Zeros of linear recurrence sequences

By WOLFGANG M. SCHMIDT (Boulder)
Dedicated to Kálmán Györy on his 60th birthday

Abstract

Let $\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ be a linear recurrence sequence. A classical theorem of Skolem-Mahler-Lech asserts that the set \mathcal{Z} of subscripts n with $u_{n}=0$ is a finite union of arithmetic progressions and single numbers. We now show that when the sequence is of order t, then \mathcal{Z} is a union of at most $c(t)$ progressions and single numbers.

1. Introduction

The sequences $\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ of complex numbers form a vector space V under component-wise addition. A polynomial

$$
\begin{equation*}
\mathcal{P}(z)=c_{0} z^{t}+\cdots+c_{t} \tag{1.1}
\end{equation*}
$$

acts on V by setting $\mathcal{P}\left(\left\{u_{n}\right\}\right)=\left\{v_{n}\right\}$ with $v_{n}=c_{0} u_{n}+c_{1} u_{n-1}+\cdots+c_{t} u_{n-t}$ $(n \in \mathbb{Z})$.

When $\mathcal{P}(z)$ is a polynomial of degree t with constant term $c_{t} \neq 0$, the sequences $\left\{u_{n}\right\}$ with $\mathcal{P}\left(\left\{u_{n}\right\}\right)=\{0\}$ (the zero sequence) make up a subspace $V(\mathcal{P})$ of \mathcal{P} of dimension t. If

$$
\begin{equation*}
\mathcal{P}(z)=c_{0} \prod_{i=1}^{k}\left(z-\alpha_{i}\right)^{t_{i}} \tag{1.2}
\end{equation*}
$$

Mathematics Subject Classification: 11B37, 11D61.
Key words and phrases: linear recurrence sequences, exponential diophantine equations. Supported in part by NSF grant DMS-9710314.
with distinct roots $\alpha_{1}, \ldots, \alpha_{k}$, the space $V(\mathcal{P})$ is spanned by the sequences

$$
\left\{n^{j} \alpha_{i}^{n}\right\}_{n \in \mathbb{Z}}
$$

where $1 \leqq i \leqq k, 0 \leqq j<t_{i}$, so that it consists of the sequences

$$
\begin{equation*}
u_{n}=P_{1}(n) \alpha_{1}^{n}+\cdots+P_{k}(n) \alpha_{k}^{n} \tag{1.3}
\end{equation*}
$$

where P_{i} is a polynomial of degree $<t_{i}(i=1, \ldots, k)$.
On the other hand, given a sequence $\left\{u_{n}\right\}$, the polynomials \mathcal{P} with $\mathcal{P}\left(\left\{u_{n}\right\}\right)=\{0\}$ make up an ideal in $\mathbb{C}[z]$. A polynomial $\mathcal{P}(z)$ is in the ideal precisely when $z \mathcal{P}(z)$ is. When the ideal is not the zero ideal, it is generated by a unique monic polynomial \mathcal{P}, and this polynomial has nonzero constant term c_{t}. In this case we say that $\left\{u_{n}\right\}$ is a linear recurrence sequence, and the polynomial \mathcal{P} is its companion polynomial. The order of the recurrence sequence is the degree of its companion polynomial. A sequence is of order t precisely if (1.3) holds with distinct nonzero $\alpha_{1}, \ldots, \alpha_{k}$ and $\sum_{i=1}^{k}$ $\left(\operatorname{deg} P_{i}+1\right)=t$. Only the zero sequence has order $t=0$. A sequence $\left\{u_{n}\right\}$ of order $t>0$ with companion polynomial (1.1) satisfies the recurrence relation

$$
u_{n}=-c_{1} u_{n-1}-\cdots-c_{t} u_{n-t} \quad(n \in \mathbb{Z})
$$

The sequence is said to be nondegenerate if the quotients $\alpha_{i} / \alpha_{j}(i \neq j)$ of the roots of its companion polynomial are not roots of 1 .

Let $\left\{u_{n}\right\}$ be a linear recurrence sequence with companion polynomial (1.1) of degree $t>0$. We are interested in the set $\mathcal{Z}=\mathcal{Z}\left(\left\{u_{n}\right\}\right)$ of numbers $n \in \mathbb{Z}$ with $u_{n}=0$, i.e., with

$$
\begin{equation*}
P_{1}(n) \alpha_{1}^{n}+\cdots+P_{k}(n) \alpha_{k}^{n}=0 . \tag{1.4}
\end{equation*}
$$

The Skolem-Mahler-Lech Theorem [3] says that \mathcal{Z} is a finite union of arithmetic progressions and of single numbers. Moreover, \mathcal{Z} is finite if the sequence is non-degenerate. Actually, \mathcal{Z} is finite under the weaker hypothesis that for some i_{0}, no quotient $\alpha_{i_{0}} / \alpha_{j}$ with $j \neq i_{0}$ is a root of 1 .

We recently showed [4] that in the nondegenerate case of order $t>0$, the set \mathcal{Z} has cardinality $|\mathcal{Z}| \leqq c_{1}(t)$ where $c_{1}(t)$ depends on t only. In the present paper we will prove the following.

Theorem. Suppose $\left\{u_{n}\right\}$ is a recurrence of order t. Then \mathcal{Z} is a union of not more than $c_{2}(t)$ arithmetic progressions and single numbers, where we may take

$$
\begin{equation*}
c_{2}(t)=\exp \exp \exp (20 t) . \tag{1.5}
\end{equation*}
$$

If the companion polynomial (1.2) has $\max _{i} t_{i}=a$, then \mathcal{Z} also is the union of at most $c_{3}(k, a)$ numbers and progressions, where

$$
c_{3}(k, a)=\exp \exp \left(30 a k^{a} \log k\right) .
$$

Note that in the nondegenerate case, we have replaced the bound $c_{1}(t)=\exp \exp \exp (3 t \log t)$ of [4] by (1.5). When the companion polynomial has only simple roots, so that $a=1$, we have $c_{3}(k, 1)=$ $\exp \exp (30 k \log k)=\exp \exp (30 t \log t)$, i.e., a bound which is only double exponential.

We do not claim that the union involves arithmetic progressions which all have the same common difference a, i.e., progressions $n=a x+b_{i}$, or that our progressions do not intersect. Suppose ζ, ξ are primitive roots of 1 of respective orders r, s where r, s are coprime, and let

$$
u_{n}=1^{n}-\zeta^{n}-\xi^{n}+(\zeta \xi)^{n}=\left(1-\zeta^{n}\right)\left(1-\xi^{n}\right) \quad(n \in \mathbb{Z}) .
$$

This is a sequence of order 4 , and \mathcal{Z} is the union of the two progressions $r x$ $(x \in \mathbb{Z})$, and $s x(x \in \mathbb{Z})$. It is an easy exercise to show that given $a>0$, at least $r+s-1$ progressions $n=a x+b_{i}(x \in \mathbb{Z})$ are needed such that their union equals \mathcal{Z}.

It will be convenient to introduce the following equivalence relation on \mathbb{C}^{\times}: we set $\alpha \approx \beta$ if α / β is a root of 1 . Given

$$
f(n)=P_{1}(n) \alpha_{1}^{n}+\cdots+P_{k}(n) \alpha_{k}^{n}
$$

we group together summands $P_{i}(n) \alpha_{i}^{n}$ and $P_{j}(n) \alpha_{j}^{n}$ with $\alpha_{i} \approx \alpha_{j}$. After relabeling, we may write (uniquely up to ordering)

$$
f(n)=f_{1}(n)+\cdots+f_{g}(n)
$$

where

$$
f_{i}(n)=P_{i 1}(n) \alpha_{i 1}^{n}+\cdots+P_{i, q_{i}}(n) \alpha_{i, q_{i}}^{n} \quad(i=1, \ldots, g)
$$

with $q_{1}+\cdots+q_{g}=k$ and $\alpha_{i j} \approx \alpha_{i \ell}$ when $1 \leqq i \leqq g, 1 \leqq j, \ell \leqq q_{i}$, but $\alpha_{i j} \not \approx \alpha_{i^{\prime} \ell}$ when $1 \leqq i \neq i^{\prime} \leqq g, 1 \leqq j \leqq q_{i}, 1 \leqq \ell \leqq q_{i^{\prime}}$.

We will now show that if $f(n)=0$ for every n in an arithmetic progression $\mathcal{A}: n=a x+b(x \in \mathbb{Z})$, then

$$
\begin{equation*}
f_{1}(n)=\cdots=f_{g}(n)=0 \tag{1.6}
\end{equation*}
$$

for every $n \in \mathcal{A}$. Pick $m \in \mathbb{N}$ such that $\left(\alpha_{i j} / \alpha_{i \ell}\right)^{m}=1$ for $1 \leqq i \leqq g, 1 \leqq j$, $\ell \leqq q_{i}$. The progression \mathcal{A} is a finite union of progressions $\mathcal{A}^{\prime}: n=a m x+b^{\prime}$ $(x \in \mathbb{Z})$, so that it will suffice to prove our assertion for each progression \mathcal{A}^{\prime}. When $n=a m x+b^{\prime}$ in \mathcal{A}^{\prime}, we have $\alpha_{i j}^{n}=\alpha_{i j}^{b^{\prime}} \alpha_{i 1}^{a m x}$, so that

$$
f_{i}(n)=Q_{i}(x) \alpha_{i 1}^{a m x}
$$

with $Q_{i}(x)=\sum_{j=1}^{q_{i}} \alpha_{i j}^{b^{\prime}} P_{i j}\left(a m x+b^{\prime}\right)$. We may infer that

$$
\begin{equation*}
Q_{1}(x) \alpha_{11}^{a m x}+\cdots+Q_{g}(x) \alpha_{g 1}^{a m x} \tag{1.7}
\end{equation*}
$$

vanishes for each $x \in \mathbb{Z}$. Since $\alpha_{i 1} \not \approx \alpha_{i^{\prime} 1}$, for $i \neq i^{\prime}$, we have $\alpha_{i 1}^{a m} \not \approx \alpha_{i^{\prime} 1}^{a m}$, so that $\left\{x^{\ell} \alpha_{i 1}^{a m x}\right\}_{x \in \mathbb{Z}}$ for $1 \leqq i \leqq g, \ell=0,1, \ldots$ are linearly independent recurrence sequences. Therefore (1.7) can vanish for each $x \in \mathbb{Z}$ only if $Q_{1}=\cdots=Q_{g}=0$. But then (1.6) holds indeed for every $n \in \mathcal{A}^{\prime}$.

In view of the observation just made, our Theorem yields the following result, akin to Lemma 8 of [4].

Corollary. (1.6) holds for all but at most $c_{2}(t)$ number $n \in \mathcal{Z}$.
If for some i_{0} we have $\alpha_{i_{0}} \not \approx \alpha_{j}$ for each $j \neq i_{0}, 1 \leqq j \leqq k$, then some f_{i} equals $P_{i_{0}}(n) \alpha_{i_{0}}^{n}$, hence has at most t zeros. In this case \mathcal{Z} contains no arithmetic progression, hence has cardinality $\leqq c_{2}(t)$.

The present paper is a sequel to [4], and the proof of the theorem will depend heavily on the machinery introduced in that earlier paper. We will frequently use without mention the fact that when x runs through an arithmetic progression, then so does $a x+b$ when $a>0, b$ in \mathbb{Z} are given. As for notation, $h(\alpha)$ will denote the absolute logarithmic height of a nonzero algebraic number α, and ord β will denote the order of a root of unity β.

2. A specialization argument

By arithmetic progression we will, of course, understand a set $\mathcal{A}=$ $\mathcal{A}(a, b) \subset \mathbb{Z}$ where $a>0, b$ are in \mathbb{Z}, consisting of numbers $a x+b$ with $x \in \mathbb{Z}$. We will call $a=a(\mathcal{A})$ the modulus of \mathcal{A}. Suppose a set $\mathcal{Z} \subset \mathbb{Z}$ is a finite union of numbers and of arithmetic progressions. We then write $\nu(\mathcal{Z})$ for the minimum of $u+v$ such that \mathcal{Z} can be expressed as the union of u numbers and v arithmetic progressions. For example, when \mathcal{Z} is finite, $\nu(\mathcal{Z})$ is its cardinality $|\mathcal{Z}|$; on the other hand $\mathcal{Z}=\mathcal{A}(2,0) \cup \mathcal{A}(3,0)$ has $\nu(\mathcal{Z})=2$. We write $\nu(\mathcal{Z})=\infty$ if \mathcal{Z} cannot be expressed as such a union.

In general, $\mathcal{Z}^{\prime} \supset \mathcal{Z}$ does not imply $\nu\left(\mathcal{Z}^{\prime}\right) \geqq \nu(\mathcal{Z})$. We therefore will require the following

Lemma 1. Suppose $\nu(\mathcal{Z})$ is finite. Then there is a finite set $\mathcal{T} \subset \mathbb{Z}$ with $\mathcal{Z} \cap \mathcal{T}=\emptyset$ such that every set $\mathcal{Z}^{\prime} \supset \mathcal{Z}$ with $\mathcal{Z}^{\prime} \cap \mathcal{T}=\emptyset$ has $\nu\left(\mathcal{Z}^{\prime}\right) \geqq$ $\nu(\mathcal{Z})$.

Proof. Suppose $\nu(\mathcal{Z})=u+v$, and $\mathcal{Z}=\mathcal{Z}_{1} \cup \mathcal{Z}_{2}$ where $\left|\mathcal{Z}_{1}\right|=u$ and \mathcal{Z}_{2} is a union of v arithmetic progressions. Clearly $\mathcal{Z}_{1} \cap \mathcal{Z}_{2}=\emptyset$ and $\nu\left(\mathcal{Z}_{2}\right)=v$.

Say $\mathcal{Z}_{1}=\left\{n_{1}, \ldots, n_{u}\right\}$. When $u=0$ or 1 , set $\mathcal{T}_{1}=\emptyset$. When $u>1$ and $n_{i}<n_{j}$, we note that $\mathcal{A}\left(n_{j}-n_{i}, n_{i}\right)$ is not contained in \mathcal{Z}, for if it were, it clearly would be contained in \mathcal{Z}_{2}, so that $n_{i}, n_{j} \in \mathcal{Z}_{2}$, and we could remove n_{i}, n_{j} from \mathcal{Z}_{1}, thus diminishing $u+v$. We may then pick some $t_{i j} \in \mathcal{A}\left(n_{j}-n_{i}, n_{i}\right)$ which is not in \mathcal{Z}. We now let \mathcal{T}_{1} be the union of the numbers $t_{i j}$ so obtained. Then

Any arithmetic progression \mathcal{A} with $\mathcal{A} \cap \mathcal{T}_{1}=\emptyset$ contains at most one element of \mathcal{Z}_{1}.

Therefore when $v=0$, the lemma holds with $\mathcal{T}=\mathcal{T}_{1}$.
Now suppose $v>0$, and let \mathcal{Z}_{2} be the union of arithmetic progressions $\mathcal{A}\left(a_{i}, b_{i}\right)(i=1, \ldots, v)$. Set $q=\operatorname{lcm}\left(a_{1}, \ldots, a_{v}\right)$; then \mathcal{Z}_{2} is periodic with period q, i.e., when $n \in \mathcal{Z}_{2}$, then $\mathcal{A}(q, n) \subset \mathcal{Z}_{2}$. Set $\ell=q \nu(\mathcal{Z})$. After a translation, we may suppose that

$$
[1, q \ell] \cap \mathcal{Z}_{1}=\emptyset
$$

Let \mathcal{T}_{2} consist of all numbers $n \in[1, q \ell]$ which are not in \mathcal{Z}. Suppose \mathcal{A} is an arithmetic progression with modulus $a \leqq \ell$ which is not contained in \mathcal{Z}_{2}. Let $b, b+a, \ldots, b+(q-1) a$ with $1 \leqq b \leqq a$ be consecutive elements
of \mathcal{A}. If all were in \mathcal{Z}_{2}, then by periodicity of \mathcal{Z}_{2}, all of \mathcal{A} would be in \mathcal{Z}_{2}. Therefore at least one of the above q elements of \mathcal{A} is $\notin \mathcal{Z}_{2}$, hence is in \mathcal{T}_{2}. Therefore

Every arithmetic progression \mathcal{A} with $\mathcal{A} \cap \mathcal{T}_{2}=\emptyset$ and modulus $a(\mathcal{A}) \leqq \ell$ is contained in \mathcal{Z}_{2}.

Set $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}$. Suppose $\mathcal{Z}^{\prime} \supset \mathcal{Z}$ with $\mathcal{Z}^{\prime} \cap \mathcal{T}=\emptyset$ is the union of u^{\prime} numbers and v^{\prime} arithmetic progressions; say $\mathcal{Z}^{\prime}=\mathcal{Z}_{1}^{\prime} \cup \mathcal{Z}_{2}^{\prime}$ where $\left|\mathcal{Z}_{1}^{\prime}\right|=u^{\prime}$ and \mathcal{Z}_{2}^{\prime} is the union of v^{\prime} arithmetic progressions $\mathcal{A}_{i}^{\prime}=\mathcal{A}_{i}\left(a_{i}^{\prime}, b_{i}^{\prime}\right)$ $\left(i=1, \ldots, v^{\prime}\right)$. We have to show that

$$
\begin{equation*}
u^{\prime}+v^{\prime} \geqq u+v=\nu(\mathcal{Z}) . \tag{2.1}
\end{equation*}
$$

If some \mathcal{A}_{i}^{\prime} is disjoint from \mathcal{Z}_{2}, its intersection with \mathcal{Z} is empty or consists of a single element of \mathcal{Z}_{1}. Remove \mathcal{A}_{i}^{\prime} from \mathcal{Z}^{\prime}, or replace it by this single element of \mathcal{Z}_{1}. In this way \mathcal{Z}^{\prime} is replaced by a set $\mathcal{Z}^{\prime \prime} \supset \mathcal{Z}$ with $\mathcal{Z}^{\prime \prime} \cap \mathcal{T}=\emptyset$, and $\mathcal{Z}^{\prime \prime}$ can be covered by at most $u^{\prime}+1$ numbers and $v^{\prime}-1$ progressions. If we can show that $\left(u^{\prime}+1\right)+\left(v^{\prime}-1\right) \geqq u+v$, then (2.1) will follow. After some replacements of this kind we may suppose that each $\mathcal{A}_{i}^{\prime}\left(i=1, \ldots, v^{\prime}\right)$ intersects \mathcal{Z}_{2}.

We may suppose that $\mathcal{A}_{1}^{\prime}, \ldots, \mathcal{A}_{w}^{\prime}$ have modulus $\leqq \ell$ and $\mathcal{A}_{w+1}^{\prime}, \ldots, \mathcal{A}_{v^{\prime}}^{\prime}$ have modulus $>\ell$, where $0 \leqq w \leqq v^{\prime}$. Then $\mathcal{A}_{1}^{\prime}, \ldots, \mathcal{A}_{w}^{\prime}$ are contained in \mathcal{Z}_{2}. Given $\mathcal{A}_{i}^{\prime}=\mathcal{A}\left(a_{i}^{\prime}, b_{i}^{\prime}\right)$ where $1 \leqq i \leqq w$, each $b_{i}^{\prime}+x a_{i}^{\prime} \in \mathcal{Z}_{2}$, and since \mathcal{Z}_{2} has period q, each $b_{i}^{\prime}+x a_{i}^{\prime}+y q$ with $x, y \in \mathbb{Z}$ is in \mathcal{Z}_{2}. Therefore, setting $a_{i}^{\prime \prime}=\operatorname{gcd}\left(a_{i}^{\prime}, q\right)$, the progression $\mathcal{A}\left(a_{i}^{\prime \prime}, b_{i}^{\prime}\right) \subset \mathcal{Z}_{2}$. Since clearly $\mathcal{A}_{1}^{\prime} \cup \cdots \cup \mathcal{A}_{v^{\prime}}^{\prime}$ covers \mathcal{Z}_{2}, this union remains unchanged if we replace \mathcal{A}_{i}^{\prime} by $\mathcal{A}\left(a_{i}^{\prime \prime}, b_{i}^{\prime}\right)$ for $1 \leqq i \leqq w$. Therefore we may suppose that $a_{i}^{\prime} \mid q(i=1, \ldots, w)$, so that $\mathcal{A}_{1}^{\prime}, \ldots, \mathcal{A}_{w}^{\prime}$ have period q.

We claim that $\mathcal{A}_{1}^{\prime} \cup \cdots \cup \mathcal{A}_{w}^{\prime}=\mathcal{Z}_{2}$. Say \mathcal{Z}_{2} has r elements per period of length q, and $\mathcal{A}_{1}^{\prime} \cup \cdots \cup \mathcal{A}_{w}^{\prime}$ has s elements. Thus \mathcal{Z}_{2} has "density" r / q, and $\mathcal{A}_{1}^{\prime} \cup \cdots \cup \mathcal{A}_{w}^{\prime}$ has density s / q. The sequences $\mathcal{A}_{w+1}^{\prime}, \ldots, \mathcal{A}_{v^{\prime}}^{\prime}$ have density $<1 / \ell$, so that $\mathcal{Z}_{2}^{\prime}=\mathcal{A}_{1}^{\prime} \cup \cdots \cup \mathcal{A}_{v^{\prime}}^{\prime}$ has density $<(s / q)+\left(v^{\prime} / \ell\right)$. In proving (2.1) we may clearly suppose that $v^{\prime} \leqq \nu(\mathcal{Z})$, and then \mathcal{Z}_{2}^{\prime}, hence \mathcal{Z}^{\prime}, has density

$$
<(s / q)+(\nu(\mathcal{Z}) / q \nu(\mathcal{Z}))=(s+1) / q .
$$

Therefore, since $\mathcal{Z}^{\prime} \supset \mathcal{Z}$ and \mathcal{Z} has density r / q, we see that $s=r$, and our claim is established.

We may conclude that $w \geqq \nu\left(\mathcal{Z}_{2}\right)=v$. The sequences $\mathcal{A}_{w+1}^{\prime}, \ldots, \mathcal{A}_{v^{\prime}}^{\prime}$, together with \mathcal{Z}_{1}^{\prime}, must cover \mathcal{Z}_{1}. Since each \mathcal{A}_{i}^{\prime} contains at most one element of \mathcal{Z}_{1}, we have $\left(v^{\prime}-w\right)+\left|\mathcal{Z}_{1}^{\prime}\right| \geqq\left|\mathcal{Z}_{1}\right|$, i.e., $v^{\prime}-w+u^{\prime} \geqq u$. We may conclude that $u^{\prime}+v^{\prime} \geqq u+w \geqq u+v$.

Consider an equation (1.4) where P_{1}, \ldots, P_{k} are of respective degrees s_{1}, \ldots, s_{k}. The numbers $\alpha_{1}, \ldots, \alpha_{k}$ and the coefficients of P_{1}, \ldots, P_{k} are not necessarily algebraic. Denote the coefficients of P_{j} by $c_{j 0}, c_{j 1}, \ldots, c_{j, s_{j}}$. By the Skolem-Mahler-Lech Theorem, the solutions $n \in \mathbb{Z}$ of (1.4) make up a set \mathcal{Z} with finite $\nu(\mathcal{Z})$. Construct \mathcal{T} according to Lemma 2.1.

Given $n \in \mathbb{Z}$, the equation (1.4) defines an algebraic variety $V(n)$ in the points $(\boldsymbol{\alpha}, \mathbf{c})$ where $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and \mathbf{c} has components $c_{j \ell}$ $\left(1 \leqq j \leqq k, 0 \leqq \ell \leqq s_{j}\right)$. Our particular ($\boldsymbol{\alpha}, \mathbf{c}$) lies in the variety

$$
V(\mathcal{Z})=\bigcap_{n \in \mathcal{Z}} V(n)
$$

Since $\mathcal{Z} \cap \mathcal{T}=\emptyset,(\boldsymbol{\alpha}, \mathbf{c}) \notin W(\mathcal{T})$, where

$$
W(\mathcal{T})=\bigcup_{n \in \mathcal{T}} V(n) .
$$

In fact $(\boldsymbol{\alpha}, \mathbf{c}) \in V(\mathcal{Z}) \backslash W_{0}(\mathcal{T})$, where $W_{0}(\mathcal{T})$ is the union of $W(\mathcal{T})$ and the surface $\alpha_{1} \ldots \alpha_{k} c_{1, s_{1}} \ldots c_{k, s_{k}}=0$.

There is an algebraic specialization $(\hat{\boldsymbol{\alpha}}, \hat{\mathbf{c}}) \in V(\mathcal{Z}) \backslash W_{0}(\mathcal{T})$, i.e., a point $(\hat{\boldsymbol{\alpha}}, \hat{\mathbf{c}})$ with algebraic coordinates in this set. It gives rise to an equation

$$
\begin{equation*}
\widehat{P}_{1}(n) \hat{\alpha}_{1}^{n}+\cdots+\widehat{P}_{k}(n) \hat{\alpha}_{k}^{n}=0 \tag{2.2}
\end{equation*}
$$

where $\hat{\alpha}_{i} \neq 0$ and $\operatorname{deg} \widehat{P}_{i}=s_{i}(1 \leqq i \leqq k)$. Let $\widehat{\mathcal{Z}}$ consist of solutions $n \in \mathbb{Z}$ of this equation. Since $(\hat{\boldsymbol{\alpha}}, \hat{\mathbf{c}}) \in V(\mathcal{Z})$, we have $\widehat{\mathcal{Z}} \supset \mathcal{Z}$, but since $(\hat{\boldsymbol{\alpha}}, \hat{\mathbf{c}}) \notin W(\mathcal{T})$, no $n \in \mathcal{T}$ is a solution. Therefore $\widehat{\mathcal{Z}} \cap \mathcal{T}=\emptyset$, so that $\nu(\widehat{\mathcal{Z}}) \geqq \nu(\mathcal{Z})$ by the lemma.

Therefore it will suffice to prove our theorem in the situation where $\alpha_{1}, \ldots, \alpha_{k}$ and the coefficients of P_{1}, \ldots, P_{k} are algebraic. We will assume from now on that $\alpha_{1}, \ldots, \alpha_{k}$ and these coefficients lie in an algebraic number field K.

3. A Proposition which implies the Theorem

Proposition. Let $M_{j}(\mathbf{X})=a_{1 j} X_{1}+\cdots+a_{k j} X_{k}(j=1, \ldots, n)$ be linear forms which are linearly independent over \mathbb{Q}. We suppose that the coefficients $a_{i j}$ are algebraic, we write $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$ and assume that each $\mathbf{a}_{i} \neq \mathbf{0}(i=1, \ldots, k)$. We define t_{i} to be the integer such that $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i, t_{i}}, 0, \ldots, 0\right)$ with $a_{i, t_{i}} \neq 0$. Set $t=t_{1}+\cdots+t_{k}$,

$$
\begin{align*}
T & =\min \left(k^{n}, e^{12 t}\right), \tag{3.1}\\
\hbar & =\hbar(T)=e^{-6 T^{4}} \tag{3.2}
\end{align*}
$$

Suppose $\alpha_{1}, \ldots, \alpha_{k}$ are nonzero algebraic numbers. Consider numbers $x \in \mathbb{Z}$ for which

$$
\begin{equation*}
M_{1}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right), \ldots, M_{n}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right) \tag{3.3}
\end{equation*}
$$

are linearly dependent over \mathbb{Q}. These numbers fall into at most

$$
\begin{equation*}
H(T)=\exp \left((7 T)^{6 T}\right) \tag{3.4}
\end{equation*}
$$

classes with the following property. For each class C there is a natural number m such that
(a) solutions x, x^{\prime} in C have $x \equiv x^{\prime}(\bmod m)$,
(b) there are $i \neq j$ such that either $\alpha_{i} \not \approx \alpha_{j}$ and $h\left(\alpha_{i}^{m} / \alpha_{j}^{m}\right) \geqq \hbar$, or $\alpha_{i} \approx \alpha_{j}$ and $\operatorname{ord}\left(\alpha_{i}^{m} / \alpha_{j}^{m}\right) \leqq \hbar^{-1}$.

Deduction of the Theorem. When P is a nonzero polynomial, set $t(P)=1+\operatorname{deg} P$, and when $P=0$ set $t(P)=0$. When $\mathbf{P}=\left(P_{1}, \ldots, P_{k}\right)$ is a vector of polynomials, put $t=t(\mathbf{P})=t\left(P_{1}\right)+\cdots+t\left(P_{k}\right)$. Also set $a=a(\mathbf{P})=\max _{i} t\left(P_{i}\right)$. Suppose P_{1}, \ldots, P_{k} have algebraic coefficients, and $\alpha_{1}, \ldots, \alpha_{k}$ are nonzero algebraic numbers. We will prove by induction on t that the set \mathcal{Z} of solutions $x \in \mathbb{Z}$ of

$$
\begin{equation*}
P_{1}(x) \alpha_{1}^{x}+\cdots+P_{k}(x) \alpha_{k}^{x}=0 \tag{3.5}
\end{equation*}
$$

has

$$
\begin{equation*}
\nu(\mathcal{Z}) \leqq Z(t, T)=\exp \left(\left(2^{t}-1\right)(7 T)^{7 T}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\min \left(k^{a}, e^{12 t}\right) \tag{3.7}
\end{equation*}
$$

We clearly may suppose that $k \geqq 2, t \geqq 3$, and that P_{1}, \ldots, P_{k} are not zero. Set $t_{i}=t\left(P_{i}\right)(i=1, \ldots, k)$. When $P_{i}(x)=\sum_{j=1}^{a} a_{i j} x^{j-1}$ $(i=1, \ldots, k)$, define linear forms

$$
N_{j}(\mathbf{X})=N_{j}\left(X_{1}, \ldots, X_{k}\right)=\sum_{i=1}^{k} a_{i j} X_{i} \quad(j=1, \ldots, a) .
$$

Then $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i a}\right)=\left(a_{i 1}, \ldots, a_{i, t_{i}}, 0, \ldots, 0\right)$ with $a_{i, t_{i}} \neq 0$ $(i=1, \ldots, a)$. The forms N_{1}, \ldots, N_{a} are not necessarily linearly independent over \mathbb{Q}. Let M_{1}, \ldots, M_{n} be a maximal independent (over \mathbb{Q}) subset of them. If we replace N_{1}, \ldots, N_{a} by M_{1}, \ldots, M_{n}, then the numbers t_{i} $(i=1, \ldots, k)$ and $t=t_{1}+\cdots+t_{k}$ induced by them cannot increase.

The equation (3.5) may be written as

$$
\begin{equation*}
\sum_{j=1}^{a} N_{j}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right) x^{j-1}=0 \tag{3.8}
\end{equation*}
$$

Each $N_{j}(\mathbf{X})$ is a linear combination $\sum_{r=1}^{n} c_{j r} M_{r}(\mathbf{X})$ with rational $c_{j r}$, so that (3.8) may be expressed as

$$
\begin{equation*}
\sum_{r=1}^{n}\left(\sum_{j=1}^{a} c_{j r} x^{j-1}\right) M_{r}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right)=0 . \tag{3.9}
\end{equation*}
$$

There are fewer than a numbers $x \in \mathbb{Z}$ such that each polynomial $\sum_{j=1}^{a} c_{j r} x^{j-1}(r=1, \ldots, n)$ vanishes. For other solutions of (3.9), the numbers $M_{r}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right)(r=1, \ldots, n)$ are linearly dependent over \mathbb{Q}. By the Proposition, these numbers fall into at most $H(T)$ classes. Let us consider solutions in a fixed class.

The numbers in such a class are of the form $x=x_{0}+m y$ with $y \in \mathbb{Z}$. In terms of y, the equation (3.5) becomes

$$
\begin{equation*}
\widehat{P}_{1}(y) \hat{\alpha}_{1}^{y}+\cdots+\widehat{P}_{k}(y) \hat{\alpha}_{k}^{y}=0 \tag{3.10}
\end{equation*}
$$

where $\hat{\alpha}_{i}=\alpha_{i}^{m}, \widehat{P}_{i}(y)=\alpha_{i}^{x_{0}} P_{i}\left(x_{0}+m y\right)(i=1, \ldots, k)$.

The Proposition leads to two cases. Let us first consider the case where $i \neq j, \alpha_{i} \approx \alpha_{j}$ and $\operatorname{ord}\left(\hat{\alpha}_{i} / \hat{\alpha}_{j}\right)=\operatorname{ord}\left(\alpha_{i}^{m} / \alpha_{j}^{m}\right) \leqq \hbar(T)^{-1}$. We may suppose that $i=k, j=k-1$, say, and we set $q=\operatorname{ord}\left(\hat{\alpha}_{k} / \hat{\alpha}_{k-1}\right)$. We divide \mathbb{Z} into the arithmetic progressions $\mathcal{A}(q, \ell)(0 \leqq \ell<q)$. When $y=q z+\ell$ is in such a progression, then $\hat{\alpha}_{k}^{y}=\hat{\alpha}_{k}^{\ell} \hat{\alpha}_{k-1}^{q z}$, and (3.10) becomes

$$
\begin{equation*}
P_{1}^{*}(z) \alpha_{1}^{* z}+\cdots+P_{k-1}^{*}(z) \alpha_{k-1}^{* z}=0 \tag{3.11}
\end{equation*}
$$

with $\alpha_{i}^{*}=\hat{\alpha}_{i}^{q}(1 \leqq i \leqq k-1), P_{i}^{*}(z)=\hat{\alpha}_{i}^{\ell} \widehat{P}_{i}(q z+\ell)$ for $1 \leqq i \leqq k-2$, but $P_{k-1}^{*}(z)=\hat{\alpha}_{k-1}^{\ell} \widehat{P}_{k-1}(q z+\ell)+\hat{\alpha}_{k}^{\ell} \widehat{P}_{k}(q z+\ell)$. Since $t\left(P_{1}^{*}, \ldots, P_{k-1}^{*}\right)<$ $t(\mathbf{P})$, the zeros of (3.11) make up at most $Z(t-1, T)$ single numbers and arithmetic progressions. Taking the sum over ℓ in

$$
0 \leqq \ell<q \leqq \hbar(T)^{-1}=\exp \left(6 T^{4}\right)<\exp \left((6 T)^{6 T}\right),
$$

we see that the set \mathcal{Z}_{C} of solutions in our class has

$$
\begin{equation*}
\nu\left(\mathcal{Z}_{C}\right)<\exp \left((6 T)^{6 T}\right) Z(t-1, T) . \tag{3.12}
\end{equation*}
$$

In the other case of the Proposition, some $\alpha_{i} \not \approx \alpha_{j}$ have $h\left(\alpha_{i}^{m} / \alpha_{j}^{m}\right) \geqq \hbar$. Then just as in Section 5 of [4], there are polynomial vectors $\mathbf{P}^{(w)}=$ $\left(P_{1}^{(w)}, \ldots, P_{k}^{(w)}\right) \neq(0, \ldots, 0)$ with $a\left(\mathbf{P}^{(w)}\right) \leqq a, t\left(\mathbf{P}^{(w)}\right)<t(\mathbf{P})=t$, and where $1 \leqq w \leqq F$, such that every solution of (3.10) satisfies

$$
\begin{equation*}
P_{1}^{(w)}(y) \hat{\alpha}_{1}^{y}+\cdots+P_{k}^{(w)}(y) \hat{\alpha}_{k}^{y}=0 \tag{3.13}
\end{equation*}
$$

for some w : here (as in [4])

$$
F=\exp \left((6 t)^{5 t}\right)+5 E \log E \quad \text { with } \quad E=16 t^{2} a / \hbar .
$$

Therefore $E<16 T^{3} \exp \left(6 T^{4}\right)<\exp \left(7 T^{4}\right), E \log E<\exp \left(8 T^{4}\right)$,

$$
\begin{equation*}
F<\exp \left((6 T)^{5 T}\right)+5 \exp \left(8 T^{4}\right)<\exp \left((6 T)^{6 T}\right) \tag{3.14}
\end{equation*}
$$

By our induction on t, the solutions of (3.13) consist of at most $Z(t-1, T)$ single numbers and arithmetic progressions. The single numbers give no problem, but we have to observe that the solutions of (3.10) are just contained in these progressions.

Say the progression is $y=a z+b(z \in \mathbb{Z})$, and (3.13) becomes

$$
\begin{equation*}
\widetilde{P}_{1}^{(w)}(z) \tilde{\alpha}_{1}^{z}+\cdots+\widetilde{P}_{k}^{(w)}(z) \tilde{\alpha}_{k}^{z}=0 \tag{3.15}
\end{equation*}
$$

with $\tilde{\alpha}_{i}=\hat{\alpha}_{i}^{a}$ and $\widetilde{P}_{i}^{(w)}(z)=\hat{\alpha}_{i}^{b} P_{i}^{(w)}(a z+b)(i=1, \ldots, k)$. Now if $\tilde{\alpha}_{1} \ldots, \tilde{\alpha}_{k}$ were distinct, then the validity of (3.15) for each $z \in \mathbb{Z}$ would imply that each $\widetilde{P}_{i}^{(w)}=0$, hence each $P_{i}^{(w)}=0$, which is not the case. Therefore $\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{k}$ are not all distinct, say $\tilde{\alpha}_{k-1}=\tilde{\alpha}_{k}$. In terms of z in $y=a z+b$, the equation (3.10) becomes

$$
\begin{equation*}
\widetilde{P}_{1}(z) \tilde{\alpha}_{1}^{z}+\cdots+\widetilde{P}_{k-1}(z) \tilde{\alpha}_{\hat{k}-1}^{z}=0 \tag{3.16}
\end{equation*}
$$

where $\widetilde{P}_{i}(z)=\hat{\alpha}_{i}^{b} \widehat{P}_{i}(a z+b)$ for $1 \leqq i \leqq k-2$, but $\widetilde{P}_{k-1}(z)=\hat{\alpha}_{k-1}^{b} \widehat{P}_{k-1}(a z+$ $b)+\hat{\alpha}_{k}^{b} \widehat{P}_{k}(a z+b)$. Since $t\left(\widetilde{P}_{1}, \ldots, \widetilde{P}_{k-1}\right)<t(\mathbf{P})=t$, the solutions to (3.16) make up a set of not more that $Z(t-1, T)$ numbers and progressions. Altogether, the set \mathcal{Z}_{C} of solutions in our class has

$$
\begin{equation*}
\nu\left(\mathcal{Z}_{C}\right) \leqq F Z(t-1, T)^{2}<\exp \left((6 T)^{6 T}\right) Z(t-1, T)^{2} \tag{3.17}
\end{equation*}
$$

by (3.14).
Considering the possible (fewer than a) solutions mentioned at the beginning, and summing over the classes C, we obtain

$$
\begin{aligned}
\nu(\mathcal{Z}) & <a+H(T) \exp \left((6 T)^{6 T}\right) Z(t-1, T)^{2} \\
& <T+\exp \left((7 T)^{6 T}+(6 T)^{6 T}\right)\left(\exp \left(\left(2^{t-1}-1\right)(7 T)^{7 T}\right)\right)^{2} \\
& <\exp \left(\left(2^{t}-1\right)(7 T)^{7 T}\right)=Z(t, T) .
\end{aligned}
$$

Hence (3.6) is established.
Since $t \leqq T$, we have in fact

$$
\nu(\mathcal{Z})<\exp \left(2^{T}(7 T)^{7 T}\right)
$$

We have $T \leqq T_{1}:=e^{12 t}$. Here (since we may suppose $t \geqq 2$ in our theorem) $T_{1} \geqq e^{24}$, and

$$
\nu(\mathcal{Z})<\exp \left(T_{1}^{8 T_{1}}\right)=\exp \exp \left(12 t \cdot 8 e^{12 t}\right)<\exp \exp \exp (20 t)
$$

On the other hand $T \leqq k^{n}$, so that $T \leqq T_{2}:=k^{a}$, since $n \leqq a$. Here $T_{2} \geqq 2$, so that

$$
\nu(\mathcal{Z})<\exp \left(T_{2}^{30 T_{2}}\right)=\exp \exp \left(30 T_{2} \log T_{2}\right)=\exp \exp \left(30 a k^{a} \log k\right)
$$

4. A lemma on linear independence

Lemma 2. Let K be a field, and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ vectors in K^{n}. Suppose

$$
\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i, t_{i}}, 0, \ldots, 0\right) \quad(i=1, \ldots, k)
$$

where $t_{i}=0$ (so that $\mathbf{a}_{i}=\mathbf{0}$) or $t_{i}>0, a_{i, t_{i}} \neq 0$. Set $t=t_{1}+\cdots+t_{k}$. Then there are fewer than $e^{12 t}$ ordered n-tuples $i_{1}, \ldots, i_{n}\left(\right.$ with $\left.1 \leqq i_{1}, \ldots, i_{n} \leqq k\right)$ for which $\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{n}}$ are linearly independent.

Remark. The conclusion is trivially true when $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ do not span K^{n}, in particular when $k<n$.

Proof. We may suppose that each $\mathbf{a}_{i} \neq \mathbf{0}$, so that each $t_{i}>0$. Let $\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{n}}$ be linearly independent. For $1 \leqq j \leqq m=[\log n / \log 2]+2$, let S_{j} be the set of numbers $\ell, 1 \leqq \ell \leqq n$, with $n / 2^{j}<t_{i_{\ell}} \leqq n / 2^{j-1}$. Then S_{1}, \ldots, S_{m} are pairwise disjoint, and their union is $\{1, \ldots, n\}$. We have $t_{i_{\ell}} \leqq n / 2^{j-1}$ for $\ell \in S_{j} \cap S_{j+1} \cup \cdots \cup S_{m}$, so that the independence of $\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{n}}$ implies $\left|S_{1}\right|+\cdots+\left|S_{j-1}\right| \geqq n-n / 2^{j-1}(2 \leqq j \leqq m)$. Given S_{1}, \ldots, S_{j-1}, the set S_{j} is contained in the set $\{1, \ldots, n\} \backslash\left(S_{1} \cup \cdots \cup\right.$ S_{j-1}) of cardinality $\leqq n / 2^{j-1}$. This gives at most $2^{n / 2^{j-1}}$ choices for S_{j}. Altogether the number of possibilities for all the sets S_{1}, \ldots, S_{m} is less than $2^{n+(n / 2)+\ldots}=4^{n}$.

Now supppose S_{1}, \ldots, S_{m} are given. When $\ell \in S_{j}$, how many choices are there for i_{ℓ} ? For such $\ell, t_{i_{\ell}}>n / 2^{j}$, and since the number of subscripts i with $t_{i}>n / 2^{j}$ is $<\left(2^{j} / n\right) t$, the number of choices for our i_{ℓ} is $<\left(2^{j} / n\right) t$. Since $\left|S_{j}\right| \leqq n / 2^{j-1}$, we see that given j, the number of choices for all the i_{ℓ} with $\ell \in S_{j}$ is

$$
<\left(2^{j} t / n\right)^{n / 2^{j-1}} .
$$

Taking the product over $j, 1 \leqq j \leqq m$, we obtain

$$
<(t / n)^{2 n}\left(2 \cdot 2^{2 / 2} \cdot 2^{3 / 4} \cdot 2^{4 / 8} \ldots\right)^{n}<(8 t / n)^{2 n} .
$$

The number of possibilities for S_{1}, \ldots, S_{m} was $<4^{n}$, so that altogether we get fewer than

$$
(16 t / n)^{2 n}
$$

n-tuples i_{1}, \ldots, i_{n}. The function $f(x)=(16 t / x)^{x}$ takes its maximum at $x_{0}=16 t / e$, so that

$$
(16 t / n)^{2 n}=f(n)^{2} \leqq f\left(x_{0}\right)^{2}=e^{32 t / e}<e^{12 t} .
$$

5. Denominators of certain rational numbers

Let $q \in \mathbb{N}$ be given, and R the system of numbers u / q with $1 \leqq u \leqq q$, $\operatorname{gcd}(u, q)=1$. This system has $n=\phi(q)$ elements, so that we may set $R=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$, say. For $1 \leqq i, j \leqq n$, let $r_{i j}$ be the denominator of $\rho_{i}-\rho_{j}$, i.e., $r_{i j}$ is the least natural number with $r_{i j}\left(\rho_{i}-\rho_{j}\right) \in \mathbb{Z}$. Write $N(\varepsilon)$ for the number of triples i, j, k in $1 \leqq i, j, k \leqq n$ with

$$
\begin{equation*}
\operatorname{lcm}\left(r_{i j}, r_{i k}\right) \leqq \varepsilon n \tag{5.1}
\end{equation*}
$$

By a special case of Theorem A in [4], $N(\varepsilon) \leqq \zeta(2-\kappa) \varepsilon^{\kappa} n^{3}$ for any $0<\kappa<1$, where ζ is the Riemann zeta function.

Here we will have to deal with the number $M(\varepsilon)$ of triples i, j, k with

$$
\begin{equation*}
\operatorname{lcm}\left(r_{i j}, r_{i k}\right) \leqq \varepsilon q \tag{5.2}
\end{equation*}
$$

Lemma 3. For $0<\kappa<1$

$$
\begin{equation*}
M(\varepsilon) \leqq c(\kappa) \varepsilon^{\kappa} n^{3} \tag{5.3}
\end{equation*}
$$

For instance, when $\kappa=1 / 2$, we may take $c(\kappa)=11$.
Proof. $\operatorname{lcm}\left(r_{i j}, r_{i k}\right)$ is the least common denominator of $\rho_{i}-\rho_{j}$, $\rho_{i}-\rho_{k}$. The least common denominator of $(u / q)-(v / q),(u / q)-(w / q)$ is q / d where $d=\operatorname{gcd}(u-v, u-w, q)$. So if S denotes the set of numbers z in $1 \leqq z \leqq q$ with $\operatorname{gcd}(z, q)=1$, then $M(\varepsilon)$ is the number of triples u, v, w in S with

$$
\begin{equation*}
\operatorname{gcd}(u-v, u-w, q) \geqq 1 / \varepsilon \tag{5.4}
\end{equation*}
$$

When $\operatorname{gcd}(r, q)=1$, the left hand side of (5.4) is unchanged if u, v, w are replaced by numbers congruent to $r u, r v, r w(\bmod q)$. Therefore $M(\varepsilon)=$ $n M_{1}(\varepsilon)$, where $M_{1}(\varepsilon)$ is the number of pairs v, w in S with

$$
\operatorname{gcd}(1-v, 1-w, q) \geqq 1 / \varepsilon
$$

Given h, let $M_{2}(h)$ be the number of pairs v, w in S such that

$$
\begin{equation*}
h \mid \operatorname{gcd}(1-v, 1-w, q) \tag{5.5}
\end{equation*}
$$

Then

$$
M_{1}(\varepsilon) \leqq \sum_{h \geqq 1 / \varepsilon} M_{2}(h)=\sum_{\substack{h \mid q \\ h \geqq 1 / \varepsilon}} M_{2}(h) .
$$

The Euler totient function has $\phi(h) \geqq c_{1}(\kappa) h^{(1+\kappa) / 2}$ for $0<\kappa<1$, and in particular one may take $c_{1}(1 / 2)=(2 / 27)^{1 / 4}$ (see, e.g., [2], Theorem 327, and the proof given there). Now suppose $h \mid q$, and let h^{\prime}, q^{\prime} be their respective square free parts, i.e., the products of primes dividing h, q respectively. Then $\phi(q) / q=\phi\left(q^{\prime}\right) / q^{\prime}$ and $\phi(h) / h=\phi\left(h^{\prime}\right) / h^{\prime}$. Define t, t^{\prime} by $q=h t, q^{\prime}=h^{\prime} t^{\prime}$, so that $\phi\left(q^{\prime}\right)=\phi\left(h^{\prime}\right) \phi\left(t^{\prime}\right)$. We obtain

$$
\begin{align*}
\left(\phi\left(t^{\prime}\right) / t^{\prime}\right)(q / h) & =\left(\phi\left(q^{\prime}\right) / \phi\left(h^{\prime}\right)\right)\left(t / t^{\prime}\right) \\
& =(\phi(q) / \phi(h))\left(q^{\prime} / q\right)\left(h / h^{\prime}\right)\left(t / t^{\prime}\right)=\phi(q) / \phi(h) \tag{5.6}\\
& \leqq c_{1}(\kappa)^{-1} \phi(q) h^{-(1+\kappa) / 2}=c_{1}(\kappa)^{-1} n h^{-(1+\kappa) / 2} .
\end{align*}
$$

(5.5) yields $v=1+h x$, and $v \in S$ further implies $0 \leqq x<q / h$ and $(1+h x, q)=1$, so that $\left(1+h x, t^{\prime}\right)=1$. Since $\left(h, t^{\prime}\right)=1$, the last relation allows $\phi\left(t^{\prime}\right)$ values of x in an interval of length t^{\prime}, hence $\left(\phi\left(t^{\prime}\right) / t^{\prime}\right)(q / h)$ values of x in $0 \leqq x<q / h$. This, then, is the number of possible values for v. It is also the number of possibilities for w, so that

$$
M_{2}(h)=\left(\left(\phi\left(t^{\prime}\right) / t^{\prime}\right)(q / h)\right)^{2} \leqq c_{1}(\kappa)^{-2} n^{2} h^{-1-\kappa}
$$

by (5.6), and therefore

$$
M_{1}(\varepsilon) \leqq c_{1}(\kappa)^{-2} n^{2} \sum_{h \geqq 1 / \varepsilon} h^{-1-\kappa} .
$$

Suppose $0<\varepsilon<1 / 2$. The last sum may be estimated by an integral from $(1 / \varepsilon)-1$ to ∞, and since $(1 / \varepsilon)-1 \geqq 1 / 2 \varepsilon$, it is $\leqq \kappa^{-1}(2 \varepsilon)^{\kappa}$. We obtain

$$
M(\varepsilon)=n M_{1}(\varepsilon) \leqq c_{1}(\kappa)^{-2} \kappa^{-1} 2^{\kappa} \varepsilon^{\kappa} n^{3} .
$$

When $\varepsilon \geqq 1 / 2$, we have $\varepsilon^{\kappa}>1 / 2$, so that trivially $M(\varepsilon) \leqq n^{3}<2 \varepsilon^{\kappa} n^{3}$. Thus (5.3) is established.

When $\kappa=1 / 2$, the value of $c(1 / 2)$ given above yields $M(\varepsilon) \leqq(27 / 2)^{1 / 2}$. $2 \cdot 2^{1 / 2} \varepsilon^{1 / 2} n^{3}<11 \varepsilon^{1 / 2} n^{3}$. We therefore may take $c(1 / 2)=11$.

In [4] a triple i, j, k was called ε - $b a d$ when (5.1) holds. We now (given our special system R) will consider i, j, k to be ε-bbad if (5.2) holds. Thus $M(\varepsilon)$ is the number of ε-bbad triples. When $\ell \geqq 3$ and u_{1}, \ldots, u_{ℓ} is an ℓ-tuple of integers with $1 \leqq u_{1}, \ldots, u_{\ell} \leqq n$, we will call this ℓ-tuple ε-bbad if some triple u_{i}, u_{j}, u_{k} with distinct i, j, k is ε-tuples is ε-bbad.

Corollary. The number of ε-bbad ℓ-tuples is

$$
<2 \varepsilon^{1 / 2} \ell^{3} n^{\ell} .
$$

Proof. By the case $\kappa=1 / 2$ of Lemma 3, the number of ε-bbad triples is $<11 \varepsilon^{1 / 2} n^{3}$. Therefore given i, j, k with $1 \leqq i<j<k \leqq \ell$, the number of ℓ-tuples u_{1}, \ldots, u_{ℓ} for which u_{i}, u_{j}, u_{k} is ε-bbad is $<11 \varepsilon^{1 / 2} n^{3} \cdot n^{\ell-3}=$ $11 \varepsilon^{1 / 2} n^{\ell}$. The number of triples i, j, k in question is $\binom{\ell}{3}$, so that the number of ε-bbad ℓ-tuples is

$$
<11\binom{\ell}{3} \varepsilon^{1 / 2} n^{\ell}<2 \varepsilon^{1 / 2} \ell^{3} n^{\ell}
$$

As in [4], for α, β, γ in \mathbb{C}^{\times}, let $G(\alpha: \beta: \gamma)$ be the subgroup of \mathbb{C}^{\times} generated by α / β and α / γ.

Suppose β is a primitive q-th root of 1 , so that $\operatorname{deg} \beta=\phi(q)=n$. The set of conjugates $\beta^{[1]}, \ldots, \beta^{[n]}$ of β consists of the numbers $\exp (2 \pi i u / q)$ with $1 \leqq u \leqq q,(u, q)=1$. Clearly an ℓ-tuple of integers u_{1}, \ldots, u_{ℓ} with $1 \leqq u_{1}, \ldots, u_{\ell} \leqq n$ is ε-bbad precisely if for some triple u_{i}, u_{j}, j_{k} with distinct i, j, k in $1 \leqq i, j, k \leqq \ell$ we have

$$
G\left(\beta^{\left[u_{i}\right]}: \beta^{\left[u_{j}\right]}: \beta^{\left[u_{k}\right]}\right) \leqq \varepsilon q .
$$

Suppose $\mathbb{Q}(\beta) \subset K$, and let $\xi \mapsto \xi^{(\sigma)}(\sigma=1, \ldots, D)$ signify the embeddings $K \hookrightarrow \mathbb{C}$. Given $\ell \geqq 3$, an ℓ-tuple $\mu_{1}, \ldots, \mu_{\ell}$ of numbers in $1 \leqq \mu \leqq D$ will be called ε-bbad if there are distinct numbers i, j, k in $1 \leqq i, j, k \leqq \ell$ such that

$$
\begin{equation*}
G\left(\beta^{\left(\mu_{i}\right)}: \beta^{\left(\mu_{j}\right)}: \beta^{\left(\mu_{k}\right)}\right) \leqq \varepsilon q . \tag{5.7}
\end{equation*}
$$

Since for each u in $1 \leqq u \leqq n$ there are D / n numbers μ in $1 \leqq \mu \leqq D$ with $\beta^{(\mu)}=\beta^{[u]}$, the number of ε-bbad ℓ-tuples is less than

$$
\begin{equation*}
2 \varepsilon^{1 / 2} \ell^{3} n^{\ell}(D / n)^{\ell}=2 \varepsilon^{1 / 2} \ell^{3} D^{\ell} . \tag{5.8}
\end{equation*}
$$

6. The cases $k=1$ and $n=1$ of the Proposition

When $k=1, M_{j}(X)=b_{j} X$ where b_{1}, \ldots, b_{n} are linearly independent over \mathbb{Q}. Then $b_{1} \alpha_{1}^{x}, \ldots, b_{n} \alpha_{1}^{x}$ are linearly independent for every $x \in \mathbb{Z}$.

When $n=1, M_{1}(\mathbf{X})=a_{1} X_{1}+\cdots+a_{k} X_{k}$ with nonzero coefficients. The number $M_{1}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right)$ is dependent when it is zero, i.e., when

$$
a_{1} \alpha_{1}^{x}+\cdots+a_{k} \alpha_{k}^{x}=0
$$

If x is a solution of this equation, there is a subset $\mathcal{S}(x) \subset\{1, \ldots, k\}$ such that $1 \in \mathcal{S}(x)$ and

$$
\begin{equation*}
\sum_{i \in \mathcal{S}(x)} a_{i} \alpha_{i}^{x}=0 \tag{6.1}
\end{equation*}
$$

but no subsum of (6.1) vanishes, i.e., (6.1) fails to hold when $\mathcal{S}(x)$ is replaced by a set \mathcal{S}^{\prime} with $\emptyset \neq \mathcal{S}^{\prime} \varsubsetneqq \mathcal{S}(x)$. By Lemma 8 of [4], for all but at most

$$
\begin{equation*}
G(k)=\exp \left((7 k)^{4 k}\right) \tag{6.2}
\end{equation*}
$$

solutions x, the set $\mathcal{S}(x)$ has the property that $\alpha_{i} \approx \alpha_{j}$ for any $i, j \in \mathcal{S}(x)$. We put such exceptional solutions x into a class by itself; condition (b) of the Proposition will be satisfied by taking m sufficiently large.

Now let $\mathcal{S} \neq \emptyset$ be a subset of $\{1, \ldots, k\}$ such that $\alpha_{i} \approx \alpha_{j}$ for $i, j \in \mathcal{S}$. We will consider solutions having $\mathcal{S}(x)=\mathcal{S}$. For convenience of notation, we will suppose $\mathcal{S}=\{1, \ldots, \ell\}$, so that (6.1) becomes

$$
\begin{equation*}
a_{1} \alpha_{1}^{x}+\cdots+a_{\ell} \alpha_{\ell}^{x}=0 \tag{6.3}
\end{equation*}
$$

There is no solution when $\ell=1$; hence we may suppose $\ell \geqq 2$. Since no subsum of (6.3) vanishes, we know from Lemma 3 in [4] (which is an immediate consequence of a theorem of EVERTSE [1]) that there are vectors $\mathbf{c}^{(w)}=\left(c_{1}^{(w)}, \ldots, c_{\ell}^{(w)}\right)$ where

$$
1 \leqq w \leqq B(\ell)=\ell^{3 \ell^{2}} \leqq k^{3 k^{2}}
$$

such that $\alpha_{1}^{x}, \ldots, \alpha_{\ell}^{x}$ is proportional to some $\mathbf{c}^{(w)}$. Consider solutions with fixed w. When x, x^{\prime} are such solutions, $\left(\alpha_{1} / \alpha_{2}\right)^{2}=c_{1}^{(w)} / c_{2}^{(w)}$, and similarly for x^{\prime}, so that

$$
\left(\alpha_{1} / \alpha_{2}\right)^{x-x^{\prime}}=1 .
$$

When m is the order of α_{1} / α_{2}, then $x \equiv x^{\prime}(\bmod m)$, and $\alpha_{1}^{m} / \alpha_{2}^{m}=1$, so that $\operatorname{ord}\left(\alpha_{1}^{m} / \alpha_{2}^{m}\right)=1$.

The number of sets \mathcal{S} is $<2^{k}$, the number of choices for w is $\leqq k^{3 k^{2}}$, so that we obtain $<2^{k} \cdot k^{3 k^{2}}$ classes. The total number of classes is

$$
<G(k)+2^{k} \cdot k^{3 k^{2}}<\exp \left((7 k)^{6 k}\right)=\exp \left((7 T)^{6 T}\right)=H(T),
$$

since $n=1$ yields $T=k$.

7. Proof of the Proposition

We may suppose that $k>1, n>1$. Let K be a field containing $\alpha_{1}, \ldots, \alpha_{k}$ and the coefficients of our linear forms. Set $D=\operatorname{deg} K$, and let $\xi \mapsto \xi^{(\sigma)}(\sigma=1, \ldots, D)$ signify the embeddings $K \hookrightarrow \mathbb{C}$. For $1 \leqq$ $\sigma_{1}, \ldots, \sigma_{n} \leqq D$ and $1 \leqq i_{1}, \ldots, i_{n} \leqq k$, set

$$
\begin{aligned}
& \mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}=\alpha_{i_{1}}^{\left(\sigma_{1}\right)} \ldots \alpha_{i_{n}}^{\left(\sigma_{n}\right)}, \\
& \Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}=\operatorname{det}\left(\mathbf{a}_{i_{1}}^{\left(\sigma_{1}\right)}, \ldots, \mathbf{a}_{i_{n}}^{\left(\sigma_{n}\right)}\right)
\end{aligned}
$$

as in [4]. Given $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ write

$$
\begin{equation*}
f_{\boldsymbol{\sigma}}(x)=\sum_{i_{1}=1}^{k} \cdots \sum_{i_{n}=1}^{k} \Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\right)^{x} . \tag{7.1}
\end{equation*}
$$

Then according to (10.2) of [4], whenever the n quantities (3.3) are linearly dependent over \mathbb{Q}, we have

$$
\begin{equation*}
f_{\boldsymbol{\sigma}}(x)=0 \tag{7.2}
\end{equation*}
$$

for each $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$.
Let $q=q(\boldsymbol{\sigma})$ be the number of nonzero summands in (7.1). Then $q \leqq k^{n}$, but also $q \leqq e^{12 t}$ by Lemma 2 . Therefore $q(\boldsymbol{\sigma}) \leqq T$, where T is defined by (3.1).

As in [4], there are $\sigma_{2}, \ldots, \sigma_{n}$ and u_{1}, \ldots, u_{n} such that

$$
\Delta\binom{1, \sigma_{2}, \ldots, \sigma_{n}}{u_{1}, u_{2}, \ldots, u_{n}} \neq 0
$$

As in $\S 10$ of [4], define a set \mathcal{S} of n-tuples such that this holds for every $\boldsymbol{\sigma}=\left(\sigma_{1}=1, \sigma_{2}, \ldots, \sigma_{n}\right) \in \mathcal{S}$. Define sets $\mathcal{I}(\boldsymbol{\sigma})$ as in [4]. They have cardinality $\leqq T$.

Suppose $|\mathcal{I}(\boldsymbol{\sigma})|=1$ for some $\boldsymbol{\sigma} \in \mathcal{S}$. Then (7.2) has at most

$$
G(q) \leqq G(T) \leqq H(T)
$$

solutions x where $G(q)=\exp \left((7 q)^{4 q}\right)$: This follows from the Corollary to Lemma 8 of [4], and corresponds to the inequality in the paragraph below (10.6) of [4].

We may then suppose that $|\mathcal{I}(\boldsymbol{\sigma})|>1$ for each $\boldsymbol{\sigma} \in \mathcal{S}$. The number of n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ is k^{n}. Further $\mathcal{I}(\boldsymbol{\sigma})$ is a set of at most T such n-tuples. Therefore the number of possibilities for $\mathcal{I}(\boldsymbol{\sigma})$ is $\leqq k^{n T}$. As in [4], we construct a set \mathcal{I} of n-tuples $\left(i_{1}, \ldots, i_{n}\right)$, and sets $\mathcal{S}_{2}^{\prime}, \mathcal{S}_{3}^{\prime}\left(\sigma_{2}\right), \ldots, \mathcal{S}_{n}^{\prime}\left(\sigma_{2}, \ldots\right.$ $\left.\ldots, \sigma_{n-1}\right)$. Here $|\mathcal{I}| \leqq T$. In place of (10.8) of [4], we may conclude that each set $\mathcal{S}_{j}^{\prime}(\ldots)$ has cardinality

$$
\begin{equation*}
\left|\mathcal{S}_{j}^{\prime}(\ldots)\right|>D /\left(n k^{n T}\right) \geqq D / T^{1+T^{2}} \geqq D / T^{(5 / 4) T^{2}} \tag{7.3}
\end{equation*}
$$

where we used that $n \geqq 2, k \geqq 2, T \geqq \max (4, n, k)$. With \mathcal{S}^{\prime} constructed as in [4],

$$
\mathcal{I}(\boldsymbol{\sigma})=\mathcal{I} \quad \text { when } \quad \boldsymbol{\sigma} \in \mathcal{S}^{\prime}
$$

For $2 \leqq j \leqq n$, let \mathcal{T}_{j} be the set of numbers $i_{j} \neq u_{j}$ in $1 \leqq i_{j} \leqq k$ such that

$$
\begin{equation*}
\left(i_{1}, \ldots, i_{j-1}, i_{j}, u_{j+1}, \ldots, u_{n}\right) \in \mathcal{I} \tag{7.4}
\end{equation*}
$$

for certain i_{1}, \ldots, i_{j-1}. (When $j=n,(7.4)$ becomes $\left(i_{1}, \ldots, i_{n-1}, i_{n}\right) \in \mathcal{I}$.) Lemma 17 of [4] holds in the following modified form.

Lemma 4. Suppose $i_{j} \in \mathcal{T}_{j}$ and $\alpha_{i_{j}} \not \approx \alpha_{u_{j}}$. Then

$$
h\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)>1 /\left(8 T^{7} \operatorname{deg}\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)\right) .
$$

Proof. (10.12) of [4] becomes $n_{K}\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)>D / T^{(5 / 4) T^{2}}$ by (7.3). The Corollary to Lemma 11 of [4] yields

$$
h\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)>1 /\left(4\left(\log T^{(5 / 4) T^{2}}\right)^{3} \operatorname{deg}\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)\right) .
$$

Here (since $T \geqq 4$),

$$
4\left(\log T^{(5 / 4) T^{2}}\right)^{3}<8\left(T^{2} \log T\right)^{3}<8 T^{7}
$$

For $2 \leqq j \leqq n$, let \mathcal{T}_{j}^{*} be the set of numbers $\alpha_{i_{j}} / \alpha_{u_{j}}$ with $i_{j} \in \mathcal{T}_{j}$. Say $\mathcal{T}_{j}^{*}=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$. In analogy to (10.13), (10.14) of [4] we have

$$
\begin{equation*}
n_{K}\left(\beta_{s}\right)>D / T^{(5 / 4) T^{2}}, \quad h\left(\beta_{s}\right)>1 /\left(8 T^{7} \operatorname{deg} \beta_{s}\right) \tag{7.5}
\end{equation*}
$$

for each $s, 1 \leqq s \leqq r$, with $\beta_{s} \not \approx 1$. Lemma 18 of [4] now becomes
Lemma 5. Set $\ell=3 T$, and suppose

$$
\begin{equation*}
D>e^{3 T^{4}} \tag{7.6}
\end{equation*}
$$

Let $2 \leqq j \leqq n$ and $\sigma_{1}, \ldots, \sigma_{j-1}$ with $\sigma_{1}=1, \sigma_{2} \in \mathcal{S}_{2}^{\prime}, \ldots, \sigma_{j-1} \in$ $\mathcal{S}_{j-1}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-2}\right)$ be given. There is a subset $\mathcal{S}_{j}^{\prime \prime}=\mathcal{S}_{j}^{\prime \prime}\left(\sigma_{1}, \ldots, \sigma_{j-1}\right)$ of $\mathcal{S}_{j}^{\prime}\left(\sigma_{1}, \ldots, \sigma_{j-1}\right)$ of cardinality

$$
\left|\mathcal{S}_{j}^{\prime \prime}\left(\sigma_{1}, \ldots, \sigma_{j-1}\right)\right|=\ell
$$

such that for any triple of distinct numbers ϕ, ψ, ω in $\mathcal{S}_{j}^{\prime \prime}\left(\sigma_{1}, \ldots, \sigma_{j-1}\right)$, and for $1 \leqq s \leqq r$,

$$
\left|G\left(\beta_{s}^{(\phi)}: \beta_{s}^{(\psi)}: \beta_{s}^{(\omega)}\right)\right|> \begin{cases}T^{-11 T^{3}} \operatorname{deg} \beta_{s} & \text { when } \beta_{s} \not \approx 1, \tag{7.7}\\ T^{-11 T^{3}} \operatorname{ord} \beta_{s} & \text { when } \beta_{s} \approx 1 .\end{cases}
$$

Proof. For brevity, put $\mathcal{S}_{j}^{\prime}=\mathcal{S}_{j}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$. When $r=0$, the condition (7.7) is vacuous. Since \mathcal{S}_{j}^{\prime} has cardinality $>D / T^{(5 / 4) T^{2}}>3 T=\ell$ by (7.3), (7.6), there is certainly a subset of cardinality ℓ.

Suppose $r>0$. Set

$$
\begin{equation*}
\varepsilon=T^{-10 T^{3}} . \tag{7.8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
108 r \varepsilon^{1 / 2} T^{3} T^{(5 / 4) T^{2} \ell}<108 \varepsilon^{1 / 2} T^{4+4 T^{3}}<\varepsilon^{1 / 2} T^{5 T^{3}}=1 \tag{7.9}
\end{equation*}
$$

since $T \geqq 4$, and that

$$
\begin{equation*}
2 \ell^{2} T^{(5 / 4) T^{2} \ell}<18 T^{2+4 T^{3}}<T^{5 T^{3}}<e^{3 T^{4}}<D \tag{7.10}
\end{equation*}
$$

by (7.6).
Let $\beta_{s} \in \mathcal{T}_{j}^{*}$ be given. Then if $\beta_{s} \not \approx 1$, we see from the argument around (10.21) of [4] that the number of ε-bad ℓ-tuples $\mu_{1}, \ldots, \mu_{\ell}$ with each μ_{i} in \mathcal{S}_{j}^{\prime} is less than $\varepsilon^{1 / 2} \ell^{3} D^{\ell}$. On the other hand when $\beta_{s} \approx 1$, then by (5.8) the number of ε-bbad ℓ-tuples is less than $2 \varepsilon^{1 / 2} \ell^{3} D^{\ell}$. Summing over s in $1 \leqq s \leqq r$, we see that the number of ℓ-tuples $\mu_{1}, \ldots, \mu_{\ell}$ in \mathcal{S}_{j}^{\prime} which are ε-bad or ε-bbad for some β_{s} is

$$
<2 r \varepsilon^{1 / 2} \ell^{3} D^{\ell}=54 r \varepsilon^{1 / 2} T^{3} D^{\ell}<\frac{1}{2}\left(D / T^{(5 / 4) T^{2}}\right)^{\ell}
$$

by (7.9). The number of ℓ-tuples for which at least two elements are equal is

$$
\leqq\binom{\ell}{2} D^{\ell-1}<\ell^{2} D^{\ell-1}<\frac{1}{2}\left(D / T^{(5 / 4) T^{2}}\right)^{\ell}
$$

by (7.10). Since $\left|\mathcal{S}_{j}^{\prime}\right| \geqq D / T^{(5 / 4) T^{2}}$, the number of all possible ℓ-tuples in \mathcal{S}_{j}^{\prime} is $\geqq\left(D / T^{(5 / 4) T^{2}}\right)^{\ell}$. Therefore there is an ℓ-tuple of distinct numbers in \mathcal{S}_{j}^{\prime} which is not ε-bad or ε-bbad for any of $\beta_{1}, \ldots, \beta_{r}$. By the definition of ε-bad and ε-bbad this means that for any three distinct numbers i, j, k, we have for $\beta_{s} \not \approx 1$ that

$$
\begin{gathered}
\left|G\left(\beta_{s}^{\left(\mu_{i}\right)}: \beta_{s}^{\left(\mu_{j}\right)}: \beta_{s}^{\left(\mu_{k}\right)}\right)\right|>\varepsilon n\left(\beta_{s}\right) \\
=\varepsilon\left(\operatorname{deg} \beta_{s}\right) D^{-1} n_{K}\left(\beta_{s}\right)>\varepsilon\left(\operatorname{deg} \beta_{s}\right) / T^{(5 / 4) T^{2}}>T^{-11 T^{3}} \operatorname{deg} \beta_{s}
\end{gathered}
$$

(in analogy to an estimate below (10.23) in [4]), and using (7.5), (7.8), whereas for $\beta_{s} \approx 1$ the opposite of (5.7) holds, so that

$$
\left|G\left(\beta_{s}^{\left(\mu_{i}\right)}: \beta_{s}^{\left(\mu_{j}\right)}: \beta_{s}^{\left(\mu_{k}\right)}\right)\right|>\varepsilon \operatorname{ord} \beta_{s}>T^{-10 T^{3}} \operatorname{ord} \beta_{s} .
$$

We now set $\mathcal{S}_{j}^{\prime \prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)=\left\{\mu_{1}, \ldots, \mu_{\ell}\right\}$. Then indeed any three numbers ϕ, ψ, ω in $\mathcal{S}_{j}^{\prime \prime}(\ldots)$ have (7.7).

We will assume from now on that (7.6) holds. This can always be achieved by enlarging K, if necessary.

We define $\mathcal{S}^{\prime \prime}$ to be the set of n-tuples $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1}=1$, $\sigma_{2} \in \mathcal{S}_{2}^{\prime \prime}, \sigma_{3} \in \mathcal{S}_{3}^{\prime \prime}\left(\sigma_{2}\right), \ldots, \sigma_{n} \in \mathcal{S}_{n}^{\prime \prime}\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$. We will deal with the equation (7.2) with $\boldsymbol{\sigma} \in \mathcal{S}^{\prime \prime}$. The number of these equations is $\left|\mathcal{S}^{\prime \prime}\right|=$ $\ell^{n-1}<(3 T)^{n}$.

The remainder of our arguments follows Section 11 of [4], with a few changes as follows. Each equation (7.2) splits, with at most $G(q) \leqq G(T)$ exceptions. If we carry this out for each $\sigma \in \mathcal{S}^{\prime \prime}$, we get

$$
\begin{equation*}
\left|\mathcal{S}^{\prime \prime}\right| G(T)<(3 T)^{n} \exp \left((7 T)^{4 T}\right)<\exp \left((7 T)^{5 T}\right) \tag{7.11}
\end{equation*}
$$

exceptions. This takes the place of (11.1) in [4].
As in (10.9) of [4], we have $\mathcal{I}(\boldsymbol{\sigma})=\mathcal{I}$ when $\boldsymbol{\sigma} \in \mathcal{S}^{\prime}$, hence certainly when $\boldsymbol{\sigma} \in \mathcal{S}^{\prime \prime}$. Subsets $\mathcal{I}(\boldsymbol{\sigma}, x)$ of \mathcal{I} are defined in terms of the equation (11.4) of [4]. We have $|\mathcal{I}| \leqq T$, so that there are fewer than T tuples $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \neq\left(u_{1}, \ldots, u_{n}\right)$ in \mathcal{I}. Hence given $\sigma_{1}, \ldots, \sigma_{n-1}$, there will be an n-tuple $\mathbf{i}=\mathbf{i}\left(\sigma_{1}, \ldots, \sigma_{n-1}, x\right) \neq\left(u_{1}, \ldots, u_{n}\right)$ such that $\mathbf{i} \in \mathcal{I}(\boldsymbol{\sigma}, x)$ for at least $\ell / T=3$ of the numbers $\sigma_{n} \in \mathcal{S}_{n}^{\prime \prime}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right)$. Let $\mathcal{S}_{n}^{*}\left(\sigma_{2}, \ldots, \sigma_{n-1}, x\right)$ consist of 3 such numbers σ_{n}. Continuing in this way, we construct sets $\mathcal{S}_{2}^{*}(x), \mathcal{S}_{3}^{*}\left(\sigma_{2}, x\right), \ldots, \mathcal{S}_{n}^{*}\left(\sigma_{2}, \ldots, \sigma_{n-1}, x\right)$, a set $\mathcal{S}^{*}(x)$ and $\mathbf{i}(x)$ such that $\mathbf{i}(x) \in \mathcal{I}(\boldsymbol{\sigma}, x)$ when $\boldsymbol{\sigma} \in \mathcal{S}^{*}(x)$.

Define systems Σ of 3 -element sets as in [4]. When $\mathbf{i} \in \mathcal{I}$, define again a certain class $C(\mathbf{i}, \Sigma)$ of solutions. The number of classes $C(\mathbf{i}, \Sigma)$ is less than

$$
\begin{equation*}
T \ell^{3^{n}}=T(3 T)^{3^{n}}, \tag{7.12}
\end{equation*}
$$

which replaces (11.7) of [4]. When studying solutions x in a given class $C(\mathbf{i}, \Sigma)$, let $j=j(\mathbf{i})$ be the number such that $\mathbf{i}=\left(i_{1}, \ldots, i_{j}, u_{j+1}, \ldots, u_{n}\right)$ with $i_{j} \neq u_{j}$. In contrast to [4], we can no longer claim that $j>1$. We can only claim that $j>1$ if $\alpha_{i_{1}} \not \approx \alpha_{u_{1}}$.

The sets $\mathcal{I}\left(\boldsymbol{\sigma}_{\phi}, x\right), \mathcal{I}\left(\boldsymbol{\sigma}_{\psi}, x\right), \mathcal{I}\left(\boldsymbol{\sigma}_{\omega}, x\right)$ are in the set \mathcal{I} of cardinality $\leqq T$. Therefore $C(\mathbf{i}, \Sigma)$ may be divided into

$$
\begin{equation*}
2^{3 T} \tag{7.13}
\end{equation*}
$$

subclasses $C\left(\mathbf{i}, \Sigma, \mathcal{I}_{\phi}, \mathcal{I}_{\psi}, \mathcal{I}_{\omega}\right)$ (where (7.13) replaces the number in (11.10) of [4]). Since each $\mathcal{I}(\mathbf{i}, x)$ is of cardinality $\leqq T$, the estimate (11.11) of [4] may be replaced by

$$
\begin{equation*}
T(3 T)^{3^{n}} 2^{3 T} B(T)^{3}<2^{4 T} T^{9 T^{2}}(3 T)^{3^{n}}<\exp \left(5 T^{3}+3^{n} T\right) \tag{7.14}
\end{equation*}
$$

Eventually, just as in [4], we arrive at

$$
\left(\beta_{s}^{(\phi)} / \beta_{s}^{(\psi)}\right)^{x-x^{\prime}}=\left(\beta_{s}^{(\phi)} / \beta_{s}^{(\omega)}\right)^{x-x^{\prime}}=1
$$

when x, x^{\prime} lie in the same class. So if $\left|G\left(\beta_{s}^{(\phi)}: \beta_{s}^{(\psi)}: \beta_{s}^{(\omega)}\right)\right|=m$, then $x \equiv x^{\prime}(\bmod m)$. Further by (7.7),

$$
m> \begin{cases}T^{-11 T^{3}} \operatorname{deg} \beta_{s} & \text { if } \beta_{s} \not \approx 1 \\ T^{-11 T^{3}} \operatorname{ord} \beta_{s} & \text { if } \beta_{s} \approx 1\end{cases}
$$

When $\beta_{s} \not \approx 1$, we obtain from (7.5) that

$$
h\left(\beta_{s}^{m}\right)=m h\left(\beta_{s}\right)>T^{-11 T^{3}} / 8 T^{7}>e^{-6 T^{4}}=\hbar(T) .
$$

When $\beta_{s} \approx 1$, we note that $m \mid \operatorname{ord} \beta_{s}$, so that

$$
\operatorname{ord}\left(\beta_{s}^{m}\right)=m^{-1} \operatorname{ord} \beta_{s}<T^{11 T^{3}}<e^{6 T^{4}}=\hbar(T)^{-1}
$$

But β_{s} is a quotient α_{i} / α_{j}, and depending on whether $\alpha_{i} \not \approx \alpha_{j}$ or $\alpha_{i} \approx \alpha_{j}$, we get $h\left(\alpha_{i}^{m} / \alpha_{j}^{m}\right)>\hbar(T)$ or $\operatorname{ord}\left(\alpha_{i}^{m} / \alpha_{j}^{m}\right)<\hbar(T)^{-1}$.

How many classes do we have? Adding (7.11) to (7.14) we get

$$
\exp \left((7 T)^{5 T}\right)+\exp \left(5 T^{3}+3^{n} T\right)<\exp \left((7 T)^{6 T}\right)=H(T)
$$

classes.

References

[1] J. H. Evertse, The number of solutions of linear equations in roots of unity, Acta Arith. 99.1 (1999), 45-51.
[2] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 3rd edn, Clarendon Press, Oxford, 1954.
[3] C. Lech, A note on recurring series, Ark. Math. 2 (1953), 417-421.
[4] W. M. Schmidt, The zero multiplicity of linear recurrence sequences, Acta Math. 182 (1999), 243-282.

```
WOLFGANG M. SCHMIDT
UNIVERSITY OF COLORADO
BOULDER
USA
```

(Received September 16, 1999; revised March 14, 2000)

