1 and
only such elements. However aj in question are distinct, hence

ν

µ
= |B1| and |B1| | ν. ¤
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Lemma 2. If (m,n) = 1 the polynomial R1(x, t) = xn+txm−(1+t)
x−1 is

absolutely irreducible. The algebraic function x(t) defined by the equation

R1(x, t) = 0 has just n−2 branch points ti 6= −1,∞ with one 2-cycle given

by the Puiseux expansions

x(t) = ξi ± (t− ti)1/2Pi1

(
±(t− ti)1/2

)
, ξi 6= 0 (1 ≤ i ≤ n− 2)

and the remaining expansions

x(t) = Pij(t− ti) (2 ≤ j ≤ n− 2).

At the branch point −1 x(t) has one m-cycle given by the Puiseux expan-

sions

x(t) = ζ2i+1
2m (t + 1)1/mPn−1,1

(
ζ2i+1
2m (t + 1)1/m

)
(0 ≤ i < m)

and the remaining expansions at this point are

x(t) = Pn−1,j(t + 1) (2 ≤ j ≤ n−m).

At the branch point ∞ x(t) has one (n −m)-cycle given by the Puiseux

expansions

x(t) = ζ2i+1
2(n−m)t

1/(n−m)Pn1

(
ζ2i+1
2(n−m)t

1/(n−m)
)

,

and the remaining expansions at this point are

x(t) = Pnj(t−1) (2 ≤ j ≤ m).

Here Pij are ordinary formal power series with Pij(0) 6= 0 and ζq is a

primitive root of unity of order q. For a fixed i the values ξi and Pij(0)
(j > 1) are distinct.

Proof. The polynomial R1(x, t) is absolutely irreducible since it can
be written as

xn − 1
x− 1

+ t
xm − 1
x− 1

and, since (m,n) = 1, we have
(

xn−1
x−1 , xm−1

x−1

)
= 1.
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If τ is a finite branch point of the algebraic function x(t) we have for
some ξ

(2) R1(ξ, τ) = R′1x(ξ, τ) = 0,

hence also T (ξ; τ,−τ − 1) = T ′x(ξ; τ,−τ − 1) = 0, which gives either ξ = 0,
τ = −1 or

τ 6= 0, ξn−m = −m

n
τ, ξm =

n

n−m

τ + 1
τ

.

If τ = − n
m , then ξn−m = 1, ξm = 1 and, since (m,n) = 1, ξ = 1.

However R′1x(1,− n
m ) = n(n−1)

2 − n
m ·m(m−1)

2 = n(n−m)
2 6= 0 thus for τ 6= −1

(2) implies (−m
n τ)m = ( n

n−m
τ+1

τ )n−m, τ 6= − n
m , which gives

(−m)m(n−m)n−mτn − nn(τ + 1)n−m = 0.

The only multiple root of this equation is τ = − n
m and it has multiplicity 2.

Denoting the remaining roots by ti (1 ≤ i ≤ n− 2) we find ti 6= 0,−1,

(
−m

n
ti

)m

=
(

n

n−m

ti + 1
ti

)n−m

,

hence for a uniquely determined ξi 6= 0, 1

ξn−m
i = −m

n
ti, ξ

m
i =

n

n−m

ti + 1
ti

and R1(ξi, ti) = R′1x(ξi, ti) = 0.
Further,

R′′1x(ξi, ti)

=
n(n− 1)ξn−1

i − n(n− 1)ξn−2
i + m(m− 1)tiξm−1

i −m(m− 1)tiξm−2
i

(ξi − 1)2

=
n(n− 1)ξn−2

i + m(m− 1)tiξm−2
i

ξi − 1
= ξm−2

i

m(m− n)ti
ξi − 1

6= 0

and
R′1t(ξi, ti) =

ξm
i − 1
ξi − 1

=
mti + n

(ξi − 1)(n−m)
6= 0.
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It follows that the Taylor expansion of R1(x, t) at 〈ξ, ti〉 has the lowest
terms

1
2
R′′1x(ξi, ti)(x− ξi)2 and R′1t(ξi, ti)(t− ti),

which implies the existence at the point ti of the two-cycle with the expan-
sions given in the lemma. The remaining expansions are obtained using
the fact that R1(x, ti) has n − 3 distinct zeros, different from 0 and ξi.
These zeros are Pij(0) (2 ≤ j ≤ n− 2). The assertions concerning branch
points −1 and ∞ are proved in a standard way. ¤

Lemma 3. If (m,n) = 1, the discriminant D1(t) of R1(x, t) with

respect to x equals

c(t + 1)m−n
n−2∏

i=1

(t− ti), c ∈ K∗.

Proof. Since R1 is monic with respect to x we have

D1(t) =
∏

i<j

(xi − xj)2,

where R1(x, t) =
∏n−1

j=1 (x − xj). Using Lemma 2 we find that the only
possible zeros of D1(t) are ti (1 ≤ i ≤ −2) and −1. Taking for xj the
Puiseux expansion of x(t) at these points we find the exponents with which
t− ti and t + 1 divide D1(t). ¤

Lemma 4. If (m,n) = 1 the Galois group of the polynomial R1(x, t)
over K(t) is the symmetric group Sn−1.

Proof. Since, by Lemma 2, R1(x, t) is absolutely irreducible, the
group G in question is transitive. By Lemma 1(c) of [5] and Lemma 2
G contains a transposition (for n > 2), an m-cycle and an (n−m)-cycle,
where we may assume m ≤ n −m. If G were imprimitive with blocks of
imprimitivity of length b, 1 < b < n−1 we should have 2b ≤ n−1, b ≤ n−m

and by Lemma 1, b | m and b | (n, m), b = 1, a contradiction. Thus G

is primitive and since it contains a transposition it must be symmetric by
Theorem 14 in Chapter 1 of [7]. ¤
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Definition 1. Let (m,n) = 1, R1(x, t) =
∏n−1

i=1 (x− xi(t)). We set

L1(k, m, n) = K(t, τ1(x1, . . . , xk), . . . , τk(x1, . . . , xk))

L∗1(k, m, n) = K(t, τ1(x1, . . . , xk), . . . , τk(x1, . . . , xk)),

where τj is the j-th fundamental symmetric function.

Remark. By Lemma 4 the fields L1(k,m, n) and L∗1(k, m, n) are deter-
mined by k, m, n up to an isomorphism fixing K(t) and K(t), respectively.

Lemma 5. The numerator of t − ti in L∗1(k,m, n) has
(
n−3
k−1

)
prime

divisors in the second power and none in the higher ones.

Proof. The proof is analogous to the proof of Lemma 5 in [5].

Lemma 6. The numerator of t + 1 in L∗1(k, m, n) has

1
m

k∑

l=0

(
n−m− 1

k − l

) ∑

d|(m,l)

ϕ(d)
(

m/d

l/d

)

distinct prime divisors.

Proof. By Lemma 1(a) of [5] the prime divisors of the numerator
of t + 1 are in one-to-one correspondence with the cycles of the Puiseux
expansions of a generating element of L∗1(k, m, n) at t = −1 provided
the lengths of these cycles are not divisible by π. For the generating
element we take y(t) =

∑k
j=1 ajτj(x1, . . . , xk), where a ∈ K if K is fi-

nite and a ∈ K otherwise, is chosen so that
∑k

j=1 ajτj(xi1 , . . . , xik
) =∑k

j=1 ajτj(x1, . . . , xk) implies {i1, . . . , ik} = {1, . . . , k}. By Lemma 4 for
each set {i1, . . . , ik} ⊂ {1, . . . , n− 1} there is an automorphism of the ex-
tension K(t, x1(t), . . . , xn−1(t))/K(t) taking x1(t), . . . , xk(t) into xi1(t), . . .
. . . , xik

(t), respectively. Thus at t = −1 we obtain the following Puiseux
expansions for y(t)

Q(t, l, i1, . . . , ik)=
k∑

j=1

ajτj

(
ζ2i1+1
2m (t +1)1/mPn−1,1

(
ζ2i1+1
2m (t +1)1/m

)
, . . . ,

ζ2il+1
2m (t + 1)1/mPn−1,1

(
ζ2il+1
2m (t + 1)1/m

)
,

Pn−1,il+1(t + 1), . . . , Pn−1,ik
(t + 1)

)
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where l runs from 0 to k, {i1, . . . , il} runs through all subsets of
{0, 1, . . . ,m−1} of cardinality l and {il+1, . . . , ik} runs through all subsets
of {2, 3, . . . , n−m} of cardinality k − l.

To see this note that the fundamental symmetric functions of
Q(t, l, i1, . . . , ik) coincide with the fundamental symmetric functions of the
conjugates of y(t) over K(t).

If P is an ordinary formal power series, the conjugates of P
(
(t+1)1/m

)

over K(((t + 1)1/d)), where d | m are P (ζde
m (t + 1)1/m), (0 ≤ e < m/d).

Therefore

Q(t, l, i1, . . . , ik) ∈ K
((

(t + 1)1/d
))

, where d | m,

if and only if

Q(t, l, i1, . . . , ik) = Q(t, l, i1 + ed, . . . , il + ed, il+1, . . . , ik) (0 ≤ e < m/d),

hence by the choice of a if and only if

{i1, . . . , il}+ d ≡ {i1, . . . , il} mod m.

It follows by Lemma 7 of [5] that y(t) has at t = −1 exactly

k∑

l=0

f(m, l, d)
(

n−m− 1
k − l

)

expansions belonging to K(((t+1)1/d))\⋃
δ<d K(((t+1)1/δ)), where d | m

and

f(m, l, d) =

{ ∑
δ|(d,dl/m) µ(δ)

(
d/δ
dl/δ

m

)
if m | dl,

0 otherwise.

These expansions split into cycles of d conjugate expansions each, where
m | dl, i.e.

d = e
m

(m, l)
, e | (m, l).

Hence the number of distinct prime divisors of the numerator of t + 1 is

k∑

l=0

m

(m, l)

∑

e|(m,l)

1
e
f

(
m, l,

em

(m, l)

)(
n−m− 1

k − l

)
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which, by the formula (1) of [5], equals

1
m

k∑

l=0

(
n−m− 1

k − l

) ∑

d|(m,l)

ϕ(d)
(

m/d

l/d

)
. ¤

Lemma 7. The denominator of t in L∗1(k, m, n) has

1
n−m

k∑

l=0

(
m− 1
k − l

) ∑

d|(n−m,l)

ϕ(d)
(

(n−m)/d

l/d

)

distinct prime divisors.

Proof. The proof is analogous to the proof of Lemma 6. ¤
Lemma 8. If n ≥ 6, (m,n) = 1, n−1 ≥ 2k ≥ 4, the genus g∗1(k,m, n)

of L∗1(k, m, n) satisfies g∗1(k,m, n) ≥ n
6 .

Proof. By Lemma 2 the only branch points of y(t) may be ti (1 ≤
i ≤ n− 2), −1 and ∞. It follows now from Lemma 2(a) of [5], 5, 6 and 7
that

g∗1(k, m, n) =
1
2

(
n− 3
k − 1

)
(n− 2)− 1

2m

k∑

l=0

(
n−m− 1

k − l

) ∑

d|(m,l)

ϕ(d)
(

m/d

l/d

)

− 1
2(n−m)

k∑

l=0

(
m− 1
k − l

) ∑

d|(n−m,l)

ϕ(d)
(

(n−m)/d

l/d

)
+ 1.

Using this formula we verify the lemma by direct calculation for n = 6, 7, 8.
To proceed further we first establish the inequality

(3) g∗1(k,m, n) ≥ 1 +
1

2(n− 1)

(
n− 1

k

)
p1(k, m, n),

where

p1(k, m, n) = k(n−k−1)−





n2 − n + 3.5
n− 1

if m = 1, n− 1,

(n− 1)(n2 − 3n + 5.5)
(n− 2)2

if m = 2, n− 2,

n

(
1 +

3.5
m(n−m)

)
if 2 < m < n− 2.
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Indeed, by Lemma 13 of [5] we have for l > 0

∑

d|(m,l)

ϕ(d)
(

m/d

l/d

)
≤

(
1 +

3.5
m

)(
m

l

)

and trivially for l ≥ 0

∑

d|(m,l)

ϕ(d)
(

m/d

l/d

)
≤ m

(
m

l

)
.

Similar inequalities hold with m replaced by n−m. Hence, for m = 1

g∗1(k, m, n) =
1
2

(
n− 3
k − 1

)
(n− 2)− 1

2

1∑

l=0

(
n− 2
k − l

)

− 1
2(n− 1)

∑

d|(n−1,k)

ϕ(d)
(

(n− 1)/d

k/d

)
+ 1

≥ 1 +
k(n− k − 1)

2(n− 1)

(
n− 1

k

)
− 1

2

(
n− 1

k

)

− 1
2(n− 1)

(
1 +

3.5
n− 1

)(
n− 1

k

)
,

for m = 2

g∗1(k, m, n) ≥ 1
2

(
n− 3
k − 1

)
(n− 2)− 1

2

2∑

l=0

(
n− 3
k − l

)(
2
l

)

− 1
2(n− 1)

k∑

l=k−1

(
1 +

3.5
n− 2

)(
n− 2

l

)
+ 1

= 1 +
k(n− k − 1)

2(n− 1)

(
n− 1

k

)
− 1

2

(
n− 1

k

)

− 1
2(n− 2)

(
1 +

3.5
n− 2

)(
n− 1

k

)
,
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for m between 2 and n− 2

m− 1− 3.5
m

> 0, n−m− 1− 3.5
n−m

> 0,

(
n−m− 1

k

)
≤ n−m− 1

n− 1

(
n− 1

k

)
,

(
m− 1

k

)
≤ m− 1

n− 1

(
n− 1

k

)
;

g∗1(k, m, n) ≥ 1
2

(
n− 3
k − 1

)
(n− 2)− 1

2m

(
n−m− 1

k

)
m

− 1
2m

k∑

l=1

(
n−m− 1

k − l

)(
1 +

3.5
m

)(
m

l

)
− 1

2(n−m)

(
m− 1

k

)
(n−m)

− 1
2(n−m)

k∑

l=1

(
m− 1
k − l

)(
1 +

3.5
n−m

)(
n−m

l

)
+ 1

=
1
2

(
n− 3
k − 1

)
(n− 2)− 1

2m

(
n−m− 1

k

)(
m− 1− 3.5

m

)

− 1
2m

(
1 +

3.5
m

) k∑

l=0

(
n−m− 1

k − l

)(
m

l

)

− 1
2(n−m)

(
m− 1

k

)(
n−m− 1− 3.5

n−m

)

− 1
2(n−m)

(
1 +

3.5
n−m

) k∑

l=0

(
m− 1
k − l

)(
n−m

l

)
+ 1

≥ 1 +
k(n− k − 1)

2(n− 1)

(
n− 1

k

)

− n−m− 1
2m(n− 1)

(
n− 1

k

)(
m− 1− 3.5

m

)
− 1

2m

(
1 +

3.5
m

)(
n− 1

k

)

− m− 1
2(n−m)(n− 1)

(
n− 1

k

)(
n−m− 1− 3.5

n−m

)

− 1
2(n−m)

(
1 +

3.5
n−m

)(
n− 1

k

)
.

In each case the right hand side of the obtained inequality coincides with
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the right hand side of (3). Now for n≥ 9, p1(k,m, n)≥p1(2, min{m, 3}, n)≥
minm≤3 p1(2,m, 9) = 1.25, hence by (3)

g∗1(k, m, n) ≥ 1 +
1.25

2(n− 1)

(
n− 1

2

)
>

n

4
. ¤

Lemma 9. Let n ≥ 3, (m,n) = 1, R1(x, t) =
∏n−1

i=1 (x− xi(t)). In the

field K(t, x1(t), x2(t)) we have the factorizations

t + 1 ∼=
∏m−1

i=1 pm
i

∏n−m−1
j=1 qm

j

∏n−m−1
j=1 rm

j

∏(n−m−1)(n−m−2)
k=1 sk

∏n−m−1
j=1 tn−m

j

∏m−1
i=1 un−m

i

∏m−1
i=1 vn−m

i

∏(m−1)(m−2)
l=1 wl

,

x1(t) ∼=
∏m−1

i=1 pi

∏n−m−1
j=1 qj∏n−m−1

j=1 tj
∏m−1

i=1 ui

,

x2(t) ∼=
∏m−1

i=1 pi

∏n−m−1
j=1 rj∏n−m−1

j=1 tj
∏m−1

i=1 vi

where pi, qj , rj , sk, tj , ui, vi, wl are distinct prime divisors. For ti defined

in Lemma 2 the numerators of t− ti has (n− 3)(n− 4) factors in the first

power only, the remaining factors are double.

Proof. By Lemma 1(a)(b) of [5] the prime divisors of the numerator
or the denominator of t−c are in one-to-one correspondence with the cycles
of the Puiseux expansions of a generating element of K(t, x1(t), x2(t))/K(t)
at t = c or t = ∞, respectively, provided the lengths of the cycles are not
divisible by π. For the generating element we take y(t) = ax1(t) + bx2(t),
where a, b ∈ K are chosen so that for all i < n, j < n, i 6= j we have
either axi(t) + bxj(t) 6= ax1(t) + bx2(t) or 〈i, j〉 = 〈1, 2〉. By Lemma 4
for each pair 〈i, j〉 with i < n, j < n there is an automorphism of the
extension K(t, x1(t), . . . , xn(t))/K(t) taking x1(t), x2(t) into xi(t), xj(t),
respectively. At t = −1 we obtain for y(t) the expansions

aζ2i+1
2m (1 + t)1/mPn−1

(
ζ2i+1
2m (1 + t)1/m

)

+ bζ2j+1
2m (1 + t)1/mPn−1

(
ζ2j+1
2m (1 + t)1/m

)

(0 ≤ i < m, 0 ≤ j < m, i 6= j),
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aζ2i+1
2m (1 + t)1/mPn−1

(
ζ2i+1
2m (1 + t)1/m

)
+ bPn−1(1 + t)

(0 ≤ i < m, 2 ≤ j ≤ n−m),

aPn−1(1 + t) + bζ2i+1
2m (1 + t)1/mPn−1

(
ζ2i+1
2m (1 + t)1/m

)

(0 ≤ i < m, 2 ≤ j ≤ n−m),

aPn−1(1 + t) + bPn−1(1 + t) (2 ≤ i ≤ n−m, 2 ≤ j ≤ n−m, i 6= j).

The m(m − 1) expansions of the first set form m − 1 m-cycles cor-
responding to the divisors p1, . . . , pm−1, that divide the numerators of
x1(t), x2(t) in exactly first power. (Note that ordpµ x1 = m ordt+1(1 +
t)1/mPn−1(ζ2i+1

2m (1 + t)1/m) for µ < m and similarly for x2). The m(n −
m− 1) expansions of the second set form n−m− 1 m-cycles correspond-
ing to the divisors q1, . . . , qn−m−1, that divide the numerator of x1(t) in
exactly first power and do not divide the numerator of x2(t).

The m(n−m−1) expansions of the third set form n−m−1 m-cycles
corresponding to the divisors r1, . . . , rn−m−1 that divide the numerator of
x2(t) in exactly first power and do not divide the numerator of x1(t). The
(n−m− 1)(n−m− 2) expansions of the fourth set form as many 1-cycles
corresponding to the divisors that divide the numerator of 1+ t in exactly
first power and divide the numerator of neither x1(t) nor x2(t).

Since x1(t) = 0 implies t = −1 we have found all factors of the
numerator of x1(t) and similarly of x2(t).

At t = ∞ we obtain for y(t) again four sets of expansions that cor-
respond to the four sets of divisors: tj (1 ≤ j ≤ n − m − 1), ui, vi

(1 ≤ j ≤ m − 1) and wl (1 ≤ j ≤ (m − 1)(m − 2)) occurring in the
denominator of 1 + t, x1(t) and x2(t).

Since x1(t) = ∞ implies t = ∞ no other divisor occurs in the denom-
inator of x1(t), or of x2(t).

At t = ti we obtain for y(t) among others the expansions

aPi + bPi (1 ≤ i ≤ n− 2, 2 ≤ j ≤ n− 2, 2 ≤ k ≤ n− 2, j 6= k)

which form (n− 3)(n− 4) 1-cycles corresponding to (n− 3)(n− 4) simple
factors of the numerator of t − ti. All the remaining expansions contain
(t− ti)1/2. ¤
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Lemma 10. If (m,n) = 1, for all primes p

p
√

t + 1 /∈ K
(
t, x1(t), . . . , xn−1(t)

)
=: Ω.

Proof. The argument used in the proof of Lemma 9 applied to the
field Ω gives that the multiplicity of every prime divisor of the numerator
and the denominator of t + 1 divides m and n − m, respectively. Since
(m,n) = 1 we cannot have 1 + t = γp, γ ∈ Ω. ¤

Lemma 11. Let (m, n) = 1, n ≥ 3. For every positive integer
q 6≡ 0 mod π and for every choice of qth roots we have

[
K

(
q
√

x1(t), . . . , q
√

xn−1(t)
)

: K (t, x1(t), . . . , xn−1(t))
]

= qn−1.

Proof. By Theorem 1 of [4] it is enough to prove that for every
prime p | q

(4)
n−1∏

j=1

x
αj

j = γp, γ ∈ Ω = K (t, x1(t), . . . , xn−1(t))

implies αj ≡ 0 mod p for all j < n. Assume that (4) holds, but say
α1 6≡ 0 mod p.

If for all j we have αj ≡ α1 mod p it follows from (4) that



n−1∏

j=1

xj




α1

= γ′p, γ ∈ Ω,

and since
n−1∏

j=1

xj = (−1)n−1(t + 1)

we obtain p
√

t + 1 ∈ Ω, contrary to Lemma 10. Therefore, there exists an
i ≤ n− 1 such that αi 6≡ α1 mod p, and in particular n ≥ 3. Changing, if
necessary, the numeration of xi we may assume that i = 2. By Lemma 4
there exists an automorphism τ of Ω/K(t) such that τ(x1) = x2, τ(x2) =
x1, τ(xi) = xi (i 6= 1, 2). Applying τ to (4) we obtain

xα2
1 xα1

2

n−1∏

j=1

x
aj

j = (γτ )p
,
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hence on division (
x1

x2

)α1−α2

=
(

γ

γτ

)p

.

Since α1 − α2 6≡ 0 mod p it follows that

(5)
x1

x2
= δp, δ ∈ Ω.

The extension K(t, x1, x2, δ)/K(t, x1, x2) is a normal subextension of
Ω/K(t, x1, x2) of degree 1 or p and, since by Lemma 4 the latter has
the symmetric Galois group, we have either δ ∈ K(t, x1, x2), or p = 2,

δ ∈ K

(
t, x1, x2

n−1∏
µ,ν=3
ν>µ

(xν − xµ)

)
\K(t, x1, x2).

In the former case we compare the divisors on both sides of (5) and obtain

δp ∼=
∏n−m−1

j=1 qj

∏m−1
i=1 vi∏n−m−1

j=1 rj

∏m−1
j=1 ui

,

a contradiction.
In the latter case, since the conjugates of δ with respect to K(t, x1, x2)

are ±δ we have

δ = ε

n−1∏
µ,ν=3
ν>µ

(xν − xµ), ε ∈ K(t, x1, x2),

hence

δ = ε

n−1∏
µ,ν=3
ν>µ

(xν − xµ) · x1 − x2∏
ν>1(xν − x1) ·

∏
ν 6=2(xν − x2)

= η

n−1∏
µ,ν=1
ν>µ

(xν − xµ), η ∈ K(t, x1, x2).
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It follows by (5) and Lemma 3 that

x1

x2
= η2 discx R1(x, t) = const η2(t + 1)m−1

n−2∏

i=1

(t− ti).

For n ≥ 5, by Lemma 9, t− t1 has at least one simple factor, which occurs
with a non-zero exponent on the right-hand side, but not on the left, a
contradiction. On the other hand for n = 3 or 4 the divisor of the right
hand side is a square, of the left hand side is not. ¤

Lemma 12. Let n ≥ 3, (n,m) = 1, q 6≡ 0 mod π, q ≥ 2 and yq
iq = xi(t)

(1 ≤ i < n). Then

[
K

(
t,

( n−1∑

i=1

yiq

)q
)

: K(t)

]
= qn−2.

Proof. By Lemmas 4 and 11 all embeddings of K(t, y1q, . . . , yn−1,q)/
K(t) into K(t)/K(t) are given by

(6) yiq → ζαi
q yσ(i)q (1 ≤ i < n),

where σ is a permutation of {1, 2, . . . , n− 1} and

(7) 〈α1, . . . , αn−1〉 ∈ (Z/qZ)n−1.

We shall show that there are exactly qn−2 distinct images of (
∑n−1

i=1 yiq)q

under transformations (6). Indeed, if we apply (7) with σ(i) = i to
(
∑n−1

i=1 yiq)q we obtain (
n−1∑

i=1

ζαi
q yiq

)q

.

If this were equal to (
∑n−1

i=1 ζβi
q yiq)q for a vector 〈β1, . . . , βn−1〉 ∈

(Z/qZ)n−1 with βj − β1 6= αj − α1 for a certain j we should obtain

y1q ∈ K(y2q, . . . , yn−1,q), or yjq ∈ K(y1q, . . . , yj−1,q, yj+1,q, . . . , yn−1,q),

contrary to Lemma 11. Thus the number of distinct images is at least
equal to the number of vectors satisfying (7) with α1 = 0, thus to qn−2.
On the other hand, (

∑n−1
i=1 yiq)q is invariant under transformations (6)

with α1 = α2 = · · · = αn−1, which form a group, hence the number in
question does not exceed qn−2. ¤
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Definition 2. Let (m,n) = 1, q 6≡ 0 mod π and yq
iq = xi(t), where

xi(t) are defined in Definition 1. We set

M1(m,n, q) = K

(
t,

( n−1∑

i=1

yiq

)q
)

, M1∗(m,n, q) = K

(
t,

( n−1∑

i=1

yiq

)q
)

.

Remark. By Lemma 12, for n ≥ 3, M1(m,n, q) and M1∗(m,n, q) are
determined by m, n, q up to an isomorphism which fixes K(t) and K(t),
respectively.

Lemma 13. For n > 3 the numerator of t− ti has in M1∗(m,n, q)×
(qn−2 − qn−3)/2 factors in the second power.

Proof. Let us put for each i ≤ n− 2

yi1q = ξ
1/q
i

∞∑

k=0

(
1/q

k

)
ξ−k/q(t− ti)k/2Pi1

(
(t− ti)1/2

)k

,

yi2q = ξ
1/q
i

∞∑

k=0

(−1)k

(
1/q

k

)
ξ−k/q(t− ti)k/2Pi1

(
−(t− ti)1/2

)k

,

so that for j = 1, 2

yq
ijq = ξi + (−1)j−1(t− ti)1/2Pi1

(
(−1)j−1(t− ti)

)
,

yi1q + yi2q ∈ K
(
(t− ti)

)
,(8)

(yi1q − yi2q)(t− ti)1/2 ∈ K
(
(t− ti)

)
(9)

and choose in an arbitrary way

(10) yijq =
(
Pi,j−1(t− ti)

)1/q ∈ K
(
(t− ti)

)
(2 < j < n).

It follows from Lemma 2 that over the field K((t− ti))

n−1∏

j=1

q−1∏
α=0

(
x− ζα

q yjq

)
= R1(xq, t) =

n−1∏

j=1

q−1∏
α=0

(
x− ζα

q yijq

)
,
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thus the corresponding fundamental symmetric functions of ζα
q yjq (1 ≤

j < n, 0 ≤ α < q) and of ζα
q yijq coincide. Hence

q−1∏
α2=0

· · ·
q−1∏

αn−1=0

(
x−

(
y1q +

n−1∑

j=2

ζαj
q yjq

)q
)

=
q−1∏

α2=0

· · ·
q−1∏

αn−1=0

(
x−

(
yi1q +

n−1∑

j=2

ζαj
q yijq

)q
)

,

which means that
(∑n−1

i=1 yjq

)q has the following Puiseux expansions at
t = ti

(
yi1q + ζα2

q yi2q +
n−1∑

j=3

ζαj
q yijq

)q

, 〈α2, . . . , αn−1〉 ∈ (Z/qZ)n−2.

If such an expansion belongs to K((t− ti)), then either

yi1q + ζα2
q yi2q +

n−1∑

j=3

ζαj
q yijq ∈ K

(
(t− ti)

)

or 2 | q and(
yi1q + ζα2

q yi2q +
n−1∑

j=3

ζαj
q yijq

)
(t− ti)

1
2 ∈ K

(
(t− ti)

)
.

In the former case, by (8) and (10)
(

1− ζα2
q

)
yi1q ∈ K

(
(t− ti)

)

and since Pi1(0) 6= 0, α2 = 0.
In the latter case, by (9), on multiplying it by (ζαi

q − 1)/2 and adding

(
1 + ζα2

q

2
(yi1q + yi2q) +

n−1∑

j=3

ζαj
q yijq

)
(t− ti)1/2 ∈ K

(
(t− ti)

)

and, since

1 + ζα2
q

2
(yi1q + yi2q) +

n−1∑

j=3

ζαj
q yijq ∈ K

(
(t− ti)

)
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by (8) and (10), we obtain

(11)
1 + ζα2

q

2
(yi1q + yi2q) +

n−1∑

j=3

ζαj
q yijq = 0.

However the left hand side is an expansion at t = ti of

1 + ζα2
q

2
(yiq + y2q) +

n−1∑

j=3

ζαj
q yjq,

hence (11) contradicts for n > 3 the linear independence of yjq (1 ≤ j < n)
over K resulting from Lemma 11.

Therefore for n > 3 we obtain qn−2−qn−3 expansions for (
∑n−1

j=3 yjq)q

belonging to K
((

(t − ti)1/2
)) \K

(
(t − ti)

)
, which correspond to (qn−2 −

qn−3)/2 distinct prime divisors of the numerator of t− ti in M1∗(m,n, q).
¤

Lemma 14. The numerator of t + 1 in M1∗(m,n, q) has at most

qmax{n−3,m−1}

m

(
1 +

m− 1
qϕ(mq)/ϕ(q)

)

distinct prime divisors.

Proof. By Lemma 1(a) in [5] the prime divisors of the numerator of
t + 1 correspond to the cycles of the Puiseux expansions of (

∑n−1
i=1 yjq)q

at t = −1 provided the lenghts of these cycles are not divisible by π. By
Lemma 2 and the argument about symmetric functions used in the proof
of Lemma 13 we obtain the expansions

(12)

( m∑

j=1

ζαj
q ζ2j−1

2mq (t + 1)1/qmPn−1,1

(
ζ2j−1
2m (t + 1)1/q

)1/q

+
n−1∑

j=m+1

ζαj
q Pn−1,j−m+1(t + 1)1/q

)q

,

where 〈α1, . . . , αn−1〉 ∈ (Z/qZ)n−1, α1 = 0. Note that qm 6≡ 0 mod π. Let
S be the set of vectors 〈α2, . . . , αm〉 ∈ (Z/qZ)m−1 such that

1 +
m∑

j=2

ζαj
q ζj−1

qm = 0.
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By Lemma 21 of [5]

(13) card S ≤ qm−ϕ(qm)/ϕ(q)−1.

If n ≥ m + 2 and 〈α2, . . . , αm〉 /∈ S the least power of t + 1 occurring in
the first or the second sum in (12) is (t+1)1/qm and (t+1)ν0 , respectively,
where ν0 is a nonnegative integer. Hence the expansion (12) contains with
a non-zero coefficient

(14) (t + 1)1/m and (t + 1)(q−1)/qm+ν0 .

Indeed, if we had for some nonnegative integers aµ (µ = 0, 1, . . . )

∞∑
µ=0

aµ = q and
∞∑

µ=0

aµ

(
1

qm
+

µ

m

)
=

q − 1
qm

+ ν0

it would follow from the second formula that
∑∞

µ=0 aµ ≡ q − 1 mod q,
contrary to the first formula.

The least common denominator of the two exponents in (14) is

[
m,

qm

(qm, q − 1)

]
=

q2m

(q2m, (q − 1)m, qm)
= qm,

hence we obtain at most

(qm−1 − card S)qn−m−1

qm

qm-cycles.
If n ≥ m+2 and 〈α2, . . . , αm〉 ∈ S the least power of t+1 occurring in

the first or the second sum in (12) is (t+1)
1

qm +
µ0
m and (t+1)ν0 , respectively,

where µ0 ∈ N and νo ∈ N. Hence the expansion (12) contains with a non-
zero coefficient

(t + 1)
q−1
qm +

(q−1)µ0
m +ν0 if

1
qm

+
µ0

m
< ν0

and
(t + 1)

1
qm +

µ0
m +(q−1)ν0 , otherwise.
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Since both exponents in the reduced form have q in the denominator we
obtain at most

card S · qn−m−1

q

q-cycles.
If n = m + 1 and 〈α2, . . . , αm〉 /∈ S the least power of t + 1 occurring

in the parentheses in (12) is (t + 1)1/qm, thus the expresion (12) contains
with a non-zero exponent (t + 1)1/m and we obtain at most qm−1−card S

m

m-cycles.
Finally if n = m + 1 and 〈α2, . . . , αm〉 runs through S we bound the

number of cycles by card S. Therefore by (13), if n ≥ m + 2 the total
number of cycles does not exceed

(qm−1 − card S)qn−m−1

qm
+

card S · qn−m−1

q

=
qn−3

m

(
1 +

(m− 1) card S

qm−1

)
≤ qn−3

m

(
1 +

m− 1
qϕ(qm)/ϕ(q)

)
,

if n = m + 1 the total number of cycles does not exceed

(qm−1 − card S)
m

+ card S =
qm−1

m

(
1 +

(m− 1) card S

qm−1

)

=
qm−1

m

(
1 +

m− 1
qϕ(qm)/ϕ(q)

)
. ¤

Lemma 15. The denominator of t has in M1∗(m,n, q) at most

qmax{n−3,n−m−1}

n−m

(
1 +

n−m− 1
qϕ(q(n−m))/ϕ(q)

)

distinct prime divisors.

Proof. Proof is analogous to the proof of Lemma 14. ¤

Lemma 16. For all positive integers m,n and q where n > 3, n > m,

(n,m) = 1, qnm(n − m) 6≡ 0 mod π and q ≥ 2 the genus g1∗(m,n, q) of

M1∗(m, n, q) is greater than nq
8 unless nq ≤ 16. Moreover g1∗(m, n, q) > 1

unless n < 6.
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Proof. By Lemma 2(a) of [5] and by Lemmas 13–15 we have

g1∗(m,n, q)≥ 1+
qn−3

2

(
q− 1

2
(n− 2)− qmax{0,m−n+2}

m

(
1+

m− 1
qϕ(qm)/ϕ(q)

)

−qmax{0,2−m}

n−m

(
1 +

n−m− 1
qϕ(q(n−m))/ϕ(q)

))
.

Hence, by Lemma 24 of [5]

g1∗(m,n, q) ≥ 1 +
qn−3

2
γ1(q, n,m),

where

γ1(q, n, m) =





q − 1
2

(n− 2)− 1− q + 1
n− 1

if m = 1 or m = n− 1,

q − 1
2

(n− 2)−
(

1
m

+
1

n−m

)(
1 +

1
q

)
otherwise.

For n ≥ 6 we have qn−3 ≥ 2
3nq, γ1(q, n,m) ≥ 2

5 , hence g1∗(m,n, q) >
2nq
15 > nq

8 > 1; for 6 > n > 3 g∗1(m,n, q) ≤ nq
8 implies nq ≤ 16. ¤

3. Proof of Theorem 1

Let F (x) = x − C, where C ∈ K(y). Since F (x) | xn1 + Axm1 + B

we obtain B = −Cn1 −ACm1 , C 6= 0. From A−nBn−m /∈ K we infer that
t := ACm1−n1 /∈ K. We have the identity

Q(x) :=
xn1 + Axm1 + B

F (x)
(15)

= Cn1−1 (C−1x)n1 + t(C−1x)m1 − (t + 1)
C−1x− 1

.

If T (x; A,B)F (x(m,n))−1 is reducible over K(y), then by Capelli’s Lemma
(see e.g. [1], p. 662) either

(16) Q(x) is reducible over K(y),

or

(17) x(m,n) − ξ is reducible over K(y, ξ), where ξ is a zero of Q(x).
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In the former case Q(x) has in K(y)[x] a factor xk +
∑k

i=1 aix
k−i, where,

by the assumption, 2 ≤ k ≤ n1−1
2 . The identity (15) implies that the field

L∗1(k, m1, n1) defined in Definition 1 is a rational function field parametr-
ized as follows:

t = ACm1−n1 , τi(x1, . . . , xk) = (−1)iaiC
−i (1 ≤ i ≤ k).

By Lemma 2(b) of [5] g∗1(k, m1, n1) = 0.
Assume now that we have (17) but not (16). It follows by Capelli’s

theorem that either

ξ = ηp, where p is a prime, p | (m,n), η ∈ K(y, ξ),(18)

or

ξ = −4η4, where 4 | (m,n), η ∈ K(y, ξ),(19)

Let
xn1 + txm1 − (t + 1)

x− 1
=

n1−1∏

j=1

(x− xj), yq
jq = xj .

It follows from (15) that if t = ACm1−n1 one can take

q = p, yjq = C−1/pηj if (18) holds,

q = 4, yjq = (1 + ζ4)C−1/4ηj if (19) holds,

where ηj are conjugates of η over K(y). Hence the field

M1∗(m1, n1, q) = K (t, (y1q + · · ·+ yn1−1,q)q)

is parametrized by rational functions as follows

t = ACm1−n1 ,

(y1q + · · ·+ yn1−1,q)q =
{

C−1(η1 + · · ·+ ηn1−1)p if (18) holds,

−4C−1(η1 + · · ·+ ηn1−1)4 if (19) holds

and, by Lemma 2(b) of [5], g1∗(m1, n1, q) = 0, contrary to Lemma 16.

Proof of Theorem 2. The sufficiency of the condition is obvious.
The proof of the necessity is similar to that of Theorem 1.
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Let F (x) = x− C, where C ∈ L,

Q(x; A,B) =
xn1 + Axm1 + B

F (x)
.

Since F (x) | xn1+Axm1+B and B 6= 0 we have C 6= 0, B = −Cn1−ACm1 .
Since A−nBn−m /∈ K, we have t := ACm1−n1 /∈ K.

If T (x; A,B)F (x(m,n))−1 = Q(x(m,n);A, B) is reducible over L then
either

(20) Q(x) := Q(x;A, B) is reducible over L

or

(21) x(m,n) − ξ is reducible over L(ξ) where ξ is a zero of Q.

In the former case Q has in L[x] a factor of degree k, where by the
assumption 2 ≤ k ≤ n1−1

2 and it follows from the identity (15) that the field
L∗1(k, m1, n1) is isomorphic to a subfield of KL. Hence, by Lemma 2(c) of
[5], g∗1(k, m1, n1) ≤ g and, by Lemma 8, n1 ≤ 6 max{1, g}. In particular,
for g = 1 we have n1 ≤ 6. The condition given in the theorem holds with
l = (m,n), 〈ν, µ〉 = 〈n1,m1〉.

Assume now that we have (21), but not (20). Then in the same way
as in the proof of Theorem 1 we infer that for a certain q | (m,n), q = 4
or a prime

(22) xq − ξ is reducible over L(ξ)

and the field M1∗(m1, n1, q) is isomorphic to a subfield of KL. Hence,
by Lemma 2(c) of [5], we have g1∗(m1, n1, q) ≤ g, thus by Lemma 16 for
n1 > 3 we have n1q < max{17, 8g} and g > 1 for n1 ≥ 6. On the other
hand, by (22), Q(xq) is reducible over L. Hence the condition given in the
theorem holds with l = (m,n)

q , 〈ν, µ〉 = 〈n1q, m1q〉. ¤

4. 2 lemmas to Theorem 3

Lemma 17. Let L be a finite extension of a field K, q a prime dif-
ferent from charK. There exists a finite subset F = F (q, L/K) of K∗ of
cardinality at most qordq [L:K] such that if

(23) c ∈ K∗, γ ∈ L, c = γq,
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then there exist f ∈ F and e ∈ K∗ such that

(24) c = feq.

Proof. Let

(25) A = {a ∈ K∗ : a = αq, α ∈ L}

and let B be a finite subset of A with the property that for all functions
x : B → Z

(26)
∏

a∈B

ax(a) = bq, b ∈ K implies x(a) ≡ 0 mod q for all a ∈ B.

It follows from Theorem 1 of [4] that for every choice of q-th roots
[
K

(
q
√

a : a ∈ B
)

: K
]

= qcard B ,

hence by (25), in view of B ⊂ A,

qcard B | [L : K]

and card B ≤ ordq[L : K]. Among all subsets B of A with the property
(26) let us choose one of maximal cardinality and denote it by A0. We
assert that the set

F =
{ ∏

a∈A0

ax(a) : x(A0) ⊂ {0, 1, . . . , q − 1}
}

has the property asserted in the lemma. Indeed

card F = qcard A0 ≤ qordq [L:K].

On the other hand, if c ∈ A0, (24) holds with d = c, e = 1. If c /∈ A0 the
set B = A0 ∪ {c} has more elements than A0. By definition of A0 it has
not the property (26). Hence there exist integers x(a) (a ∈ A0) and x(c)
such that cx(c)

∏
a∈A0

ax(a) = bq, b ∈ K and either

x(c) ≡ 0 mod q and for at least one a ∈ A0 : x(a) 6≡ 0 mod q(27)

or

x(c) 6≡ 0 mod q.(28)
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The case (27) is impossible, since it implies

∏

a∈A0

ax(a) =
(
bc−

x(c)
q

)q

,

contrary to the choice of A0.
In the case (28) there exist integers y and z such that

−x(c)y = 1 + qz

and we obtain (24) with

f =
∏

a∈A0

aq{ x(a)y
q }, e = b−yc−z

∏

a∈A0

a[ x(a)y
q ],

where { · } and [ · ] denote the fractional and the integral part, respectively.
¤

Lemma 18. Let q be a prime or q = 4. For every finite extension

K(ξ) of a field K there exists a finite subset S(q, K, ξ) of K such that if

c ∈ K∗ and

(29)
cξ = ηq, η ∈ K(ξ)∗ if q is a prime,

cξ = −4η4, η ∈ K(ξ)∗ if q = 4,

then

(30) c = deq, where d ∈ S(q, K, ξ), e ∈ K∗.

Proof. Assume first that q is a prime. If there is no c ∈ K∗ such
that (29) holds we put S(q, K, ξ) = ∅. Otherwise we have

(31) c0ξ = ηq
0, η0 ∈ K(ξ)∗, c0 ∈ K∗

and the equations (29) and (31) give

c/c0 = (η/η0)q.

Hence, by Lemma 17

c/c0 = feq, where f ∈ F (q, K(ξ)/K), e ∈ K∗
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and in order to satisfy (30) it is enough to put

S(q, K, ξ) = {c0f : f ∈ F (q, K(ξ)/K)}.

Assume now that q = 4. Again if there is no c such that (29) holds we put
S(q, K, ξ) = ∅. Otherwise, we have

(32) c0ξ = −4η4
0 , η0 ∈ K(ξ)∗, c0 ∈ K∗

and the equations (29) and (32) give

(33) c/c0 = (η/η0)
4
.

By Lemma 17 applied with q = 2

(34) c/c0 = fe2, f ∈ F
(
2,K(ξ)/K

)
, e ∈ K∗.

If for a given f ∈ F
(
2, K(ξ)/K

)
there exists ef ∈ K∗ such that

(35) fe2
f = ϑ4, ϑ ∈ K(ξ)

the equations (33)–(35) give

(e/ef )2 = (η/η0ϑ)4 , hence e/ef = ± (η/η0ϑ)2

and another application of Lemma 17 gives

e/ef = ±f1e
2
1, f1 ∈ F (2,K(ξ)/K), e1 ∈ K∗.

Hence, by (34)

c/c0 = fe2
ff2

1 e4
1

and in order to satisfy (30) it is enough to put

S(q, K, ξ) =
⋃

f∈F (2,K(ξ)/K)
ef exists

{c0fe2
ff2

1 : f1 ∈ F (2,K(ξ)/K)}. ¤
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5. Proof of Theorem 3

We begin by defining the sets F 1
ν,µ(K). This is done in three steps.

First we put q = (µ, ν), ν1 = ν/q, µ1 = µ/q and introduce the fields
L1(k, µ1, ν1) and M1(µ1, ν1, q) as defined in Definitions 1, 2. Since K is
infinite we have L1(k, µ1, ν1) = K(t, y(t)), where y(t) is defined up to a
conjugacy over K(t) in the proof of Lemma 6. Let Φ1

k be the minimal
polynomial of y(t) over K(t). It follows from the definition of y(t) that
Φ1

k ∈ K[t, z]. By Lemma 12 the function (y1q + · · ·+ yν1−1,q)q generating
M1(µ1, ν1, q) over K(t) is determined up to a conjugacy. Let Ψ1

q be its
minimal polynomial over K(t). Since yiq are integral over K[t] we have
Ψ1

q ∈ K[t, z]. If ν1 > 6 we put

S1
ν,µ(K) =

{ ⋃
2<2k<ν1

{t0 ∈ K : Φ1
k(t0, z) has a zero in K} if q = 1,

{t0 ∈ K : Ψ1
q(t0, z) has a zero in K} if q > 1.

Since for ν1 > 6 and k > 1 or q > 1 we have g∗1(k, µ1, ν1) > 1 or
g1∗(µ1, ν1, q) > 1, respectively, it follows by the Faltings theorem that
the sets S1

ν,µ(K) are finite. Now we put

T 1
ν,µ(K)

=





⋃

t0∈S1
ν,µ(K)

{〈t0,−t0 − 1, 1〉} if q = 1,

⋃

t0∈S1
ν,µ(K)

{〈t0dν1−µ1 ,−(t0 + 1)dν1 , d〉 : ∃ξ0d ∈ S(q, K, ξ0),

ξν1
0 + t0ξ

µ1
0 − (t0 + 1) = 0} if q is a prime or q = 4,

∅ otherwise

(S(q, K, ξ) is defined in Lemma 18);

F 1
ν,µ(K) = {〈a, b, x− d〉 : 〈a, b, d〉 ∈ T 1

ν,µ(K) and
xν + axµ + b

xq − d
is a polynomial reducible over K}.

Since the sets S1
ν,µ(K) and the sets S(q, K, ξ0) are finite, so are the sets

F 1
ν,µ(K). We proceed to prove that they have all the other properties

asserted in the theorem.
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By the assumption n1 > 6 and xn1 + axm1 + b has in K[x] a linear
factor F (x) but not a quadratic factor. Let F (x) = x − c, where c ∈ K∗,
so that b = −cn1 − acm1 . Put

(36) t0 = acm1−n1 , Q(x; a, b) =
xn1 + axm1 + b

F (x)
.

Assume that

xn + axm + b

F (x(m,n))
= Q

(
x(m,n); a, b

)
is reducible over K.

By Capelli’s lemma either

(37) Q(x; a, b) is reducible over K

or

(38) x(n,m) − ξ is reducible over K, where Q(ξ; a, b) = 0

In the case (37) Q(x; a, b) has a factor in K[x] of degree k such that 1 <

k ≤ n1−1
2 , say

∏k
i=1(x− ξi). It follows from the identity

(39)
xn1 + t0x

m1 − (t0 + 1)
x− 1

= c1−n1Q(cx; a, b)

that the left hand side has the factor
∏k

i=1(x − c−1ξi), thus τi(c−1ξ1, . . .

. . . , c−1ξk) ∈ K (1 ≤ i ≤ k) and at least one value of the algebraic function
y(t) at t = t0 lies in K, hence t0 ∈ S1

n1,m1
(K). It follows that 〈t0,−t0 −

1, 1〉 ∈ T 1
n1,m1

(K), 〈t0,−t0 − 1, x − 1〉 ∈ F 1
n1,m1

(K) and the condition
given in the theorem holds with l = (m,n), ν = n1, µ = m1, a0 = t0,
b0 = −t0 − 1, F0 = x− 1, u = c.

In the case (38) note that

(40) Q(ξ; a, b) = 0, implies ξ 6= 0.

Further, by Capelli’s theorem, there exists a q | (m,n) such that

(41)
either q is a prime and ξ = ηq, η ∈ K(ξ)∗ or q = 4

and ξ = −4η4, η ∈ K(ξ)∗.
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If η1, . . . , ηn1−1 are all the conjugates of η over K we have

Q(x; a, b) =
{ ∏n1−1

i=1 (x− ηq
i ) if q is a prime,

∏n1−1
i=1 (x + 4η4

i ) if q = 4,

hence

(42) Q(xq; a, b) is reducible over K.

By the identity (39) it follows that

xn1 + t0x
m1 − (t0 + 1)

x− 1
=

{ ∏n1−1
i=1 (x− c−1ηq

i ) if q is a prime,
∏n1−1

i=1 (x + 4c−1η4
i ) if q = 4.

Hence Ψ1
q(t0, u0) = 0, where

u0 =
{

c−1(η1 + · · ·+ ηn1−1)q if q is a prime,

−4c−1 (η1 + · · ·+ ηn1−1)
4 if q = 4.

and, since η1 + · · ·+ ηn1−1 ∈ K, we have u0 ∈ K, t0 ∈ Sn1,m1(K).
Further, it follows from (39) and (40) that ξ0 = c−1ξ is a zero of

xn1+t0xm−(t0+1)
x−1 and, by (41), cξ0 = ηq or −4η4, where η ∈ K(ξ0)∗ and q

is a prime or q = 4, respectively.
By Lemma 18 c = deq, where d ∈ S(q,K, ξ0), e ∈ K, hence

〈t0dn1−m1 ,−(t0 + 1)dn1 , d〉 ∈ T 1
n1q,m1q(K).

By (39)

xn1q + t0d
n1−m1xm1q − (t0 + 1)dn1

xq − d
= (cd−1)1−n1Q

(
(ex)q; a, b

)
,

hence, by (42)

xn1q + t0d
n1−m1xm1q − (t0 + 1)dn1

xq − d
is reducible over K

and 〈t0dn1−m1 ,−(t0 + 1)dn1 , x − d〉 ∈ F 1
n1q,m1q(K). Thus the condition

given in the theorem holds with l = (m,n)/q, ν = n1q, µ = m1q, a0 =
t0d

n1−m1 , b0 = −(t0 + 1)dn1 , F0 = x− d, u = e.
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Assume now that for an integer l : n/l = ν, m/l = µ and a = uν−µa0,
b = uνb0, F (x) = uF0

(
x
u

)
, where u ∈ K∗, 〈a, b, F0〉 ∈ F 1

ν,µ(K). Then by
the definition of F 1

ν,µ(K)

xν + axµ + b

F0(x(µ,ν))
is a polynomial reducible over K,

and by the substitution x 7→ xl

u we obtain reducibility of
T (x; a, b)F (x(n,m))−1 over K.

The proof of Theorem 3 is complete.

6. Addenda and corrigenda to the paper [5]

The paper [5] has been corrected in [6]. Regretfully further corrections
are needed.

Page 6, Table 1: A6,1 should read 4v(v2 + 3), B6,1 should read –
−(v2 + 4v − 1)(v2 − 4v − 1).

in B7,2 for v2 − v − 1 read v2 − v + 1
(This correction is due to G. Turnwald).

in A15,5 for 100v2 read 10v2

(This correction is due to J. Browkin).
Page 27, lines −13

to −1: for K(x1, . . . ) read K(t, x1, . . . ) nine times.
Page 28, line −10: for

∑n
i=1 yiq read (

∑n
i=1 yiq)q.

Page 31, line −13: for 1
n+ read 1+.

Page 37, formula (24): for n read (m,n).
line −13: for η4 read ηn1 .

Page 40, line −3: for (p−1)n read (p−1)d, not pd as indicated in [6].
Page 41, line −14: after 2 insert 7.

line −7: for v2 − v − 1 read v2 − v + 1 (This and the
previous correction are due to G. Turnwald).

Page 55, line −2: As pointed out in [6] (with a misprint)
the following inclusion has been used

(∗) K0(y)sep ∩K1(y) ⊂ (Ksep
0 ∩K1)(y),

where K0 is a subfield of K1, y = 〈y1, . . . , yr〉 is a variable vector, Ksep
0

and K0(y)sep is the separable closure of K0 and K0(y), respectively.
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Here is a proof of (∗) by induction on r. For r = 0 (∗) is obvious.
Assume (∗) is true for y of r − 1 coordinates and let

t ∈ K0(y)sep ∩K1(y).

We have F (y, t) = 0, where F ∈ K0[y, T ] and the discriminant D(y)
of F (y, T ) with respect to T is not zero. Let a ∈ K0[y] be the leading
coefficient of F with respect to T , so that

(∗∗) G(y, at) = 0,

where G(y, T ) := adegT F−1F (y, T/a) is monic with respect to T . We have
at ∈ K1[y], hence

( ∗∗ ∗ ) at =
n∑

ν=0

aνyn−ν
r , aν ∈ K1[y1, . . . , yr−1] (0 ≤ ν ≤ n).

Choose n + 1 distinct elements η0, . . . , ηn of Ksep
0 such that

(∗ ∗∗ ∗ ) a(y1, . . . , yr−1, ηi)D(y1, . . . , yr−1, ηi) 6= 0 (0 ≤ i ≤ n).

Since by (∗∗) and ( ∗∗ ∗ )

G

(
y1, . . . , yr−1, ηi,

n∑
ν=0

aνηn−ν
i

)
= 0

and, by (∗ ∗∗ ∗ ), the discriminant of G(y1, . . . , yr−1, ηi, T ) with respect to T

is not zero, we have

n∑
ν=0

aνηn−ν
i ∈ K0(y1, . . . , yr−1)sep.

Since det(ηn−ν
i ) 6= 0 we have aν ∈ K0(y1, . . . , yr−1)sep(0 ≤ ν ≤ n). By

the inductive assumption aν ∈ (Ksep
0 ∩K1)(y1, . . . , yr−1) (0 ≤ ν ≤ n) and

by (∗∗)
t ∈ (Ksep

0 ∩K1) (y).

Page 61, line −9: for ν read ν1.
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Page 62, lines 10 and 11: The formulae make sense only for u0 6= 0. If
u0 = 0 one should write instead, both for q prime and q = 4,
〈tρ0dν−µ)/q, tσ0dν/q〉, where d ∈ S(q,K, ξ0) and ξ

ν/q
0 + tρ0ξ

µ/q
0 + tσ0 = 0.

S(q, K, ξ) is the set defined in Lemma 18 above.
If xn + axm + b is reducible over K and xn1 + axm1 + b is irreducible

over K, then retaining the notation of [5] and putting ξ0 = a−sbrξ we
argue as follows.

Since asb−rξ0 = ξ = ηq or −4η4, where η ∈ K(ξ)∗ and q is a prime or
q = 4, respectively, we have by Lemma 18 above

asb−r = deq, d ∈ S(q, K, ξ0), e ∈ K.

Since, by (74) t0 = a−n1bn1−m1 we obtain

a = as(n1−m1)−rn1 = tr0(deq)n1−m1 = tr0d
n1−m1en1q−m1q,

b = bs(n1−m1)−rn1 = ts0(deq)n1 = tr0d
n1eqn1 .

By (75) xn1q + tr0d
n1−m1xm1q + ts0d

n1 is reducible over K, hence
〈tr0dn1−m1 , ts0d

n1〉 ∈ Fn1q,m1q and (ix) holds with l = (m,n)
q , ν = n1q,

µ = m1q, u = e.

Page 80, Table 5: Insert three new examples

Number Trinomial Factor Discoverer

11a x10 + 36 · 11x + 2 · 38 x3 + 3x2 + 9x + 18 CisÃlowska [2]

12a x10 + 26 · 5 · 76 · 11 · 631x x3 + 14x2 + 392x + 3332 CisÃlowska [2]
+ 27 · 77 · 17 · 19 · 73

36a x15 − 36x6 + 39 x5 + 3x4 + 9x3 + 18x2 ChaÃladus [1]
+ 27x + 27
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von H. Schwerdtfeger, Groningen–Djakarta, 1950.

ANDRZEJ SCHINZEL
MATHEMATICS INSTITUTE PAN
P.O. BOX 137, 00–950 WARSZAWA
POLAND

E-mail: schinzel@plearn.edu.pl

(Received July 26, 1999; revised January 10, 2000)


