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Zeros of linear recurrence sequences

By WOLFGANG M. SCHMIDT (Boulder)

Dedicated to Kálmán Győry on his 60th birthday

Abstract. Let {un}n∈Z be a linear recurrence sequence. A classical theorem of
Skolem–Mahler–Lech asserts that the set Z of subscripts n with un = 0 is a finite union
of arithmetic progressions and single numbers. We now show that when the sequence
is of order t, then Z is a union of at most c(t) progressions and single numbers.

1. Introduction

The sequences {un}n∈Z of complex numbers form a vector space V

under component-wise addition. A polynomial

(1.1) P(z) = c0z
t + · · ·+ ct

acts on V by setting P({un}) = {vn} with vn = c0un+c1un−1+· · ·+ctun−t

(n ∈ Z).
When P(z) is a polynomial of degree t with constant term ct 6= 0,

the sequences {un} with P({un}) = {0} (the zero sequence) make up a
subspace V (P) of P of dimension t. If

(1.2) P(z) = c0

k∏

i=1

(z − αi)ti
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with distinct roots α1, . . . , αk, the space V (P) is spanned by the sequences

{njαn
i }n∈Z

where 1 5 i 5 k, 0 5 j < ti, so that it consists of the sequences

(1.3) un = P1(n)αn
1 + · · ·+ Pk(n)αn

k

where Pi is a polynomial of degree < ti (i = 1, . . . , k).
On the other hand, given a sequence {un}, the polynomials P with

P({un}) = {0} make up an ideal in C[z]. A polynomial P(z) is in the ideal
precisely when zP(z) is. When the ideal is not the zero ideal, it is generated
by a unique monic polynomial P, and this polynomial has nonzero constant
term ct. In this case we say that {un} is a linear recurrence sequence, and
the polynomial P is its companion polynomial . The order of the recurrence
sequence is the degree of its companion polynomial. A sequence is of
order t precisely if (1.3) holds with distinct nonzero α1, . . . , αk and

∑k
i=1

(deg Pi +1) = t. Only the zero sequence has order t = 0. A sequence {un}
of order t > 0 with companion polynomial (1.1) satisfies the recurrence
relation

un = −c1un−1 − · · · − ctun−t (n ∈ Z).

The sequence is said to be nondegenerate if the quotients αi/αj (i 6= j) of
the roots of its companion polynomial are not roots of 1.

Let {un} be a linear recurrence sequence with companion polynomial
(1.1) of degree t > 0. We are interested in the set Z = Z({un}) of numbers
n ∈ Z with un = 0, i.e., with

(1.4) P1(n)αn
1 + · · ·+ Pk(n)αn

k = 0.

The Skolem–Mahler–Lech Theorem [3] says that Z is a finite union of
arithmetic progressions and of single numbers. Moreover, Z is finite if
the sequence is non-degenerate. Actually, Z is finite under the weaker
hypothesis that for some i0, no quotient αi0/αj with j 6= i0 is a root of 1.

We recently showed [4] that in the nondegenerate case of order t > 0,
the set Z has cardinality |Z| 5 c1(t) where c1(t) depends on t only. In the
present paper we will prove the following.
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Theorem. Suppose {un} is a recurrence of order t. Then Z is a union

of not more than c2(t) arithmetic progressions and single numbers, where

we may take

(1.5) c2(t) = exp exp exp(20t).

If the companion polynomial (1.2) has maxi ti = a, then Z also is the

union of at most c3(k, a) numbers and progressions, where

c3(k, a) = exp exp(30aka log k).

Note that in the nondegenerate case, we have replaced the bound
c1(t) = exp exp exp(3t log t) of [4] by (1.5). When the companion polyno-
mial has only simple roots, so that a = 1, we have c3(k, 1) =
exp exp(30k log k) = exp exp(30t log t), i.e., a bound which is only double
exponential.

We do not claim that the union involves arithmetic progressions which
all have the same common difference a, i.e., progressions n = ax + bi, or
that our progressions do not intersect. Suppose ζ, ξ are primitive roots
of 1 of respective orders r, s where r, s are coprime, and let

un = 1n − ζn − ξn + (ζξ)n = (1− ζn)(1− ξn) (n ∈ Z).

This is a sequence of order 4, and Z is the union of the two progressions rx

(x ∈ Z), and sx (x ∈ Z). It is an easy exercise to show that given a > 0,
at least r + s − 1 progressions n = ax + bi (x ∈ Z) are needed such that
their union equals Z.

It will be convenient to introduce the following equivalence relation
on C×: we set α ≈ β if α/β is a root of 1. Given

f(n) = P1(n)αn
1 + · · ·+ Pk(n)αn

k

we group together summands Pi(n)αn
i and Pj(n)αn

j with αi ≈ αj . After
relabeling, we may write (uniquely up to ordering)

f(n) = f1(n) + · · ·+ fg(n)

where

fi(n) = Pi1(n)αn
i1 + · · ·+ Pi,qi(n)αn

i,qi
(i = 1, . . . , g)
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with q1 + · · · + qg = k and αij ≈ αi` when 1 5 i 5 g, 1 5 j, ` 5 qi, but
αij 6≈ αi′` when 1 5 i 6= i′ 5 g, 1 5 j 5 qi, 1 5 ` 5 qi′ .

We will now show that if f(n) = 0 for every n in an arithmetic pro-
gression A : n = ax + b (x ∈ Z), then

(1.6) f1(n) = · · · = fg(n) = 0

for every n ∈ A. Pick m ∈ N such that (αij/αi`)m = 1 for 1 5 i 5 g, 1 5 j,
` 5 qi. The progression A is a finite union of progressions A′ : n = amx+b′

(x ∈ Z), so that it will suffice to prove our assertion for each progressionA′.
When n = amx + b′ in A′, we have αn

ij = αb′
ijα

amx
i1 , so that

fi(n) = Qi(x)αamx
i1

with Qi(x) =
∑qi

j=1 αb′
ijPij(amx + b′). We may infer that

(1.7) Q1(x)αamx
11 + · · ·+ Qg(x)αamx

g1

vanishes for each x ∈ Z. Since αi1 6≈ αi′1, for i 6= i′, we have αam
i1 6≈ αam

i′1 ,
so that {x`αamx

i1 }x∈Z for 1 5 i 5 g, ` = 0, 1, . . . are linearly independent
recurrence sequences. Therefore (1.7) can vanish for each x ∈ Z only if
Q1 = · · · = Qg = 0. But then (1.6) holds indeed for every n ∈ A′.

In view of the observation just made, our Theorem yields the following
result, akin to Lemma 8 of [4].

Corollary. (1.6) holds for all but at most c2(t) number n ∈ Z.

If for some i0 we have αi0 6≈ αj for each j 6= i0, 1 5 j 5 k, then some
fi equals Pi0(n)αn

i0
, hence has at most t zeros. In this case Z contains no

arithmetic progression, hence has cardinality 5 c2(t).
The present paper is a sequel to [4], and the proof of the theorem

will depend heavily on the machinery introduced in that earlier paper. We
will frequently use without mention the fact that when x runs through
an arithmetic progression, then so does ax + b when a > 0, b in Z are
given. As for notation, h(α) will denote the absolute logarithmic height of
a nonzero algebraic number α, and ord β will denote the order of a root
of unity β.
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2. A specialization argument

By arithmetic progression we will, of course, understand a set A =
A(a, b) ⊂ Z where a > 0, b are in Z, consisting of numbers ax + b with
x ∈ Z. We will call a = a(A) the modulus of A. Suppose a set Z ⊂ Z is
a finite union of numbers and of arithmetic progressions. We then write
ν(Z) for the minimum of u + v such that Z can be expressed as the union
of u numbers and v arithmetic progressions. For example, when Z is finite,
ν(Z) is its cardinality |Z|; on the other hand Z = A(2, 0) ∪ A(3, 0) has
ν(Z) = 2. We write ν(Z) = ∞ if Z cannot be expressed as such a union.

In general, Z ′ ⊃ Z does not imply ν(Z ′) = ν(Z). We therefore will
require the following

Lemma 1. Suppose ν(Z) is finite. Then there is a finite set T ⊂ Z
with Z ∩ T = ∅ such that every set Z ′ ⊃ Z with Z ′ ∩ T = ∅ has ν(Z ′) =
ν(Z).

Proof. Suppose ν(Z) = u + v, and Z = Z1 ∪ Z2 where |Z1| = u

and Z2 is a union of v arithmetic progressions. Clearly Z1 ∩ Z2 = ∅ and
ν(Z2) = v.

Say Z1 = {n1, . . . , nu}. When u = 0 or 1, set T1 = ∅. When u > 1
and ni < nj , we note that A(nj − ni, ni) is not contained in Z, for if it
were, it clearly would be contained in Z2, so that ni, nj ∈ Z2, and we
could remove ni, nj from Z1, thus diminishing u + v. We may then pick
some tij ∈ A(nj − ni, ni) which is not in Z. We now let T1 be the union
of the numbers tij so obtained. Then

Any arithmetic progression A with A ∩ T1 = ∅ contains at most one
element of Z1.

Therefore when v = 0, the lemma holds with T = T1.
Now suppose v > 0, and let Z2 be the union of arithmetic progressions

A(ai, bi) (i = 1, . . . , v). Set q = lcm(a1, . . . , av); then Z2 is periodic with
period q, i.e., when n ∈ Z2, then A(q, n) ⊂ Z2. Set ` = qν(Z). After a
translation, we may suppose that

[1, q`] ∩ Z1 = ∅.

Let T2 consist of all numbers n ∈ [1, q`] which are not in Z. Suppose A
is an arithmetic progression with modulus a 5 ` which is not contained
in Z2. Let b, b+ a, . . . , b+(q− 1)a with 1 5 b 5 a be consecutive elements
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of A. If all were in Z2, then by periodicity of Z2, all of A would be in Z2.
Therefore at least one of the above q elements of A is /∈ Z2, hence is in T2.
Therefore

Every arithmetic progression A with A∩T2 = ∅ and modulus a(A) 5 `

is contained in Z2.
Set T = T1 ∪ T2. Suppose Z ′ ⊃ Z with Z ′ ∩ T = ∅ is the union

of u′ numbers and v′ arithmetic progressions; say Z ′ = Z ′1 ∪ Z ′2 where
|Z ′1| = u′ and Z ′2 is the union of v′ arithmetic progressions A′i = Ai(a′i, b

′
i)

(i = 1, . . . , v′). We have to show that

(2.1) u′ + v′ = u + v = ν(Z).

If some A′i is disjoint from Z2, its intersection with Z is empty or consists
of a single element of Z1. Remove A′i from Z ′, or replace it by this single
element of Z1. In this way Z ′ is replaced by a set Z ′′ ⊃ Z with Z ′′∩T = ∅,
and Z ′′ can be covered by at most u′+1 numbers and v′− 1 progressions.
If we can show that (u′+1)+(v′−1) = u+v, then (2.1) will follow. After
some replacements of this kind we may suppose that each A′i (i = 1, . . . , v′)
intersects Z2.

We may suppose thatA′1, . . . ,A′w have modulus 5` andA′w+1, . . . ,A′v′
have modulus > `, where 0 5 w 5 v′. Then A′1, . . . ,A′w are contained in
Z2. Given A′i = A(a′i, b

′
i) where 1 5 i 5 w, each b′i + xa′i ∈ Z2, and since

Z2 has period q, each b′i+xa′i+yq with x, y ∈ Z is in Z2. Therefore, setting
a′′i = gcd(a′i, q), the progression A(a′′i , b′i) ⊂ Z2. Since clearly A′1∪· · ·∪A′v′
covers Z2, this union remains unchanged if we replace A′i by A(a′′i , b′i) for
1 5 i 5 w. Therefore we may suppose that a′i | q (i = 1, . . . , w), so that
A′1, . . . ,A′w have period q.

We claim that A′1 ∪ · · · ∪A′w = Z2. Say Z2 has r elements per period
of length q, and A′1 ∪ · · · ∪A′w has s elements. Thus Z2 has “density” r/q,
and A′1 ∪ · · · ∪ A′w has density s/q. The sequences A′w+1, . . . ,A′v′ have
density < 1/`, so that Z ′2 = A′1 ∪ · · · ∪A′v′ has density < (s/q)+ (v′/`). In
proving (2.1) we may clearly suppose that v′ 5 ν(Z), and then Z ′2, hence
Z ′, has density

< (s/q) + (ν(Z)/qν(Z)) = (s + 1)/q.

Therefore, since Z ′ ⊃ Z and Z has density r/q, we see that s = r, and
our claim is established.
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We may conclude that w = ν(Z2) = v. The sequences A′w+1, . . . ,A′v′ ,
together with Z ′1, must cover Z1. Since each A′i contains at most one
element of Z1, we have (v′ − w) + |Z ′1| = |Z1|, i.e., v′ − w + u′ = u. We
may conclude that u′ + v′ = u + w = u + v. ¤

Consider an equation (1.4) where P1, . . . , Pk are of respective degrees
s1, . . . , sk. The numbers α1, . . . , αk and the coefficients of P1, . . . , Pk are
not necessarily algebraic. Denote the coefficients of Pj by cj0, cj1, . . . , cj,sj .
By the Skolem–Mahler–Lech Theorem, the solutions n ∈ Z of (1.4) make
up a set Z with finite ν(Z). Construct T according to Lemma 2.1.

Given n ∈ Z, the equation (1.4) defines an algebraic variety V (n)
in the points (α, c) where α = (α1, . . . , αk) and c has components cj`

(1 5 j 5 k, 0 5 ` 5 sj). Our particular (α, c) lies in the variety

V (Z) =
⋂

n∈Z
V (n).

Since Z ∩ T = ∅, (α, c) /∈ W (T ), where

W (T ) =
⋃

n∈T
V (n).

In fact (α, c) ∈ V (Z)\W0(T ), where W0(T ) is the union of W (T ) and the
surface α1 . . . αkc1,s1 . . . ck,sk

= 0.
There is an algebraic specialization (α̂, ĉ) ∈ V (Z)\W0(T ), i.e., a point

(α̂, ĉ) with algebraic coordinates in this set. It gives rise to an equation

(2.2) P̂1(n)α̂n
1 + · · ·+ P̂k(n)α̂n

k = 0

where α̂i 6= 0 and deg P̂i = si (1 5 i 5 k). Let Ẑ consist of solutions
n ∈ Z of this equation. Since (α̂, ĉ) ∈ V (Z), we have Ẑ ⊃ Z, but since
(α̂, ĉ) /∈ W (T ), no n ∈ T is a solution. Therefore Ẑ ∩ T = ∅, so that
ν(Ẑ) = ν(Z) by the lemma.

Therefore it will suffice to prove our theorem in the situation where
α1, . . . , αk and the coefficients of P1, . . . , Pk are algebraic. We will as-
sume from now on that α1, . . . , αk and these coefficients lie in an algebraic
number field K.
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3. A Proposition which implies the Theorem

Proposition. Let Mj(X) = a1jX1 + · · · + akjXk (j = 1, . . . , n) be

linear forms which are linearly independent over Q. We suppose that the

coefficients aij are algebraic, we write ai = (ai1, . . . , ain) and assume that

each ai 6= 0 (i = 1, . . . , k). We define ti to be the integer such that

ai = (ai1, . . . , ai,ti , 0, . . . , 0) with ai,ti 6= 0. Set t = t1 + · · ·+ tk,

T = min(kn, e12t),(3.1)

} = }(T ) = e−6T 4
.(3.2)

Suppose α1, . . . , αk are nonzero algebraic numbers. Consider numbers

x ∈ Z for which

(3.3) M1(αx
1 , . . . , αx

k), . . . , Mn(αx
1 , . . . , αx

k)

are linearly dependent over Q. These numbers fall into at most

(3.4) H(T ) = exp
(
(7T )6T

)

classes with the following property. For each class C there is a natural

number m such that

(a) solutions x, x′ in C have x ≡ x′ (mod m),

(b) there are i 6= j such that either αi 6≈ αj and h(αm
i /αm

j ) = }, or

αi ≈ αj and ord(αm
i /αm

j ) 5 }−1.

Deduction of the Theorem. When P is a nonzero polynomial, set
t(P ) = 1 + deg P , and when P = 0 set t(P ) = 0. When P = (P1, . . . , Pk)
is a vector of polynomials, put t = t(P) = t(P1) + · · · + t(Pk). Also set
a = a(P) = maxi t(Pi). Suppose P1, . . . , Pk have algebraic coefficients,
and α1, . . . , αk are nonzero algebraic numbers. We will prove by induction
on t that the set Z of solutions x ∈ Z of

(3.5) P1(x)αx
1 + · · ·+ Pk(x)αx

k = 0

has

(3.6) ν(Z) 5 Z(t, T ) = exp
(
(2t − 1)(7T )7T

)
,
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where

(3.7) T = min(ka, e12t).

We clearly may suppose that k = 2, t = 3, and that P1, . . . , Pk are
not zero. Set ti = t(Pi) (i = 1, . . . , k). When Pi(x) =

∑a
j=1 aijx

j−1

(i = 1, . . . , k), define linear forms

Nj(X) = Nj(X1, . . . , Xk) =
k∑

i=1

aijXi (j = 1, . . . , a).

Then ai = (ai1, . . . , aia) = (ai1, . . . , ai,ti , 0, . . . , 0) with ai,ti 6= 0
(i = 1, . . . , a). The forms N1, . . . , Na are not necessarily linearly indepen-
dent over Q. Let M1, . . . , Mn be a maximal independent (over Q) subset
of them. If we replace N1, . . . , Na by M1, . . . , Mn, then the numbers ti
(i = 1, . . . , k) and t = t1 + · · ·+ tk induced by them cannot increase.

The equation (3.5) may be written as

(3.8)
a∑

j=1

Nj(αx
1 , . . . , αx

k)xj−1 = 0.

Each Nj(X) is a linear combination
∑n

r=1 cjrMr(X) with rational cjr, so
that (3.8) may be expressed as

(3.9)
n∑

r=1

( a∑

j=1

cjrx
j−1

)
Mr(αx

1 , . . . , αx
k) = 0.

There are fewer than a numbers x ∈ Z such that each polynomial∑a
j=1 cjrx

j−1 (r = 1, . . . , n) vanishes. For other solutions of (3.9), the
numbers Mr(αx

1 , . . . , αx
k) (r = 1, . . . , n) are linearly dependent over Q. By

the Proposition, these numbers fall into at most H(T ) classes. Let us
consider solutions in a fixed class.

The numbers in such a class are of the form x = x0 + my with y ∈ Z.
In terms of y, the equation (3.5) becomes

(3.10) P̂1(y)α̂y
1 + · · ·+ P̂k(y)α̂y

k = 0

where α̂i = αm
i , P̂i(y) = αx0

i Pi(x0 + my) (i = 1, . . . , k).
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The Proposition leads to two cases. Let us first consider the case
where i 6= j, αi ≈ αj and ord(α̂i/α̂j) = ord(αm

i /αm
j ) 5 }(T )−1. We may

suppose that i = k, j = k−1, say, and we set q = ord(α̂k/α̂k−1). We divide
Z into the arithmetic progressions A(q, `) (0 5 ` < q). When y = qz + ` is
in such a progression, then α̂y

k = α̂`
kα̂qz

k−1, and (3.10) becomes

(3.11) P ∗1 (z)α∗z1 + · · ·+ P ∗k−1(z)α∗zk−1 = 0

with α∗i = α̂q
i (1 5 i 5 k − 1), P ∗i (z) = α̂`

i P̂i(qz + `) for 1 5 i 5 k − 2,
but P ∗k−1(z) = α̂`

k−1P̂k−1(qz + `) + α̂`
kP̂k(qz + `). Since t(P ∗1 , . . . , P ∗k−1) <

t(P), the zeros of (3.11) make up at most Z(t− 1, T ) single numbers and
arithmetic progressions. Taking the sum over ` in

0 5 ` < q 5 }(T )−1 = exp
(
6T 4

)
< exp

(
(6T )6T

)
,

we see that the set ZC of solutions in our class has

(3.12) ν(ZC) < exp
(
(6T )6T

)
Z

(
t− 1, T

)
.

In the other case of the Proposition, some αi 6≈αj have h(αm
i /αm

j )= }.
Then just as in Section 5 of [4], there are polynomial vectors P(w) =
(P (w)

1 , . . . , P
(w)
k ) 6= (0, . . . , 0) with a(P(w)) 5 a, t(P(w)) < t(P) = t, and

where 1 5 w 5 F , such that every solution of (3.10) satisfies

(3.13) P
(w)
1 (y)α̂y

1 + · · ·+ P
(w)
k (y)α̂y

k = 0

for some w: here (as in [4])

F = exp
(
(6t)5t

)
+ 5E log E with E = 16t2a/}.

Therefore E < 16T 3 exp(6T 4) < exp(7T 4), E log E < exp(8T 4),

(3.14) F < exp
(
(6T )5T

)
+ 5 exp(8T 4) < exp

(
(6T )6T

)
.

By our induction on t, the solutions of (3.13) consist of at most Z(t−1, T )
single numbers and arithmetic progressions. The single numbers give no
problem, but we have to observe that the solutions of (3.10) are just con-
tained in these progressions.

Say the progression is y = az + b (z ∈ Z), and (3.13) becomes

(3.15) P̃
(w)
1 (z)α̃z

1 + · · ·+ P̃
(w)
k (z)α̃z

k = 0
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with α̃i = α̂a
i and P̃

(w)
i (z) = α̂b

iP
(w)
i (az + b) (i = 1, . . . , k). Now if

α̃1. . . . , α̃k were distinct, then the validity of (3.15) for each z ∈ Z would
imply that each P̃

(w)
i = 0, hence each P

(w)
i = 0, which is not the case.

Therefore α̃1, . . . , α̃k are not all distinct, say α̃k−1 = α̃k. In terms of z in
y = az + b, the equation (3.10) becomes

(3.16) P̃1(z)α̃z
1 + · · ·+ P̃k−1(z)α̃z

k−1 = 0

where P̃i(z)= α̂b
i P̂i(az + b) for 15 i 5 k− 2, but P̃k−1(z)= α̂b

k−1P̂k−1(az +
b)+ α̂b

kP̂k(az+b). Since t(P̃1, . . . , P̃k−1) < t(P) = t, the solutions to (3.16)
make up a set of not more that Z(t − 1, T ) numbers and progressions.
Altogether, the set ZC of solutions in our class has

(3.17) ν(ZC) 5 FZ(t− 1, T )2 < exp((6T )6T )Z(t− 1, T )2

by (3.14).
Considering the possible (fewer than a) solutions mentioned at the

beginning, and summing over the classes C, we obtain

ν(Z) < a + H(T ) exp
(
(6T )6T

)
Z(t− 1, T )2

< T + exp
(
(7T )6T + (6T )6T

)(
exp

(
(2t−1 − 1)(7T )7T

))2

< exp
(
(2t − 1)(7T )7T

)
= Z(t, T ).

Hence (3.6) is established.
Since t 5 T , we have in fact

ν(Z) < exp
(
2T (7T )7T

)
.

We have T 5 T1 := e12t. Here (since we may suppose t = 2 in our
theorem) T1 = e24, and

ν(Z) < exp
(
T 8T1

1

)
= exp exp(12t · 8e12t) < exp exp exp(20t).

On the other hand T 5 kn, so that T 5 T2 := ka, since n 5 a. Here
T2 = 2, so that

ν(Z) < exp
(
T 30T2

2

)
= exp exp(30T2 log T2) = exp exp(30aka log k). ¤
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4. A lemma on linear independence

Lemma 2. Let K be a field, and a1, . . . ,ak vectors in Kn. Suppose

ai = (ai1, . . . , ai,ti , 0, . . . , 0) (i = 1, . . . , k)

where ti = 0 (so that ai = 0) or ti > 0, ai,ti 6= 0. Set t = t1+· · ·+tk. Then
there are fewer than e12t ordered n-tuples i1, . . . , in (with 1 5 i1, . . . , in 5 k)
for which ai1 , . . . ,ain are linearly independent.

Remark. The conclusion is trivially true when a1, . . . ,ak do not span
Kn, in particular when k < n.

Proof. We may suppose that each ai 6= 0, so that each ti > 0. Let
ai1 , . . . ,ain be linearly independent. For 1 5 j 5 m = [log n/ log 2] + 2,
let Sj be the set of numbers `, 1 5 ` 5 n, with n/2j < ti`

5 n/2j−1.
Then S1, . . . , Sm are pairwise disjoint, and their union is {1, . . . , n}. We
have ti`

5 n/2j−1 for ` ∈ Sj ∩ Sj+1 ∪ · · · ∪ Sm, so that the independence
of ai1 , . . . ,ain implies |S1| + · · · + |Sj−1| = n − n/2j−1 (2 5 j 5 m).
Given S1, . . . , Sj−1, the set Sj is contained in the set {1, . . . , n}\(S1∪· · ·∪
Sj−1) of cardinality 5 n/2j−1. This gives at most 2n/2j−1

choices for Sj .
Altogether the number of possibilities for all the sets S1, . . . , Sm is less
than 2n+(n/2)+... = 4n.

Now supppose S1, . . . , Sm are given. When ` ∈ Sj , how many choices
are there for i` ? For such `, ti`

> n/2j , and since the number of subscripts
i with ti > n/2j is < (2j/n)t, the number of choices for our i` is < (2j/n)t.
Since |Sj | 5 n/2j−1, we see that given j, the number of choices for all the
i` with ` ∈ Sj is

< (2jt/n)n/2j−1
.

Taking the product over j, 1 5 j 5 m, we obtain

< (t/n)2n(2 · 22/2 · 23/4 · 24/8 . . . )n < (8t/n)2n.

The number of possibilities for S1, . . . , Sm was < 4n, so that altogether we
get fewer than

(16t/n)2n

n-tuples i1, . . . , in. The function f(x) = (16t/x)x takes its maximum at
x0 = 16t/e, so that

(16t/n)2n = f(n)2 5 f(x0)2 = e32t/e < e12t. ¤
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5. Denominators of certain rational numbers

Let q ∈ N be given, and R the system of numbers u/q with 1 5 u 5 q,
gcd(u, q) = 1. This system has n = φ(q) elements, so that we may set
R = {ρ1, . . . , ρn}, say. For 1 5 i, j 5 n, let rij be the denominator of
ρi − ρj , i.e., rij is the least natural number with rij(ρi − ρj) ∈ Z. Write
N(ε) for the number of triples i, j, k in 1 5 i, j, k 5 n with

(5.1) lcm(rij , rik) 5 εn.

By a special case of Theorem A in [4], N(ε) 5 ζ(2 − κ)εκn3 for any
0 < κ < 1, where ζ is the Riemann zeta function.

Here we will have to deal with the number M(ε) of triples i, j, k with

(5.2) lcm(rij , rik) 5 εq.

Lemma 3. For 0 < κ < 1

(5.3) M(ε) 5 c(κ)εκn3.

For instance, when κ = 1/2, we may take c(κ) = 11.

Proof. lcm(rij , rik) is the least common denominator of ρi − ρj ,
ρi− ρk. The least common denominator of (u/q)− (v/q), (u/q)− (w/q) is
q/d where d = gcd(u − v, u − w, q). So if S denotes the set of numbers z

in 1 5 z 5 q with gcd(z, q) = 1, then M(ε) is the number of triples u, v, w

in S with

(5.4) gcd(u− v, u− w, q) = 1/ε.

When gcd(r, q) = 1, the left hand side of (5.4) is unchanged if u, v, w are
replaced by numbers congruent to ru, rv, rw (mod q). Therefore M(ε) =
nM1(ε), where M1(ε) is the number of pairs v, w in S with

gcd(1− v, 1− w, q) = 1/ε.

Given h, let M2(h) be the number of pairs v, w in S such that

(5.5) h | gcd(1− v, 1− w, q).
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Then
M1(ε) 5

∑

h=1/ε

M2(h) =
∑

h|q
h=1/ε

M2(h).

The Euler totient function has φ(h) = c1(κ)h(1+κ)/2 for 0 < κ < 1,
and in particular one may take c1(1/2) = (2/27)1/4 (see, e.g., [2], Theo-
rem 327, and the proof given there). Now suppose h | q, and let h′, q′ be
their respective square free parts, i.e., the products of primes dividing h, q

respectively. Then φ(q)/q = φ(q′)/q′ and φ(h)/h = φ(h′)/h′. Define t, t′

by q = ht, q′ = h′t′, so that φ(q′) = φ(h′)φ(t′). We obtain

(φ(t′)/t′)(q/h) = (φ(q′)/φ(h′))(t/t′)

= (φ(q)/φ(h))(q′/q)(h/h′)(t/t′) = φ(q)/φ(h)(5.6)

5 c1(κ)−1φ(q)h−(1+κ)/2 = c1(κ)−1nh−(1+κ)/2.

(5.5) yields v = 1 + hx, and v ∈ S further implies 0 5 x < q/h and
(1 + hx, q) = 1, so that (1 + hx, t′) = 1. Since (h, t′) = 1, the last relation
allows φ(t′) values of x in an interval of length t′, hence (φ(t′)/t′)(q/h)
values of x in 0 5 x < q/h. This, then, is the number of possible values
for v. It is also the number of possibilities for w, so that

M2(h) =
(
(φ(t′)/t′)(q/h)

)2 5 c1(κ)−2n2h−1−κ

by (5.6), and therefore

M1(ε) 5 c1(κ)−2n2
∑

h=1/ε

h−1−κ.

Suppose 0 < ε < 1/2. The last sum may be estimated by an integral from
(1/ε)− 1 to ∞, and since (1/ε)− 1 = 1/2ε, it is 5 κ−1(2ε)κ. We obtain

M(ε) = nM1(ε) 5 c1(κ)−2κ−12κεκn3.

When ε=1/2, we have εκ > 1/2, so that trivially M(ε) 5 n3 < 2εκn3.
Thus (5.3) is established.

When κ =1/2, the value of c(1/2) given above yields M(ε)5(27/2)1/2 ·
2 · 21/2ε1/2n3 < 11ε1/2n3. We therefore may take c(1/2) = 11. ¤
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In [4] a triple i, j, k was called ε-bad when (5.1) holds. We now (given
our special system R) will consider i, j, k to be ε-bbad if (5.2) holds. Thus
M(ε) is the number of ε-bbad triples. When ` = 3 and u1, . . . , u` is an
`-tuple of integers with 1 5 u1, . . . , u` 5 n, we will call this `-tuple ε-bbad
if some triple ui, uj , uk with distinct i, j, k is ε-tuples is ε-bbad .

Corollary. The number of ε-bbad `-tuples is

< 2ε1/2`3n`.

Proof. By the case κ = 1/2 of Lemma 3, the number of ε-bbad triples
is < 11ε1/2n3. Therefore given i, j, k with 1 5 i < j < k 5 `, the number
of `-tuples u1, . . . , u` for which ui, uj , uk is ε-bbad is < 11ε1/2n3 · n`−3 =
11ε1/2n`. The number of triples i, j, k in question is

(
`
3

)
, so that the

number of ε-bbad `-tuples is

< 11
(

`

3

)
ε1/2n` < 2ε1/2`3n`. ¤

As in [4], for α, β, γ in C×, let G(α : β : γ) be the subgroup of C×
generated by α/β and α/γ.

Suppose β is a primitive q-th root of 1, so that deg β = φ(q) = n. The
set of conjugates β[1], . . . , β[n] of β consists of the numbers exp(2πiu/q)
with 1 5 u 5 q, (u, q) = 1. Clearly an `-tuple of integers u1, . . . , u` with
1 5 u1, . . . , u` 5 n is ε-bbad precisely if for some triple ui, uj , jk with
distinct i, j, k in 1 5 i, j, k 5 ` we have

G
(
β[ui] : β[uj ] : β[uk]

)
5 εq.

Suppose Q(β) ⊂ K, and let ξ 7→ ξ(σ) (σ = 1, . . . , D) signify the
embeddings K ↪→ C. Given ` = 3, an `-tuple µ1, . . . , µ` of numbers in
1 5 µ 5 D will be called ε-bbad if there are distinct numbers i, j, k in
1 5 i, j, k 5 ` such that

(5.7) G
(
β(µi) : β(µj) : β(µk)

)
5 εq.

Since for each u in 1 5 u 5 n there are D/n numbers µ in 1 5 µ 5 D with
β(µ) = β[u], the number of ε-bbad `-tuples is less than

(5.8) 2ε1/2`3n`(D/n)` = 2ε1/2`3D`.
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6. The cases k = 1 and n = 1 of the Proposition

When k = 1, Mj(X) = bjX where b1, . . . , bn are linearly independent
over Q. Then b1α

x
1 , . . . , bnαx

1 are linearly independent for every x ∈ Z.
When n = 1, M1(X) = a1X1 + · · · + akXk with nonzero coefficients.

The number M1(αx
1 , . . . , αx

k) is dependent when it is zero, i.e., when

a1α
x
1 + · · ·+ akαx

k = 0.

If x is a solution of this equation, there is a subset S(x) ⊂ {1, . . . , k} such
that 1 ∈ S(x) and

(6.1)
∑

i∈S(x)

aiα
x
i = 0,

but no subsum of (6.1) vanishes, i.e., (6.1) fails to hold when S(x) is
replaced by a set S ′ with ∅ 6= S ′ $ S(x). By Lemma 8 of [4], for all but
at most

(6.2) G(k) = exp
(
(7k)4k

)

solutions x, the set S(x) has the property that αi ≈ αj for any i, j ∈ S(x).
We put such exceptional solutions x into a class by itself; condition (b) of
the Proposition will be satisfied by taking m sufficiently large.

Now let S 6= ∅ be a subset of {1, . . . , k} such that αi ≈ αj for i, j ∈ S.
We will consider solutions having S(x) = S. For convenience of notation,
we will suppose S = {1, . . . , `}, so that (6.1) becomes

(6.3) a1α
x
1 + · · ·+ a`α

x
` = 0.

There is no solution when ` = 1; hence we may suppose ` = 2. Since
no subsum of (6.3) vanishes, we know from Lemma 3 in [4] (which is an
immediate consequence of a theorem of Evertse [1]) that there are vectors
c(w) = (c(w)

1 , . . . , c
(w)
` ) where

1 5 w 5 B(`) = `3`2 5 k3k2

such that αx
1 , . . . , αx

` is proportional to some c(w). Consider solutions with
fixed w. When x, x′ are such solutions, (α1/α2)2 = c

(w)
1 /c

(w)
2 , and similarly

for x′, so that
(α1/α2)x−x′ = 1.
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When m is the order of α1/α2, then x ≡ x′ (mod m), and αm
1 /αm

2 = 1, so
that ord(αm

1 /αm
2 ) = 1.

The number of sets S is < 2k, the number of choices for w is 5 k3k2
,

so that we obtain < 2k · k3k2
classes. The total number of classes is

< G(k) + 2k · k3k2
< exp

(
(7k)6k

)
= exp

(
(7T )6T

)
= H(T ),

since n = 1 yields T = k.

7. Proof of the Proposition

We may suppose that k > 1, n > 1. Let K be a field containing
α1, . . . , αk and the coefficients of our linear forms. Set D = deg K, and
let ξ 7→ ξ(σ) (σ = 1, . . . , D) signify the embeddings K ↪→ C. For 1 5
σ1, . . . , σn 5 D and 1 5 i1, . . . , in 5 k, set

A
(

σ1, . . . , σn

i1, . . . , in

)
= α

(σ1)
i1

. . . α
(σn)
in

,

∆
(

σ1, . . . , σn

i1, . . . , in

)
= det(a(σ1)

i1
, . . . ,a(σn)

in
)

as in [4]. Given σ = (σ1, . . . , σn) write

(7.1) fσ(x) =
k∑

i1=1

· · ·
k∑

in=1

∆
(

σ1, . . . , σn

i1, . . . , in

)(
A

(
σ1, . . . , σn

i1, . . . , in

))x

.

Then according to (10.2) of [4], whenever the n quantities (3.3) are linearly
dependent over Q, we have

(7.2) fσ(x) = 0

for each σ = (σ1, . . . , σn).
Let q = q(σ) be the number of nonzero summands in (7.1). Then

q 5 kn, but also q 5 e12t by Lemma 2. Therefore q(σ) 5 T , where T is
defined by (3.1).

As in [4], there are σ2, . . . , σn and u1, . . . , un such that

∆
(

1, σ2, . . . , σn

u1, u2, . . . , un

)
6= 0.
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As in §10 of [4], define a set S of n-tuples such that this holds for every
σ = (σ1 = 1, σ2, . . . , σn) ∈ S. Define sets I(σ) as in [4]. They have
cardinality 5 T .

Suppose |I(σ)| = 1 for some σ ∈ S. Then (7.2) has at most

G(q) 5 G(T ) 5 H(T )

solutions x where G(q) = exp((7q)4q): This follows from the Corollary to
Lemma 8 of [4], and corresponds to the inequality in the paragraph below
(10.6) of [4].

We may then suppose that |I(σ)| > 1 for each σ ∈ S. The number of
n-tuples (i1, . . . , in) is kn. Further I(σ) is a set of at most T such n-tuples.
Therefore the number of possibilities for I(σ) is 5 knT . As in [4], we
construct a set I of n-tuples (i1, . . . , in), and sets S ′2,S ′3(σ2), . . . ,S ′n(σ2, . . .

. . . , σn−1). Here |I| 5 T . In place of (10.8) of [4], we may conclude that
each set S ′j(. . . ) has cardinality

(7.3) |S ′j(. . . )| > D/(nknT ) = D/T 1+T 2 = D/T (5/4)T 2

where we used that n = 2, k = 2, T = max(4, n, k). With S ′ constructed
as in [4],

I(σ) = I when σ ∈ S ′.
For 2 5 j 5 n, let Tj be the set of numbers ij 6= uj in 1 5 ij 5 k such

that

(7.4) (i1, . . . , ij−1, ij , uj+1, . . . , un) ∈ I

for certain i1, . . . , ij−1. (When j = n, (7.4) becomes (i1, . . . , in−1, in) ∈ I.)
Lemma 17 of [4] holds in the following modified form.

Lemma 4. Suppose ij ∈ Tj and αij 6≈ αuj . Then

h(αij /αuj ) > 1/
(
8T 7 deg(αij /αuj )

)
.

Proof. (10.12) of [4] becomes nK(αij /αuj ) > D/T (5/4)T 2
by (7.3).

The Corollary to Lemma 11 of [4] yields

h(αij /αuj ) > 1/
(
4
(
log T (5/4)T 2)3 deg(αij /αuj )

)
.
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Here (since T = 4),

4
(
log T (5/4)T 2)3

< 8(T 2 log T )3 < 8T 7. ¤

For 2 5 j 5 n, let T ∗j be the set of numbers αij /αuj with ij ∈ Tj .
Say T ∗j = {β1, . . . , βr}. In analogy to (10.13), (10.14) of [4] we have

(7.5) nK(βs) > D/T (5/4)T 2
, h(βs) > 1/(8T 7 deg βs)

for each s, 1 5 s 5 r, with βs 6≈ 1. Lemma 18 of [4] now becomes

Lemma 5. Set ` = 3T , and suppose

(7.6) D > e3T 4
.

Let 2 5 j 5 n and σ1, . . . , σj−1 with σ1 = 1, σ2 ∈ S ′2, . . . , σj−1 ∈
S ′j−1(σ2, . . . , σj−2) be given. There is a subset S ′′j = S ′′j (σ1, . . . , σj−1) of

S ′j(σ1, . . . , σj−1) of cardinality

|S ′′j (σ1, . . . , σj−1)| = `

such that for any triple of distinct numbers φ, ψ, ω in S ′′j (σ1, . . . , σj−1),
and for 1 5 s 5 r,

(7.7) |G(β(φ)
s : β(ψ)

s : β(ω)
s )| >

{
T−11T 3

deg βs when βs 6≈ 1,

T−11T 3
ord βs when βs ≈ 1.

Proof. For brevity, put S ′j = S ′j(σ2, . . . , σj−1). When r = 0, the
condition (7.7) is vacuous. Since S ′j has cardinality > D/T (5/4)T 2

> 3T = `

by (7.3), (7.6), there is certainly a subset of cardinality `.
Suppose r > 0. Set

(7.8) ε = T−10T 3
.

Note that

(7.9) 108rε1/2T 3T (5/4)T 2` < 108ε1/2T 4+4T 3
< ε1/2T 5T 3

= 1
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since T = 4, and that

(7.10) 2`2T (5/4)T 2` < 18T 2+4T 3
< T 5T 3

< e3T 4
< D

by (7.6).
Let βs ∈ T ∗j be given. Then if βs 6≈ 1, we see from the argument

around (10.21) of [4] that the number of ε-bad `-tuples µ1, . . . , µ` with
each µi in S ′j is less than ε1/2`3D`. On the other hand when βs ≈ 1, then
by (5.8) the number of ε-bbad `-tuples is less than 2ε1/2`3D`. Summing
over s in 1 5 s 5 r, we see that the number of `-tuples µ1, . . . , µ` in S ′j
which are ε-bad or ε-bbad for some βs is

< 2rε1/2`3D` = 54rε1/2T 3D` <
1
2

(
D/T (5/4)T 2

)`

by (7.9). The number of `-tuples for which at least two elements are equal
is

5
(

`

2

)
D`−1 < `2D`−1 <

1
2

(
D/T (5/4)T 2

)`

by (7.10). Since |S ′j | = D/T (5/4)T 2
, the number of all possible `-tuples in

S ′j is = (D/T (5/4)T 2
)`. Therefore there is an `-tuple of distinct numbers

in S ′j which is not ε-bad or ε-bbad for any of β1, . . . , βr. By the definition
of ε-bad and ε-bbad this means that for any three distinct numbers i, j, k,
we have for βs 6≈ 1 that

|G(β(µi)
s : β(µj)

s : β(µk)
s )| > εn(βs)

= ε(deg βs)D−1nK(βs) > ε(deg βs)/T (5/4)T 2
> T−11T 3

deg βs

(in analogy to an estimate below (10.23) in [4]), and using (7.5), (7.8),
whereas for βs ≈ 1 the opposite of (5.7) holds, so that

|G(β(µi)
s : β(µj)

s : β(µk)
s )| > ε ordβs > T−10T 3

ord βs.

We now set S ′′j (σ2, . . . , σj−1) = {µ1, . . . , µ`}. Then indeed any three
numbers φ, ψ, ω in S ′′j (. . . ) have (7.7). ¤

We will assume from now on that (7.6) holds. This can always be
achieved by enlarging K, if necessary.
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We define S ′′ to be the set of n-tuples σ = (σ1, . . . , σn) with σ1 = 1,
σ2 ∈ S ′′2 , σ3 ∈ S ′′3 (σ2), . . . , σn ∈ S ′′n(σ1, . . . , σn−1). We will deal with the
equation (7.2) with σ ∈ S ′′. The number of these equations is |S ′′| =
`n−1 < (3T )n.

The remainder of our arguments follows Section 11 of [4], with a few
changes as follows. Each equation (7.2) splits, with at most G(q) 5 G(T )
exceptions. If we carry this out for each σ ∈ S ′′, we get

(7.11) |S ′′|G(T ) < (3T )n exp
(
(7T )4T

)
< exp

(
(7T )5T

)

exceptions. This takes the place of (11.1) in [4].
As in (10.9) of [4], we have I(σ) = I when σ ∈ S ′, hence certainly

when σ ∈ S ′′. Subsets I(σ, x) of I are defined in terms of the equa-
tion (11.4) of [4]. We have |I| 5 T , so that there are fewer than T

tuples i = (i1, . . . , in) 6= (u1, . . . , un) in I. Hence given σ1, . . . , σn−1,
there will be an n-tuple i = i(σ1, . . . , σn−1, x) 6= (u1, . . . , un) such that
i ∈ I(σ, x) for at least `/T = 3 of the numbers σn ∈ S ′′n(σ2, . . . , σn−1). Let
S∗n(σ2, . . . , σn−1, x) consist of 3 such numbers σn. Continuing in this way,
we construct sets S∗2 (x), S∗3 (σ2, x), . . . ,S∗n(σ2, . . . , σn−1, x), a set S∗(x) and
i(x) such that i(x) ∈ I(σ, x) when σ ∈ S∗(x).

Define systems Σ of 3-element sets as in [4]. When i ∈ I, define again
a certain class C(i,Σ) of solutions. The number of classes C(i, Σ) is less
than

(7.12) T`3
n

= T (3T )3
n

,

which replaces (11.7) of [4]. When studying solutions x in a given class
C(i,Σ), let j = j(i) be the number such that i = (i1, . . . , ij , uj+1, . . . , un)
with ij 6= uj . In contrast to [4], we can no longer claim that j > 1. We
can only claim that j > 1 if αi1 6≈ αu1 .

The sets I(σφ, x), I(σψ, x), I(σω, x) are in the set I of cardinality
5 T . Therefore C(i,Σ) may be divided into

(7.13) 23T

subclasses C(i, Σ, Iφ, Iψ, Iω) (where (7.13) replaces the number in (11.10)
of [4]). Since each I(i, x) is of cardinality 5 T , the estimate (11.11) of [4]
may be replaced by

(7.14) T (3T )3
n

23T B(T )3 < 24T T 9T 2
(3T )3

n

< exp(5T 3 + 3nT ).
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Eventually, just as in [4], we arrive at

(β(φ)
s /β(ψ)

s )x−x′ = (β(φ)
s /β(ω)

s )x−x′ = 1

when x, x′ lie in the same class. So if |G(β(φ)
s : β

(ψ)
s : β

(ω)
s )| = m, then

x ≡ x′ (mod m). Further by (7.7),

m >

{
T−11T 3

deg βs if βs 6≈ 1,

T−11T 3
ordβs if βs ≈ 1.

When βs 6≈ 1, we obtain from (7.5) that

h(βm
s ) = mh(βs) > T−11T 3

/8T 7 > e−6T 4
= }(T ).

When βs ≈ 1, we note that m | ordβs, so that

ord(βm
s ) = m−1 ordβs < T 11T 3

< e6T 4
= }(T )−1.

But βs is a quotient αi/αj , and depending on whether αi 6≈ αj or
αi ≈ αj , we get h(αm

i /αm
j ) > }(T ) or ord(αm

i /αm
j ) < }(T )−1.

How many classes do we have? Adding (7.11) to (7.14) we get

exp
(
(7T )5T

)
+ exp

(
5T 3 + 3nT

)
< exp

(
(7T )6T

)
= H(T )

classes. ¤

References

[1] J. H. Evertse, The number of solutions of linear equations in roots of unity, Acta
Arith. 99.1 (1999), 45–51.

[2] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 3rd
edn, Clarendon Press, Oxford, 1954.

[3] C. Lech, A note on recurring series, Ark. Math. 2 (1953), 417–421.

[4] W. M. Schmidt, The zero multiplicity of linear recurrence sequences, Acta Math.
182 (1999), 243–282.

WOLFGANG M. SCHMIDT
UNIVERSITY OF COLORADO
BOULDER
USA

(Received September 16, 1999; revised March 14, 2000)


