Publ. Math. Debrecen 56 / 3-4 (2000), 609–630

Zeros of linear recurrence sequences

By WOLFGANG M. SCHMIDT (Boulder)

Dedicated to Kálmán Győry on his 60th birthday

Abstract. Let $\{u_n\}_{n\in\mathbb{Z}}$ be a linear recurrence sequence. A classical theorem of Skolem–Mahler–Lech asserts that the set \mathcal{Z} of subscripts n with $u_n = 0$ is a finite union of arithmetic progressions and single numbers. We now show that when the sequence is of order t, then \mathcal{Z} is a union of at most c(t) progressions and single numbers.

1. Introduction

The sequences $\{u_n\}_{n\in\mathbb{Z}}$ of complex numbers form a vector space V under component-wise addition. A polynomial

(1.1)
$$\mathcal{P}(z) = c_0 z^t + \dots + c_t$$

acts on V by setting $\mathcal{P}(\{u_n\}) = \{v_n\}$ with $v_n = c_0 u_n + c_1 u_{n-1} + \dots + c_t u_{n-t}$ $(n \in \mathbb{Z}).$

When $\mathcal{P}(z)$ is a polynomial of degree t with constant term $c_t \neq 0$, the sequences $\{u_n\}$ with $\mathcal{P}(\{u_n\}) = \{0\}$ (the zero sequence) make up a subspace $V(\mathcal{P})$ of \mathcal{P} of dimension t. If

(1.2)
$$\mathcal{P}(z) = c_0 \prod_{i=1}^k (z - \alpha_i)^{t_i}$$

Mathematics Subject Classification: 11B37, 11D61.

Key words and phrases: linear recurrence sequences, exponential diophantine equations. Supported in part by NSF grant DMS-9710314.

with distinct roots $\alpha_1, \ldots, \alpha_k$, the space $V(\mathcal{P})$ is spanned by the sequences

 $\{n^j \alpha_i^n\}_{n \in \mathbb{Z}}$

where $1 \leq i \leq k, 0 \leq j < t_i$, so that it consists of the sequences

(1.3)
$$u_n = P_1(n)\alpha_1^n + \dots + P_k(n)\alpha_k^n$$

where P_i is a polynomial of degree $\langle t_i \ (i = 1, ..., k)$.

On the other hand, given a sequence $\{u_n\}$, the polynomials \mathcal{P} with $\mathcal{P}(\{u_n\}) = \{0\}$ make up an ideal in $\mathbb{C}[z]$. A polynomial $\mathcal{P}(z)$ is in the ideal precisely when $z\mathcal{P}(z)$ is. When the ideal is not the zero ideal, it is generated by a unique monic polynomial \mathcal{P} , and this polynomial has nonzero constant term c_t . In this case we say that $\{u_n\}$ is a *linear recurrence sequence*, and the polynomial \mathcal{P} is its *companion polynomial*. The order of the recurrence sequence is the degree of its companion polynomial. A sequence is of order t precisely if (1.3) holds with distinct nonzero $\alpha_1, \ldots, \alpha_k$ and $\sum_{i=1}^k (\deg P_i + 1) = t$. Only the zero sequence has order t = 0. A sequence $\{u_n\}$ of order t > 0 with companion polynomial (1.1) satisfies the recurrence relation

$$u_n = -c_1 u_{n-1} - \dots - c_t u_{n-t} \qquad (n \in \mathbb{Z}).$$

The sequence is said to be *nondegenerate* if the quotients α_i/α_j $(i \neq j)$ of the roots of its companion polynomial are not roots of 1.

Let $\{u_n\}$ be a linear recurrence sequence with companion polynomial (1.1) of degree t > 0. We are interested in the set $\mathcal{Z} = \mathcal{Z}(\{u_n\})$ of numbers $n \in \mathbb{Z}$ with $u_n = 0$, i.e., with

(1.4)
$$P_1(n)\alpha_1^n + \dots + P_k(n)\alpha_k^n = 0.$$

The Skolem–Mahler–Lech Theorem [3] says that \mathcal{Z} is a finite union of arithmetic progressions and of single numbers. Moreover, \mathcal{Z} is finite if the sequence is non-degenerate. Actually, \mathcal{Z} is finite under the weaker hypothesis that for some i_0 , no quotient α_{i_0}/α_j with $j \neq i_0$ is a root of 1.

We recently showed [4] that in the nondegenerate case of order t > 0, the set \mathcal{Z} has cardinality $|\mathcal{Z}| \leq c_1(t)$ where $c_1(t)$ depends on t only. In the present paper we will prove the following. **Theorem.** Suppose $\{u_n\}$ is a recurrence of order t. Then Z is a union of not more than $c_2(t)$ arithmetic progressions and single numbers, where we may take

(1.5)
$$c_2(t) = \exp \exp \exp(20t).$$

If the companion polynomial (1.2) has $\max_i t_i = a$, then \mathcal{Z} also is the union of at most $c_3(k, a)$ numbers and progressions, where

$$c_3(k,a) = \exp\exp(30ak^a\log k)$$

Note that in the nondegenerate case, we have replaced the bound $c_1(t) = \exp \exp(3t \log t)$ of [4] by (1.5). When the companion polynomial has only simple roots, so that a = 1, we have $c_3(k, 1) = \exp \exp(30k \log k) = \exp \exp(30t \log t)$, i.e., a bound which is only double

 $\exp \exp(30k \log k) = \exp \exp(30t \log t)$, i.e., a bound which is only double exponential.

We do not claim that the union involves arithmetic progressions which all have the same common difference a, i.e., progressions $n = ax + b_i$, or that our progressions do not intersect. Suppose ζ , ξ are primitive roots of 1 of respective orders r, s where r, s are coprime, and let

$$u_n = 1^n - \zeta^n - \xi^n + (\zeta \xi)^n = (1 - \zeta^n)(1 - \xi^n) \quad (n \in \mathbb{Z}).$$

This is a sequence of order 4, and \mathcal{Z} is the union of the two progressions rx $(x \in \mathbb{Z})$, and $sx \ (x \in \mathbb{Z})$. It is an easy exercise to show that given a > 0, at least r + s - 1 progressions $n = ax + b_i \ (x \in \mathbb{Z})$ are needed such that their union equals \mathcal{Z} .

It will be convenient to introduce the following equivalence relation on \mathbb{C}^{\times} : we set $\alpha \approx \beta$ if α/β is a root of 1. Given

$$f(n) = P_1(n)\alpha_1^n + \dots + P_k(n)\alpha_k^n$$

we group together summands $P_i(n)\alpha_i^n$ and $P_j(n)\alpha_j^n$ with $\alpha_i \approx \alpha_j$. After relabeling, we may write (uniquely up to ordering)

$$f(n) = f_1(n) + \dots + f_q(n)$$

where

$$f_i(n) = P_{i1}(n)\alpha_{i1}^n + \dots + P_{i,q_i}(n)\alpha_{i,q_i}^n \quad (i = 1,\dots,g)$$

with $q_1 + \cdots + q_g = k$ and $\alpha_{ij} \approx \alpha_{i\ell}$ when $1 \leq i \leq g, 1 \leq j, \ell \leq q_i$, but $\alpha_{ij} \approx \alpha_{i'\ell}$ when $1 \leq i \neq i' \leq g, 1 \leq j \leq q_i, 1 \leq \ell \leq q_{i'}$.

We will now show that if f(n) = 0 for every n in an arithmetic progression $\mathcal{A} : n = ax + b$ ($x \in \mathbb{Z}$), then

(1.6)
$$f_1(n) = \dots = f_q(n) = 0$$

for every $n \in \mathcal{A}$. Pick $m \in \mathbb{N}$ such that $(\alpha_{ij}/\alpha_{i\ell})^m = 1$ for $1 \leq i \leq g, 1 \leq j$, $\ell \leq q_i$. The progression \mathcal{A} is a finite union of progressions $\mathcal{A}' : n = amx + b'$ $(x \in \mathbb{Z})$, so that it will suffice to prove our assertion for each progression \mathcal{A}' . When n = amx + b' in \mathcal{A}' , we have $\alpha_{ij}^n = \alpha_{ij}^{b'} \alpha_{i1}^{amx}$, so that

$$f_i(n) = Q_i(x)\alpha_{i1}^{amx}$$

with $Q_i(x) = \sum_{j=1}^{q_i} \alpha_{ij}^{b'} P_{ij}(amx + b')$. We may infer that

(1.7)
$$Q_1(x)\alpha_{11}^{amx} + \dots + Q_g(x)\alpha_{g1}^{amx}$$

vanishes for each $x \in \mathbb{Z}$. Since $\alpha_{i1} \not\approx \alpha_{i'1}$, for $i \neq i'$, we have $\alpha_{i1}^{am} \not\approx \alpha_{i'1}^{am}$, so that $\{x^{\ell}\alpha_{i1}^{amx}\}_{x\in\mathbb{Z}}$ for $1 \leq i \leq g, \ell = 0, 1, \ldots$ are linearly independent recurrence sequences. Therefore (1.7) can vanish for each $x \in \mathbb{Z}$ only if $Q_1 = \cdots = Q_g = 0$. But then (1.6) holds indeed for every $n \in \mathcal{A}'$.

In view of the observation just made, our Theorem yields the following result, akin to Lemma 8 of [4].

Corollary. (1.6) holds for all but at most $c_2(t)$ number $n \in \mathbb{Z}$.

If for some i_0 we have $\alpha_{i_0} \not\approx \alpha_j$ for each $j \neq i_0, 1 \leq j \leq k$, then some f_i equals $P_{i_0}(n)\alpha_{i_0}^n$, hence has at most t zeros. In this case \mathcal{Z} contains no arithmetic progression, hence has cardinality $\leq c_2(t)$.

The present paper is a sequel to [4], and the proof of the theorem will depend heavily on the machinery introduced in that earlier paper. We will frequently use without mention the fact that when x runs through an arithmetic progression, then so does ax + b when a > 0, b in \mathbb{Z} are given. As for notation, $h(\alpha)$ will denote the absolute logarithmic height of a nonzero algebraic number α , and ord β will denote the order of a root of unity β .

2. A specialization argument

By arithmetic progression we will, of course, understand a set $\mathcal{A} = \mathcal{A}(a,b) \subset \mathbb{Z}$ where a > 0, b are in \mathbb{Z} , consisting of numbers ax + b with $x \in \mathbb{Z}$. We will call $a = a(\mathcal{A})$ the modulus of \mathcal{A} . Suppose a set $\mathcal{Z} \subset \mathbb{Z}$ is a finite union of numbers and of arithmetic progressions. We then write $\nu(\mathcal{Z})$ for the minimum of u + v such that \mathcal{Z} can be expressed as the union of u numbers and v arithmetic progressions. For example, when \mathcal{Z} is finite, $\nu(\mathcal{Z})$ is its cardinality $|\mathcal{Z}|$; on the other hand $\mathcal{Z} = \mathcal{A}(2,0) \cup \mathcal{A}(3,0)$ has $\nu(\mathcal{Z}) = 2$. We write $\nu(\mathcal{Z}) = \infty$ if \mathcal{Z} cannot be expressed as such a union.

In general, $\mathcal{Z}' \supset \mathcal{Z}$ does not imply $\nu(\mathcal{Z}') \geq \nu(\mathcal{Z})$. We therefore will require the following

Lemma 1. Suppose $\nu(\mathcal{Z})$ is finite. Then there is a finite set $\mathcal{T} \subset \mathbb{Z}$ with $\mathcal{Z} \cap \mathcal{T} = \emptyset$ such that every set $\mathcal{Z}' \supset \mathcal{Z}$ with $\mathcal{Z}' \cap \mathcal{T} = \emptyset$ has $\nu(\mathcal{Z}') \geq \nu(\mathcal{Z})$.

PROOF. Suppose $\nu(\mathcal{Z}) = u + v$, and $\mathcal{Z} = \mathcal{Z}_1 \cup \mathcal{Z}_2$ where $|\mathcal{Z}_1| = u$ and \mathcal{Z}_2 is a union of v arithmetic progressions. Clearly $\mathcal{Z}_1 \cap \mathcal{Z}_2 = \emptyset$ and $\nu(\mathcal{Z}_2) = v$.

Say $\mathcal{Z}_1 = \{n_1, \ldots, n_u\}$. When u = 0 or 1, set $\mathcal{T}_1 = \emptyset$. When u > 1and $n_i < n_j$, we note that $\mathcal{A}(n_j - n_i, n_i)$ is not contained in \mathcal{Z} , for if it were, it clearly would be contained in \mathcal{Z}_2 , so that $n_i, n_j \in \mathcal{Z}_2$, and we could remove n_i, n_j from \mathcal{Z}_1 , thus diminishing u + v. We may then pick some $t_{ij} \in \mathcal{A}(n_j - n_i, n_i)$ which is not in \mathcal{Z} . We now let \mathcal{T}_1 be the union of the numbers t_{ij} so obtained. Then

Any arithmetic progression \mathcal{A} with $\mathcal{A} \cap \mathcal{T}_1 = \emptyset$ contains at most one element of \mathcal{Z}_1 .

Therefore when v = 0, the lemma holds with $\mathcal{T} = \mathcal{T}_1$.

Now suppose v > 0, and let \mathbb{Z}_2 be the union of arithmetic progressions $\mathcal{A}(a_i, b_i)$ (i = 1, ..., v). Set $q = \operatorname{lcm}(a_1, ..., a_v)$; then \mathbb{Z}_2 is *periodic* with period q, i.e., when $n \in \mathbb{Z}_2$, then $\mathcal{A}(q, n) \subset \mathbb{Z}_2$. Set $\ell = q\nu(\mathbb{Z})$. After a translation, we may suppose that

$$[1,q\ell] \cap \mathcal{Z}_1 = \emptyset.$$

Let \mathcal{T}_2 consist of all numbers $n \in [1, q\ell]$ which are not in \mathcal{Z} . Suppose \mathcal{A} is an arithmetic progression with modulus $a \leq \ell$ which is not contained in \mathcal{Z}_2 . Let $b, b+a, \ldots, b+(q-1)a$ with $1 \leq b \leq a$ be consecutive elements

of \mathcal{A} . If all were in \mathcal{Z}_2 , then by periodicity of \mathcal{Z}_2 , all of \mathcal{A} would be in \mathcal{Z}_2 . Therefore at least one of the above q elements of \mathcal{A} is $\notin \mathcal{Z}_2$, hence is in \mathcal{T}_2 . Therefore

Every arithmetic progression \mathcal{A} with $\mathcal{A} \cap \mathcal{T}_2 = \emptyset$ and modulus $a(\mathcal{A}) \leq \ell$ is contained in \mathcal{Z}_2 .

Set $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$. Suppose $\mathcal{Z}' \supset \mathcal{Z}$ with $\mathcal{Z}' \cap \mathcal{T} = \emptyset$ is the union of u' numbers and v' arithmetic progressions; say $\mathcal{Z}' = \mathcal{Z}'_1 \cup \mathcal{Z}'_2$ where $|\mathcal{Z}'_1| = u'$ and \mathcal{Z}'_2 is the union of v' arithmetic progressions $\mathcal{A}'_i = \mathcal{A}_i(a'_i, b'_i)$ $(i = 1, \ldots, v')$. We have to show that

(2.1)
$$u' + v' \ge u + v = \nu(\mathcal{Z}).$$

If some \mathcal{A}'_i is disjoint from \mathcal{Z}_2 , its intersection with \mathcal{Z} is empty or consists of a single element of \mathcal{Z}_1 . Remove \mathcal{A}'_i from \mathcal{Z}' , or replace it by this single element of \mathcal{Z}_1 . In this way \mathcal{Z}' is replaced by a set $\mathcal{Z}'' \supset \mathcal{Z}$ with $\mathcal{Z}'' \cap \mathcal{T} = \emptyset$, and \mathcal{Z}'' can be covered by at most u' + 1 numbers and v' - 1 progressions. If we can show that $(u'+1) + (v'-1) \geq u + v$, then (2.1) will follow. After some replacements of this kind we may suppose that each \mathcal{A}'_i $(i = 1, \ldots, v')$ intersects \mathcal{Z}_2 .

We may suppose that $\mathcal{A}'_1, \ldots, \mathcal{A}'_w$ have modulus $\leq \ell$ and $\mathcal{A}'_{w+1}, \ldots, \mathcal{A}'_{v'}$ have modulus $> \ell$, where $0 \leq w \leq v'$. Then $\mathcal{A}'_1, \ldots, \mathcal{A}'_w$ are contained in \mathcal{Z}_2 . Given $\mathcal{A}'_i = \mathcal{A}(a'_i, b'_i)$ where $1 \leq i \leq w$, each $b'_i + xa'_i \in \mathcal{Z}_2$, and since \mathcal{Z}_2 has period q, each $b'_i + xa'_i + yq$ with $x, y \in \mathbb{Z}$ is in \mathcal{Z}_2 . Therefore, setting $a''_i = \gcd(a'_i, q)$, the progression $\mathcal{A}(a''_i, b'_i) \subset \mathcal{Z}_2$. Since clearly $\mathcal{A}'_1 \cup \cdots \cup \mathcal{A}'_{v'}$ covers \mathcal{Z}_2 , this union remains unchanged if we replace \mathcal{A}'_i by $\mathcal{A}(a''_i, b'_i)$ for $1 \leq i \leq w$. Therefore we may suppose that $a'_i \mid q \ (i = 1, \ldots, w)$, so that $\mathcal{A}'_1, \ldots, \mathcal{A}'_w$ have period q.

We claim that $\mathcal{A}'_1 \cup \cdots \cup \mathcal{A}'_w = \mathcal{Z}_2$. Say \mathcal{Z}_2 has r elements per period of length q, and $\mathcal{A}'_1 \cup \cdots \cup \mathcal{A}'_w$ has s elements. Thus \mathcal{Z}_2 has "density" r/q, and $\mathcal{A}'_1 \cup \cdots \cup \mathcal{A}'_w$ has density s/q. The sequences $\mathcal{A}'_{w+1}, \ldots, \mathcal{A}'_{v'}$ have density $< 1/\ell$, so that $\mathcal{Z}'_2 = \mathcal{A}'_1 \cup \cdots \cup \mathcal{A}'_{v'}$ has density $< (s/q) + (v'/\ell)$. In proving (2.1) we may clearly suppose that $v' \leq \nu(\mathcal{Z})$, and then \mathcal{Z}'_2 , hence \mathcal{Z}' , has density

$$< (s/q) + (\nu(\mathcal{Z})/q\nu(\mathcal{Z})) = (s+1)/q.$$

Therefore, since $\mathcal{Z}' \supset \mathcal{Z}$ and \mathcal{Z} has density r/q, we see that s = r, and our claim is established.

We may conclude that $w \geq \nu(\mathcal{Z}_2) = v$. The sequences $\mathcal{A}'_{w+1}, \ldots, \mathcal{A}'_{v'}$, together with \mathcal{Z}'_1 , must cover \mathcal{Z}_1 . Since each \mathcal{A}'_i contains at most one element of \mathcal{Z}_1 , we have $(v' - w) + |\mathcal{Z}'_1| \geq |\mathcal{Z}_1|$, i.e., $v' - w + u' \geq u$. We may conclude that $u' + v' \geq u + w \geq u + v$.

Consider an equation (1.4) where P_1, \ldots, P_k are of respective degrees s_1, \ldots, s_k . The numbers $\alpha_1, \ldots, \alpha_k$ and the coefficients of P_1, \ldots, P_k are not necessarily algebraic. Denote the coefficients of P_j by $c_{j0}, c_{j1}, \ldots, c_{j,s_j}$. By the Skolem–Mahler–Lech Theorem, the solutions $n \in \mathbb{Z}$ of (1.4) make up a set \mathcal{Z} with finite $\nu(\mathcal{Z})$. Construct \mathcal{T} according to Lemma 2.1.

Given $n \in \mathbb{Z}$, the equation (1.4) defines an algebraic variety V(n)in the points $(\boldsymbol{\alpha}, \mathbf{c})$ where $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_k)$ and \mathbf{c} has components $c_{j\ell}$ $(1 \leq j \leq k, 0 \leq \ell \leq s_j)$. Our particular $(\boldsymbol{\alpha}, \mathbf{c})$ lies in the variety

$$V(\mathcal{Z}) = \bigcap_{n \in \mathcal{Z}} V(n).$$

Since $\mathcal{Z} \cap \mathcal{T} = \emptyset$, $(\boldsymbol{\alpha}, \mathbf{c}) \notin W(\mathcal{T})$, where

$$W(\mathcal{T}) = \bigcup_{n \in \mathcal{T}} V(n).$$

In fact $(\boldsymbol{\alpha}, \mathbf{c}) \in V(\mathcal{Z}) \setminus W_0(\mathcal{T})$, where $W_0(\mathcal{T})$ is the union of $W(\mathcal{T})$ and the surface $\alpha_1 \ldots \alpha_k c_{1,s_1} \ldots c_{k,s_k} = 0$.

There is an algebraic specialization $(\hat{\boldsymbol{\alpha}}, \hat{\mathbf{c}}) \in V(\mathcal{Z}) \setminus W_0(\mathcal{T})$, i.e., a point $(\hat{\boldsymbol{\alpha}}, \hat{\mathbf{c}})$ with algebraic coordinates in this set. It gives rise to an equation

(2.2)
$$\widehat{P}_1(n)\widehat{\alpha}_1^n + \dots + \widehat{P}_k(n)\widehat{\alpha}_k^n = 0$$

where $\hat{\alpha}_i \neq 0$ and $\deg \hat{P}_i = s_i$ $(1 \leq i \leq k)$. Let $\hat{\mathcal{Z}}$ consist of solutions $n \in \mathbb{Z}$ of this equation. Since $(\hat{\alpha}, \hat{\mathbf{c}}) \in V(\mathcal{Z})$, we have $\hat{\mathcal{Z}} \supset \mathcal{Z}$, but since $(\hat{\alpha}, \hat{\mathbf{c}}) \notin W(\mathcal{T})$, no $n \in \mathcal{T}$ is a solution. Therefore $\hat{\mathcal{Z}} \cap \mathcal{T} = \emptyset$, so that $\nu(\hat{\mathcal{Z}}) \geq \nu(\mathcal{Z})$ by the lemma.

Therefore it will suffice to prove our theorem in the situation where $\alpha_1, \ldots, \alpha_k$ and the coefficients of P_1, \ldots, P_k are algebraic. We will assume from now on that $\alpha_1, \ldots, \alpha_k$ and these coefficients lie in an algebraic number field K.

Wolfgang M. Schmidt

3. A Proposition which implies the Theorem

Proposition. Let $M_j(\mathbf{X}) = a_{1j}X_1 + \cdots + a_{kj}X_k$ $(j = 1, \ldots, n)$ be linear forms which are linearly independent over \mathbb{Q} . We suppose that the coefficients a_{ij} are algebraic, we write $\mathbf{a}_i = (a_{i1}, \ldots, a_{in})$ and assume that each $\mathbf{a}_i \neq \mathbf{0}$ $(i = 1, \ldots, k)$. We define t_i to be the integer such that $\mathbf{a}_i = (a_{i1}, \ldots, a_{i,t_i}, 0, \ldots, 0)$ with $a_{i,t_i} \neq 0$. Set $t = t_1 + \cdots + t_k$,

(3.1)
$$T = \min(k^n, e^{12t}),$$

(3.2)
$$\hbar = \hbar(T) = e^{-6T^4}.$$

Suppose $\alpha_1, \ldots, \alpha_k$ are nonzero algebraic numbers. Consider numbers $x \in \mathbb{Z}$ for which

$$(3.3) M_1(\alpha_1^x,\ldots,\alpha_k^x), \ \ldots, \ M_n(\alpha_1^x,\ldots,\alpha_k^x)$$

are linearly dependent over \mathbb{Q} . These numbers fall into at most

(3.4)
$$H(T) = \exp\left((7T)^{6T}\right)$$

classes with the following property. For each class C there is a natural number m such that

- (a) solutions x, x' in C have $x \equiv x' \pmod{m}$,
- (b) there are $i \neq j$ such that either $\alpha_i \not\approx \alpha_j$ and $h(\alpha_i^m/\alpha_j^m) \geq \hbar$, or $\alpha_i \approx \alpha_j$ and $\operatorname{ord}(\alpha_i^m/\alpha_j^m) \leq \hbar^{-1}$.

Deduction of the Theorem. When P is a nonzero polynomial, set $t(P) = 1 + \deg P$, and when P = 0 set t(P) = 0. When $\mathbf{P} = (P_1, \ldots, P_k)$ is a vector of polynomials, put $t = t(\mathbf{P}) = t(P_1) + \cdots + t(P_k)$. Also set $a = a(\mathbf{P}) = \max_i t(P_i)$. Suppose P_1, \ldots, P_k have algebraic coefficients, and $\alpha_1, \ldots, \alpha_k$ are nonzero algebraic numbers. We will prove by induction on t that the set \mathcal{Z} of solutions $x \in \mathbb{Z}$ of

$$(3.5) P_1(x)\alpha_1^x + \dots + P_k(x)\alpha_k^x = 0$$

has

(3.6)
$$\nu(\mathcal{Z}) \leq Z(t,T) = \exp\left((2^t - 1)(7T)^{7T}\right),$$

where

(3.7)
$$T = \min(k^a, e^{12t}).$$

We clearly may suppose that $k \geq 2, t \geq 3$, and that P_1, \ldots, P_k are not zero. Set $t_i = t(P_i)$ $(i = 1, \ldots, k)$. When $P_i(x) = \sum_{j=1}^a a_{ij} x^{j-1}$ $(i = 1, \ldots, k)$, define linear forms

$$N_j(\mathbf{X}) = N_j(X_1, \dots, X_k) = \sum_{i=1}^k a_{ij} X_i \quad (j = 1, \dots, a).$$

Then $\mathbf{a}_i = (a_{i1}, \ldots, a_{ia}) = (a_{i1}, \ldots, a_{i,t_i}, 0, \ldots, 0)$ with $a_{i,t_i} \neq 0$ $(i = 1, \ldots, a)$. The forms N_1, \ldots, N_a are not necessarily linearly independent over \mathbb{Q} . Let M_1, \ldots, M_n be a maximal independent (over \mathbb{Q}) subset of them. If we replace N_1, \ldots, N_a by M_1, \ldots, M_n , then the numbers t_i $(i = 1, \ldots, k)$ and $t = t_1 + \cdots + t_k$ induced by them cannot increase.

The equation (3.5) may be written as

(3.8)
$$\sum_{j=1}^{a} N_j(\alpha_1^x, \dots, \alpha_k^x) x^{j-1} = 0.$$

Each $N_j(\mathbf{X})$ is a linear combination $\sum_{r=1}^n c_{jr} M_r(\mathbf{X})$ with rational c_{jr} , so that (3.8) may be expressed as

(3.9)
$$\sum_{r=1}^{n} \left(\sum_{j=1}^{a} c_{jr} x^{j-1} \right) M_r(\alpha_1^x, \dots, \alpha_k^x) = 0.$$

There are fewer than a numbers $x \in \mathbb{Z}$ such that each polynomial $\sum_{j=1}^{a} c_{jr} x^{j-1}$ (r = 1, ..., n) vanishes. For other solutions of (3.9), the numbers $M_r(\alpha_1^x, \ldots, \alpha_k^x)$ $(r = 1, \ldots, n)$ are linearly dependent over \mathbb{Q} . By the Proposition, these numbers fall into at most H(T) classes. Let us consider solutions in a fixed class.

The numbers in such a class are of the form $x = x_0 + my$ with $y \in \mathbb{Z}$. In terms of y, the equation (3.5) becomes

(3.10)
$$\widehat{P}_1(y)\widehat{\alpha}_1^y + \dots + \widehat{P}_k(y)\widehat{\alpha}_k^y = 0$$

where $\hat{\alpha}_i = \alpha_i^m$, $\hat{P}_i(y) = \alpha_i^{x_0} P_i(x_0 + my)$ $(i = 1, \dots, k)$.

Wolfgang M. Schmidt

The Proposition leads to two cases. Let us first consider the case where $i \neq j$, $\alpha_i \approx \alpha_j$ and $\operatorname{ord}(\hat{\alpha}_i/\hat{\alpha}_j) = \operatorname{ord}(\alpha_i^m/\alpha_j^m) \leq \hbar(T)^{-1}$. We may suppose that i = k, j = k-1, say, and we set $q = \operatorname{ord}(\hat{\alpha}_k/\hat{\alpha}_{k-1})$. We divide \mathbb{Z} into the arithmetic progressions $\mathcal{A}(q, \ell)$ $(0 \leq \ell < q)$. When $y = qz + \ell$ is in such a progression, then $\hat{\alpha}_k^y = \hat{\alpha}_k^\ell \hat{\alpha}_{k-1}^{qz}$, and (3.10) becomes

(3.11)
$$P_1^*(z)\alpha_1^{*z} + \dots + P_{k-1}^*(z)\alpha_{k-1}^{*z} = 0$$

with $\alpha_i^* = \hat{\alpha}_i^q$ $(1 \leq i \leq k-1), P_i^*(z) = \hat{\alpha}_i^\ell \hat{P}_i(qz+\ell)$ for $1 \leq i \leq k-2$, but $P_{k-1}^*(z) = \hat{\alpha}_{k-1}^\ell \hat{P}_{k-1}(qz+\ell) + \hat{\alpha}_k^\ell \hat{P}_k(qz+\ell)$. Since $t(P_1^*, \ldots, P_{k-1}^*) < t(\mathbf{P})$, the zeros of (3.11) make up at most Z(t-1,T) single numbers and arithmetic progressions. Taking the sum over ℓ in

$$0 \le \ell < q \le \hbar(T)^{-1} = \exp(6T^4) < \exp((6T)^{6T}),$$

we see that the set \mathcal{Z}_C of solutions in our class has

(3.12)
$$\nu(\mathcal{Z}_C) < \exp\left((6T)^{6T}\right) Z(t-1,T).$$

In the other case of the Proposition, some $\alpha_i \not\approx \alpha_j$ have $h(\alpha_i^m/\alpha_j^m) \geq \hbar$. Then just as in Section 5 of [4], there are polynomial vectors $\mathbf{P}^{(w)} = (P_1^{(w)}, \ldots, P_k^{(w)}) \neq (0, \ldots, 0)$ with $a(\mathbf{P}^{(w)}) \leq a, t(\mathbf{P}^{(w)}) < t(\mathbf{P}) = t$, and where $1 \leq w \leq F$, such that every solution of (3.10) satisfies

(3.13)
$$P_1^{(w)}(y)\hat{\alpha}_1^y + \dots + P_k^{(w)}(y)\hat{\alpha}_k^y = 0$$

for some w: here (as in [4])

$$F = \exp\left((6t)^{5t}\right) + 5E\log E \quad \text{with} \quad E = 16t^2a/\hbar.$$

Therefore $E < 16T^3 \exp(6T^4) < \exp(7T^4)$, $E \log E < \exp(8T^4)$,

(3.14)
$$F < \exp\left((6T)^{5T}\right) + 5\exp(8T^4) < \exp\left((6T)^{6T}\right).$$

By our induction on t, the solutions of (3.13) consist of at most Z(t-1,T) single numbers and arithmetic progressions. The single numbers give no problem, but we have to observe that the solutions of (3.10) are just *contained* in these progressions.

Say the progression is y = az + b ($z \in \mathbb{Z}$), and (3.13) becomes

(3.15)
$$\widetilde{P}_1^{(w)}(z)\widetilde{\alpha}_1^z + \dots + \widetilde{P}_k^{(w)}(z)\widetilde{\alpha}_k^z = 0$$

with $\tilde{\alpha}_i = \hat{\alpha}_i^a$ and $\tilde{P}_i^{(w)}(z) = \hat{\alpha}_i^b P_i^{(w)}(az+b)$ (i = 1, ..., k). Now if $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_k$ were distinct, then the validity of (3.15) for each $z \in \mathbb{Z}$ would imply that each $\tilde{P}_i^{(w)} = 0$, hence each $P_i^{(w)} = 0$, which is not the case. Therefore $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_k$ are not all distinct, say $\tilde{\alpha}_{k-1} = \tilde{\alpha}_k$. In terms of z in y = az + b, the equation (3.10) becomes

(3.16)
$$\widetilde{P}_1(z)\tilde{\alpha}_1^z + \dots + \widetilde{P}_{k-1}(z)\tilde{\alpha}_{k-1}^z = 0$$

where $\widetilde{P}_i(z) = \hat{\alpha}_i^b \widehat{P}_i(az+b)$ for $1 \leq i \leq k-2$, but $\widetilde{P}_{k-1}(z) = \hat{\alpha}_{k-1}^b \widehat{P}_{k-1}(az+b) + \hat{\alpha}_k^b \widehat{P}_k(az+b)$. Since $t(\widetilde{P}_1, \ldots, \widetilde{P}_{k-1}) < t(\mathbf{P}) = t$, the solutions to (3.16) make up a set of not more that Z(t-1,T) numbers and progressions. Altogether, the set \mathcal{Z}_C of solutions in our class has

(3.17)
$$\nu(\mathcal{Z}_C) \leq FZ(t-1,T)^2 < \exp((6T)^{6T})Z(t-1,T)^2$$

by (3.14).

Considering the possible (fewer than a) solutions mentioned at the beginning, and summing over the classes C, we obtain

$$\nu(\mathcal{Z}) < a + H(T) \exp\left((6T)^{6T}\right) Z(t-1,T)^2$$

$$< T + \exp\left((7T)^{6T} + (6T)^{6T}\right) \left(\exp\left((2^{t-1} - 1)(7T)^{7T}\right)\right)^2$$

$$< \exp\left((2^t - 1)(7T)^{7T}\right) = Z(t,T).$$

Hence (3.6) is established.

Since $t \leq T$, we have in fact

$$\nu(\mathcal{Z}) < \exp\left(2^T (7T)^{7T}\right)$$

We have $T \leq T_1 := e^{12t}$. Here (since we may suppose $t \geq 2$ in our theorem) $T_1 \geq e^{24}$, and

$$\nu(\mathcal{Z}) < \exp\left(T_1^{8T_1}\right) = \exp\exp\left(12t \cdot 8e^{12t}\right) < \exp\exp\exp\left(20t\right).$$

On the other hand $T \leq k^n$, so that $T \leq T_2 := k^a$, since $n \leq a$. Here $T_2 \geq 2$, so that

$$\nu(\mathcal{Z}) < \exp\left(T_2^{30T_2}\right) = \exp\exp(30T_2\log T_2) = \exp\exp(30ak^a\log k). \quad \Box$$

Wolfgang M. Schmidt

4. A lemma on linear independence

Lemma 2. Let K be a field, and $\mathbf{a}_1, \ldots, \mathbf{a}_k$ vectors in K^n . Suppose

$$\mathbf{a}_i = (a_{i1}, \dots, a_{i,t_i}, 0, \dots, 0)$$
 $(i = 1, \dots, k)$

where $t_i = 0$ (so that $\mathbf{a}_i = \mathbf{0}$) or $t_i > 0$, $a_{i,t_i} \neq 0$. Set $t = t_1 + \dots + t_k$. Then there are fewer than e^{12t} ordered *n*-tuples i_1, \dots, i_n (with $1 \leq i_1, \dots, i_n \leq k$) for which $\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_n}$ are linearly independent.

Remark. The conclusion is trivially true when $\mathbf{a}_1, \ldots, \mathbf{a}_k$ do not span K^n , in particular when k < n.

PROOF. We may suppose that each $\mathbf{a}_i \neq \mathbf{0}$, so that each $t_i > 0$. Let $\mathbf{a}_{i_1}, \ldots, \mathbf{a}_{i_n}$ be linearly independent. For $1 \leq j \leq m = \lfloor \log n / \log 2 \rfloor + 2$, let S_j be the set of numbers ℓ , $1 \leq \ell \leq n$, with $n/2^j < t_{i_\ell} \leq n/2^{j-1}$. Then S_1, \ldots, S_m are pairwise disjoint, and their union is $\{1, \ldots, n\}$. We have $t_{i_\ell} \leq n/2^{j-1}$ for $\ell \in S_j \cap S_{j+1} \cup \cdots \cup S_m$, so that the independence of $\mathbf{a}_{i_1}, \ldots, \mathbf{a}_{i_n}$ implies $|S_1| + \cdots + |S_{j-1}| \geq n - n/2^{j-1}$ ($2 \leq j \leq m$). Given S_1, \ldots, S_{j-1} , the set S_j is contained in the set $\{1, \ldots, n\} \setminus (S_1 \cup \cdots \cup S_{j-1})$ of cardinality $\leq n/2^{j-1}$. This gives at most $2^{n/2^{j-1}}$ choices for S_j . Altogether the number of possibilities for all the sets S_1, \ldots, S_m is less than $2^{n+(n/2)+\cdots} = 4^n$.

Now suppose S_1, \ldots, S_m are given. When $\ell \in S_j$, how many choices are there for i_ℓ ? For such ℓ , $t_{i_\ell} > n/2^j$, and since the number of subscripts i with $t_i > n/2^j$ is $\langle (2^j/n)t$, the number of choices for our i_ℓ is $\langle (2^j/n)t$. Since $|S_j| \leq n/2^{j-1}$, we see that given j, the number of choices for all the i_ℓ with $\ell \in S_j$ is

$$< (2^{j}t/n)^{n/2^{j-1}}$$

Taking the product over $j, 1 \leq j \leq m$, we obtain

$$< (t/n)^{2n} (2 \cdot 2^{2/2} \cdot 2^{3/4} \cdot 2^{4/8} \dots)^n < (8t/n)^{2n}.$$

The number of possibilities for S_1, \ldots, S_m was $< 4^n$, so that altogether we get fewer than

$$(16t/n)^{2n}$$

n-tuples i_1, \ldots, i_n . The function $f(x) = (16t/x)^x$ takes its maximum at $x_0 = 16t/e$, so that

$$(16t/n)^{2n} = f(n)^2 \leq f(x_0)^2 = e^{32t/e} < e^{12t}.$$

5. Denominators of certain rational numbers

Let $q \in \mathbb{N}$ be given, and R the system of numbers u/q with $1 \leq u \leq q$, gcd(u,q) = 1. This system has $n = \phi(q)$ elements, so that we may set $R = \{\rho_1, \ldots, \rho_n\}$, say. For $1 \leq i, j \leq n$, let r_{ij} be the denominator of $\rho_i - \rho_j$, i.e., r_{ij} is the least natural number with $r_{ij}(\rho_i - \rho_j) \in \mathbb{Z}$. Write $N(\varepsilon)$ for the number of triples i, j, k in $1 \leq i, j, k \leq n$ with

(5.1)
$$\operatorname{lcm}(r_{ij}, r_{ik}) \leq \varepsilon n.$$

By a special case of Theorem A in [4], $N(\varepsilon) \leq \zeta(2-\kappa)\varepsilon^{\kappa}n^3$ for any $0 < \kappa < 1$, where ζ is the Riemann zeta function.

Here we will have to deal with the number $M(\varepsilon)$ of triples i, j, k with

(5.2)
$$\operatorname{lcm}(r_{ij}, r_{ik}) \leq \varepsilon q$$

Lemma 3. For $0 < \kappa < 1$

(5.3)
$$M(\varepsilon) \leq c(\kappa)\varepsilon^{\kappa}n^3.$$

For instance, when $\kappa = 1/2$, we may take $c(\kappa) = 11$.

PROOF. lcm (r_{ij}, r_{ik}) is the least common denominator of $\rho_i - \rho_j$, $\rho_i - \rho_k$. The least common denominator of (u/q) - (v/q), (u/q) - (w/q) is q/d where $d = \gcd(u - v, u - w, q)$. So if S denotes the set of numbers z in $1 \leq z \leq q$ with $\gcd(z, q) = 1$, then $M(\varepsilon)$ is the number of triples u, v, w in S with

(5.4)
$$\operatorname{gcd}(u-v,u-w,q) \ge 1/\varepsilon.$$

When gcd(r,q) = 1, the left hand side of (5.4) is unchanged if u, v, w are replaced by numbers congruent to $ru, rv, rw \pmod{q}$. Therefore $M(\varepsilon) = nM_1(\varepsilon)$, where $M_1(\varepsilon)$ is the number of pairs v, w in S with

$$gcd(1-v, 1-w, q) \ge 1/\varepsilon$$

Given h, let $M_2(h)$ be the number of pairs v, w in S such that

(5.5)
$$h \mid \gcd(1-v, 1-w, q).$$

Then

$$M_1(\varepsilon) \leq \sum_{h \geq 1/\varepsilon} M_2(h) = \sum_{\substack{h \mid q \\ h \geq 1/\varepsilon}} M_2(h).$$

The Euler totient function has $\phi(h) \geq c_1(\kappa)h^{(1+\kappa)/2}$ for $0 < \kappa < 1$, and in particular one may take $c_1(1/2) = (2/27)^{1/4}$ (see, e.g., [2], Theorem 327, and the proof given there). Now suppose $h \mid q$, and let h', q' be their respective square free parts, i.e., the products of primes dividing h, qrespectively. Then $\phi(q)/q = \phi(q')/q'$ and $\phi(h)/h = \phi(h')/h'$. Define t, t'by q = ht, q' = h't', so that $\phi(q') = \phi(h')\phi(t')$. We obtain

(5.6)

$$(\phi(t')/t')(q/h) = (\phi(q')/\phi(h'))(t/t')$$

$$= (\phi(q)/\phi(h))(q'/q)(h/h')(t/t') = \phi(q)/\phi(h)$$

$$\leq c_1(\kappa)^{-1}\phi(q)h^{-(1+\kappa)/2} = c_1(\kappa)^{-1}nh^{-(1+\kappa)/2}.$$

(5.5) yields v = 1 + hx, and $v \in S$ further implies $0 \leq x < q/h$ and (1 + hx, q) = 1, so that (1 + hx, t') = 1. Since (h, t') = 1, the last relation allows $\phi(t')$ values of x in an interval of length t', hence $(\phi(t')/t')(q/h)$ values of x in $0 \leq x < q/h$. This, then, is the number of possible values for v. It is also the number of possibilities for w, so that

$$M_2(h) = \left((\phi(t')/t')(q/h) \right)^2 \le c_1(\kappa)^{-2} n^2 h^{-1-\kappa}$$

by (5.6), and therefore

$$M_1(\varepsilon) \leq c_1(\kappa)^{-2} n^2 \sum_{h \geq 1/\varepsilon} h^{-1-\kappa}$$

Suppose $0 < \varepsilon < 1/2$. The last sum may be estimated by an integral from $(1/\varepsilon) - 1$ to ∞ , and since $(1/\varepsilon) - 1 \ge 1/2\varepsilon$, it is $\le \kappa^{-1}(2\varepsilon)^{\kappa}$. We obtain

$$M(\varepsilon) = nM_1(\varepsilon) \leq c_1(\kappa)^{-2} \kappa^{-1} 2^{\kappa} \varepsilon^{\kappa} n^3.$$

When $\varepsilon \geq 1/2$, we have $\varepsilon^{\kappa} > 1/2$, so that trivially $M(\varepsilon) \leq n^3 < 2\varepsilon^{\kappa} n^3$. Thus (5.3) is established.

When $\kappa = 1/2$, the value of c(1/2) given above yields $M(\varepsilon) \leq (27/2)^{1/2} \cdot 2 \cdot 2^{1/2} \varepsilon^{1/2} n^3 < 11 \varepsilon^{1/2} n^3$. We therefore may take c(1/2) = 11.

In [4] a triple i, j, k was called ε -bad when (5.1) holds. We now (given our special system R) will consider i, j, k to be ε -bbad if (5.2) holds. Thus $M(\varepsilon)$ is the number of ε -bbad triples. When $\ell \geq 3$ and u_1, \ldots, u_ℓ is an ℓ -tuple of integers with $1 \leq u_1, \ldots, u_\ell \leq n$, we will call this ℓ -tuple ε -bbad if some triple u_i, u_j, u_k with distinct i, j, k is ε -tuples is ε -bbad.

Corollary. The number of ε -bbad ℓ -tuples is

$$< 2\varepsilon^{1/2}\ell^3 n^\ell.$$

PROOF. By the case $\kappa = 1/2$ of Lemma 3, the number of ε -bbad triples is $< 11\varepsilon^{1/2}n^3$. Therefore given i, j, k with $1 \leq i < j < k \leq \ell$, the number of ℓ -tuples u_1, \ldots, u_ℓ for which u_i, u_j, u_k is ε -bbad is $< 11\varepsilon^{1/2}n^3 \cdot n^{\ell-3} =$ $11\varepsilon^{1/2}n^\ell$. The number of triples i, j, k in question is $\binom{\ell}{3}$, so that the number of ε -bbad ℓ -tuples is

$$< 11 \binom{\ell}{3} \varepsilon^{1/2} n^{\ell} < 2\varepsilon^{1/2} \ell^3 n^{\ell}.$$

As in [4], for α , β , γ in \mathbb{C}^{\times} , let $G(\alpha : \beta : \gamma)$ be the subgroup of \mathbb{C}^{\times} generated by α/β and α/γ .

Suppose β is a primitive q-th root of 1, so that deg $\beta = \phi(q) = n$. The set of conjugates $\beta^{[1]}, \ldots, \beta^{[n]}$ of β consists of the numbers $\exp(2\pi i u/q)$ with $1 \leq u \leq q$, (u,q) = 1. Clearly an ℓ -tuple of integers u_1, \ldots, u_ℓ with $1 \leq u_1, \ldots, u_\ell \leq n$ is ε -bbad precisely if for some triple u_i, u_j, j_k with distinct i, j, k in $1 \leq i, j, k \leq \ell$ we have

$$G(\beta^{[u_i]}:\beta^{[u_j]}:\beta^{[u_k]}) \leq \varepsilon q.$$

Suppose $\mathbb{Q}(\beta) \subset K$, and let $\xi \mapsto \xi^{(\sigma)}$ $(\sigma = 1, \ldots, D)$ signify the embeddings $K \hookrightarrow \mathbb{C}$. Given $\ell \geq 3$, an ℓ -tuple μ_1, \ldots, μ_ℓ of numbers in $1 \leq \mu \leq D$ will be called ε -bbad if there are distinct numbers i, j, k in $1 \leq i, j, k \leq \ell$ such that

(5.7)
$$G(\beta^{(\mu_i)}:\beta^{(\mu_j)}:\beta^{(\mu_k)}) \leq \varepsilon q.$$

Since for each u in $1 \leq u \leq n$ there are D/n numbers μ in $1 \leq \mu \leq D$ with $\beta^{(\mu)} = \beta^{[u]}$, the number of ε -bbad ℓ -tuples is less than

(5.8)
$$2\varepsilon^{1/2}\ell^3 n^\ell (D/n)^\ell = 2\varepsilon^{1/2}\ell^3 D^\ell.$$

Wolfgang M. Schmidt

6. The cases k = 1 and n = 1 of the Proposition

When k = 1, $M_j(X) = b_j X$ where b_1, \ldots, b_n are linearly independent over \mathbb{Q} . Then $b_1 \alpha_1^x, \ldots, b_n \alpha_1^x$ are linearly independent for every $x \in \mathbb{Z}$.

When n = 1, $M_1(\mathbf{X}) = a_1 X_1 + \dots + a_k X_k$ with nonzero coefficients. The number $M_1(\alpha_1^x, \dots, \alpha_k^x)$ is dependent when it is zero, i.e., when

$$a_1\alpha_1^x + \dots + a_k\alpha_k^x = 0$$

If x is a solution of this equation, there is a subset $S(x) \subset \{1, \ldots, k\}$ such that $1 \in S(x)$ and

(6.1)
$$\sum_{i\in\mathcal{S}(x)}a_i\alpha_i^x=0,$$

but no subsum of (6.1) vanishes, i.e., (6.1) fails to hold when $\mathcal{S}(x)$ is replaced by a set \mathcal{S}' with $\emptyset \neq \mathcal{S}' \subsetneq \mathcal{S}(x)$. By Lemma 8 of [4], for all but at most

(6.2)
$$G(k) = \exp\left((7k)^{4k}\right)$$

solutions x, the set S(x) has the property that $\alpha_i \approx \alpha_j$ for any $i, j \in S(x)$. We put such exceptional solutions x into a class by itself; condition (b) of the Proposition will be satisfied by taking m sufficiently large.

Now let $S \neq \emptyset$ be a subset of $\{1, \ldots, k\}$ such that $\alpha_i \approx \alpha_j$ for $i, j \in S$. We will consider solutions having S(x) = S. For convenience of notation, we will suppose $S = \{1, \ldots, \ell\}$, so that (6.1) becomes

(6.3)
$$a_1\alpha_1^x + \dots + a_\ell\alpha_\ell^x = 0.$$

There is no solution when $\ell = 1$; hence we may suppose $\ell \geq 2$. Since no subsum of (6.3) vanishes, we know from Lemma 3 in [4] (which is an immediate consequence of a theorem of EVERTSE [1]) that there are vectors $\mathbf{c}^{(w)} = (c_1^{(w)}, \dots, c_{\ell}^{(w)})$ where

$$1 \leqq w \leqq B(\ell) = \ell^{3\ell^2} \leqq k^{3k^2}$$

such that $\alpha_1^x, \ldots, \alpha_\ell^x$ is proportional to some $\mathbf{c}^{(w)}$. Consider solutions with fixed w. When x, x' are such solutions, $(\alpha_1/\alpha_2)^2 = c_1^{(w)}/c_2^{(w)}$, and similarly for x', so that

$$(\alpha_1/\alpha_2)^{x-x'} = 1$$

When m is the order of α_1/α_2 , then $x \equiv x' \pmod{m}$, and $\alpha_1^m/\alpha_2^m = 1$, so that $\operatorname{ord}(\alpha_1^m/\alpha_2^m) = 1$.

The number of sets S is $< 2^k$, the number of choices for w is $\leq k^{3k^2}$, so that we obtain $< 2^k \cdot k^{3k^2}$ classes. The total number of classes is

$$< G(k) + 2^k \cdot k^{3k^2} < \exp\left((7k)^{6k}\right) = \exp\left((7T)^{6T}\right) = H(T),$$

since n = 1 yields T = k.

7. Proof of the Proposition

We may suppose that k > 1, n > 1. Let K be a field containing $\alpha_1, \ldots, \alpha_k$ and the coefficients of our linear forms. Set $D = \deg K$, and let $\xi \mapsto \xi^{(\sigma)}$ ($\sigma = 1, \ldots, D$) signify the embeddings $K \hookrightarrow \mathbb{C}$. For $1 \leq \sigma_1, \ldots, \sigma_n \leq D$ and $1 \leq i_1, \ldots, i_n \leq k$, set

$$\mathcal{A}\begin{pmatrix}\sigma_1,\ldots,\sigma_n\\i_1,\ldots,i_n\end{pmatrix} = \alpha_{i_1}^{(\sigma_1)}\ldots\alpha_{i_n}^{(\sigma_n)},$$
$$\Delta\begin{pmatrix}\sigma_1,\ldots,\sigma_n\\i_1,\ldots,i_n\end{pmatrix} = \det(\mathbf{a}_{i_1}^{(\sigma_1)},\ldots,\mathbf{a}_{i_n}^{(\sigma_n)})$$

as in [4]. Given $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_n)$ write

(7.1)
$$f_{\boldsymbol{\sigma}}(x) = \sum_{i_1=1}^k \cdots \sum_{i_n=1}^k \Delta \begin{pmatrix} \sigma_1, \dots, \sigma_n \\ i_1, \dots, i_n \end{pmatrix} \left(\mathcal{A} \begin{pmatrix} \sigma_1, \dots, \sigma_n \\ i_1, \dots, i_n \end{pmatrix} \right)^x.$$

Then according to (10.2) of [4], whenever the n quantities (3.3) are linearly dependent over \mathbb{Q} , we have

(7.2)
$$f_{\sigma}(x) = 0$$

for each $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_n)$.

Let $q = q(\boldsymbol{\sigma})$ be the number of nonzero summands in (7.1). Then $q \leq k^n$, but also $q \leq e^{12t}$ by Lemma 2. Therefore $q(\boldsymbol{\sigma}) \leq T$, where T is defined by (3.1).

As in [4], there are $\sigma_2, \ldots, \sigma_n$ and u_1, \ldots, u_n such that

$$\Delta \begin{pmatrix} 1, \sigma_2, \dots, \sigma_n \\ u_1, u_2, \dots, u_n \end{pmatrix} \neq 0.$$

As in §10 of [4], define a set S of *n*-tuples such that this holds for every $\boldsymbol{\sigma} = (\sigma_1 = 1, \sigma_2, \ldots, \sigma_n) \in S$. Define sets $\mathcal{I}(\boldsymbol{\sigma})$ as in [4]. They have cardinality $\leq T$.

Suppose $|\mathcal{I}(\boldsymbol{\sigma})| = 1$ for some $\boldsymbol{\sigma} \in \mathcal{S}$. Then (7.2) has at most

$$G(q) \leq G(T) \leq H(T)$$

solutions x where $G(q) = \exp((7q)^{4q})$: This follows from the Corollary to Lemma 8 of [4], and corresponds to the inequality in the paragraph below (10.6) of [4].

We may then suppose that $|\mathcal{I}(\boldsymbol{\sigma})| > 1$ for each $\boldsymbol{\sigma} \in \mathcal{S}$. The number of *n*-tuples (i_1, \ldots, i_n) is k^n . Further $\mathcal{I}(\boldsymbol{\sigma})$ is a set of at most T such *n*-tuples. Therefore the number of possibilities for $\mathcal{I}(\boldsymbol{\sigma})$ is $\leq k^{nT}$. As in [4], we construct a set \mathcal{I} of *n*-tuples (i_1, \ldots, i_n) , and sets $\mathcal{S}'_2, \mathcal{S}'_3(\sigma_2), \ldots, \mathcal{S}'_n(\sigma_2, \ldots, \ldots, \sigma_{n-1})$. Here $|\mathcal{I}| \leq T$. In place of (10.8) of [4], we may conclude that each set $\mathcal{S}'_i(\ldots)$ has cardinality

(7.3)
$$|\mathcal{S}'_j(\ldots)| > D/(nk^{nT}) \ge D/T^{1+T^2} \ge D/T^{(5/4)T^2}$$

where we used that $n \ge 2, k \ge 2, T \ge \max(4, n, k)$. With \mathcal{S}' constructed as in [4],

$$\mathcal{I}(\boldsymbol{\sigma}) = \mathcal{I} \quad ext{when} \quad \boldsymbol{\sigma} \in \mathcal{S}'.$$

For $2 \leq j \leq n$, let \mathcal{T}_j be the set of numbers $i_j \neq u_j$ in $1 \leq i_j \leq k$ such that

(7.4)
$$(i_1, \dots, i_{j-1}, i_j, u_{j+1}, \dots, u_n) \in \mathcal{I}$$

for certain i_1, \ldots, i_{j-1} . (When j = n, (7.4) becomes $(i_1, \ldots, i_{n-1}, i_n) \in \mathcal{I}$.) Lemma 17 of [4] holds in the following modified form.

Lemma 4. Suppose $i_j \in \mathcal{T}_j$ and $\alpha_{i_j} \not\approx \alpha_{u_j}$. Then

$$h(\alpha_{i_j}/\alpha_{u_j}) > 1/(8T^7 \operatorname{deg}(\alpha_{i_j}/\alpha_{u_j})).$$

PROOF. (10.12) of [4] becomes $n_K(\alpha_{i_j}/\alpha_{u_j}) > D/T^{(5/4)T^2}$ by (7.3). The Corollary to Lemma 11 of [4] yields

$$h(\alpha_{i_j}/\alpha_{u_j}) > 1/(4(\log T^{(5/4)T^2})^3 \deg(\alpha_{i_j}/\alpha_{u_j})).$$

Here (since $T \geq 4$),

$$4\left(\log T^{(5/4)T^2}\right)^3 < 8(T^2\log T)^3 < 8T^7.$$

For $2 \leq j \leq n$, let \mathcal{T}_j^* be the set of numbers $\alpha_{i_j}/\alpha_{u_j}$ with $i_j \in \mathcal{T}_j$. Say $\mathcal{T}_j^* = \{\beta_1, \ldots, \beta_r\}$. In analogy to (10.13), (10.14) of [4] we have

(7.5)
$$n_K(\beta_s) > D/T^{(5/4)T^2}, \quad h(\beta_s) > 1/(8T^7 \deg \beta_s)$$

for each s, $1 \leq s \leq r$, with $\beta_s \not\approx 1$. Lemma 18 of [4] now becomes

Lemma 5. Set $\ell = 3T$, and suppose

$$(7.6) D > e^{3T^4}.$$

Let $2 \leq j \leq n$ and $\sigma_1, \ldots, \sigma_{j-1}$ with $\sigma_1 = 1, \sigma_2 \in \mathcal{S}'_2, \ldots, \sigma_{j-1} \in \mathcal{S}'_{j-1}(\sigma_2, \ldots, \sigma_{j-2})$ be given. There is a subset $\mathcal{S}''_j = \mathcal{S}''_j(\sigma_1, \ldots, \sigma_{j-1})$ of $\mathcal{S}'_j(\sigma_1, \ldots, \sigma_{j-1})$ of cardinality

$$|\mathcal{S}_j''(\sigma_1,\ldots,\sigma_{j-1})| = \ell$$

such that for any triple of distinct numbers ϕ, ψ, ω in $\mathcal{S}''_j(\sigma_1, \ldots, \sigma_{j-1})$, and for $1 \leq s \leq r$,

(7.7)
$$|G(\beta_s^{(\phi)} : \beta_s^{(\psi)} : \beta_s^{(\omega)})| > \begin{cases} T^{-11T^3} \deg \beta_s & \text{when } \beta_s \not\approx 1, \\ T^{-11T^3} \operatorname{ord} \beta_s & \text{when } \beta_s \approx 1. \end{cases}$$

PROOF. For brevity, put $S'_j = S'_j(\sigma_2, \ldots, \sigma_{j-1})$. When r = 0, the condition (7.7) is vacuous. Since S'_j has cardinality $> D/T^{(5/4)T^2} > 3T = \ell$ by (7.3), (7.6), there is certainly a subset of cardinality ℓ .

Suppose r > 0. Set

(7.8)
$$\varepsilon = T^{-10T^3}.$$

Note that

(7.9)
$$108r\varepsilon^{1/2}T^3T^{(5/4)T^2\ell} < 108\varepsilon^{1/2}T^{4+4T^3} < \varepsilon^{1/2}T^{5T^3} = 1$$

since $T \geq 4$, and that

(7.10)
$$2\ell^2 T^{(5/4)T^2\ell} < 18T^{2+4T^3} < T^{5T^3} < e^{3T^4} < D$$

by (7.6).

Let $\beta_s \in \mathcal{T}_j^*$ be given. Then if $\beta_s \not\approx 1$, we see from the argument around (10.21) of [4] that the number of ε -bad ℓ -tuples μ_1, \ldots, μ_ℓ with each μ_i in \mathcal{S}'_j is less than $\varepsilon^{1/2}\ell^3 D^\ell$. On the other hand when $\beta_s \approx 1$, then by (5.8) the number of ε -bbad ℓ -tuples is less than $2\varepsilon^{1/2}\ell^3 D^\ell$. Summing over s in $1 \leq s \leq r$, we see that the number of ℓ -tuples μ_1, \ldots, μ_ℓ in \mathcal{S}'_j which are ε -bad or ε -bbad for some β_s is

$$< 2r\varepsilon^{1/2}\ell^3 D^\ell = 54r\varepsilon^{1/2}T^3 D^\ell < \frac{1}{2} \left(D/T^{(5/4)T^2} \right)^\ell$$

by (7.9). The number of ℓ -tuples for which at least two elements are equal is

$$\leq \binom{\ell}{2} D^{\ell-1} < \ell^2 D^{\ell-1} < \frac{1}{2} \left(D/T^{(5/4)T^2} \right)^{\ell}$$

by (7.10). Since $|\mathcal{S}'_j| \geq D/T^{(5/4)T^2}$, the number of all possible ℓ -tuples in \mathcal{S}'_j is $\geq (D/T^{(5/4)T^2})^{\ell}$. Therefore there is an ℓ -tuple of *distinct* numbers in \mathcal{S}'_j which is not ε -bad or ε -bbad for any of β_1, \ldots, β_r . By the definition of ε -bad and ε -bbad this means that for any three distinct numbers i, j, k, we have for $\beta_s \not\approx 1$ that

$$|G(\beta_s^{(\mu_i)} : \beta_s^{(\mu_j)} : \beta_s^{(\mu_k)})| > \varepsilon n(\beta_s)$$

= $\varepsilon (\deg \beta_s) D^{-1} n_K(\beta_s) > \varepsilon (\deg \beta_s) / T^{(5/4)T^2} > T^{-11T^3} \deg \beta_s$

(in analogy to an estimate below (10.23) in [4]), and using (7.5), (7.8), whereas for $\beta_s \approx 1$ the opposite of (5.7) holds, so that

$$|G(\beta_s^{(\mu_i)}:\beta_s^{(\mu_j)}:\beta_s^{(\mu_k)})| > \varepsilon \operatorname{ord} \beta_s > T^{-10T^3} \operatorname{ord} \beta_s$$

We now set $S''_j(\sigma_2, \ldots, \sigma_{j-1}) = \{\mu_1, \ldots, \mu_\ell\}$. Then indeed any three numbers ϕ, ψ, ω in $S''_j(\ldots)$ have (7.7).

We will assume from now on that (7.6) holds. This can always be achieved by enlarging K, if necessary.

We define \mathcal{S}'' to be the set of *n*-tuples $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 = 1$, $\sigma_2 \in \mathcal{S}''_2, \sigma_3 \in \mathcal{S}''_3(\sigma_2), \ldots, \sigma_n \in \mathcal{S}''_n(\sigma_1, \ldots, \sigma_{n-1})$. We will deal with the equation (7.2) with $\boldsymbol{\sigma} \in \mathcal{S}''$. The number of these equations is $|\mathcal{S}''| = \ell^{n-1} < (3T)^n$.

The remainder of our arguments follows Section 11 of [4], with a few changes as follows. Each equation (7.2) splits, with at most $G(q) \leq G(T)$ exceptions. If we carry this out for each $\boldsymbol{\sigma} \in \mathcal{S}''$, we get

(7.11)
$$|\mathcal{S}''|G(T) < (3T)^n \exp\left((7T)^{4T}\right) < \exp\left((7T)^{5T}\right)$$

exceptions. This takes the place of (11.1) in [4].

As in (10.9) of [4], we have $\mathcal{I}(\boldsymbol{\sigma}) = \mathcal{I}$ when $\boldsymbol{\sigma} \in \mathcal{S}'$, hence certainly when $\boldsymbol{\sigma} \in \mathcal{S}''$. Subsets $\mathcal{I}(\boldsymbol{\sigma}, x)$ of \mathcal{I} are defined in terms of the equation (11.4) of [4]. We have $|\mathcal{I}| \leq T$, so that there are fewer than Ttuples $\mathbf{i} = (i_1, \ldots, i_n) \neq (u_1, \ldots, u_n)$ in \mathcal{I} . Hence given $\sigma_1, \ldots, \sigma_{n-1}$, there will be an *n*-tuple $\mathbf{i} = \mathbf{i}(\sigma_1, \ldots, \sigma_{n-1}, x) \neq (u_1, \ldots, u_n)$ such that $\mathbf{i} \in \mathcal{I}(\boldsymbol{\sigma}, x)$ for at least $\ell/T = 3$ of the numbers $\sigma_n \in \mathcal{S}''_n(\sigma_2, \ldots, \sigma_{n-1})$. Let $\mathcal{S}^*_n(\sigma_2, \ldots, \sigma_{n-1}, x)$ consist of 3 such numbers σ_n . Continuing in this way, we construct sets $\mathcal{S}^*_2(x), \mathcal{S}^*_3(\sigma_2, x), \ldots, \mathcal{S}^*_n(\sigma_2, \ldots, \sigma_{n-1}, x)$, a set $\mathcal{S}^*(x)$ and $\mathbf{i}(x)$ such that $\mathbf{i}(x) \in \mathcal{I}(\boldsymbol{\sigma}, x)$ when $\boldsymbol{\sigma} \in \mathcal{S}^*(x)$.

Define systems Σ of 3-element sets as in [4]. When $\mathbf{i} \in \mathcal{I}$, define again a certain class $C(\mathbf{i}, \Sigma)$ of solutions. The number of classes $C(\mathbf{i}, \Sigma)$ is less than

(7.12)
$$T\ell^{3^n} = T(3T)^{3^n},$$

which replaces (11.7) of [4]. When studying solutions x in a given class $C(\mathbf{i}, \Sigma)$, let $j = j(\mathbf{i})$ be the number such that $\mathbf{i} = (i_1, \ldots, i_j, u_{j+1}, \ldots, u_n)$ with $i_j \neq u_j$. In contrast to [4], we can no longer claim that j > 1. We can only claim that j > 1 if $\alpha_{i_1} \not\approx \alpha_{u_1}$.

The sets $\mathcal{I}(\boldsymbol{\sigma}_{\phi}, x)$, $\mathcal{I}(\boldsymbol{\sigma}_{\psi}, x)$, $\mathcal{I}(\boldsymbol{\sigma}_{\omega}, x)$ are in the set \mathcal{I} of cardinality $\leq T$. Therefore $C(\mathbf{i}, \Sigma)$ may be divided into

$$(7.13)$$
 2^{37}

subclasses $C(\mathbf{i}, \Sigma, \mathcal{I}_{\phi}, \mathcal{I}_{\psi}, \mathcal{I}_{\omega})$ (where (7.13) replaces the number in (11.10) of [4]). Since each $\mathcal{I}(\mathbf{i}, x)$ is of cardinality $\leq T$, the estimate (11.11) of [4] may be replaced by

(7.14)
$$T(3T)^{3^n} 2^{3T} B(T)^3 < 2^{4T} T^{9T^2} (3T)^{3^n} < \exp(5T^3 + 3^n T).$$

Eventually, just as in [4], we arrive at

$$(\beta_s^{(\phi)}/\beta_s^{(\psi)})^{x-x'} = (\beta_s^{(\phi)}/\beta_s^{(\omega)})^{x-x'} = 1$$

when x, x' lie in the same class. So if $|G(\beta_s^{(\phi)} : \beta_s^{(\psi)} : \beta_s^{(\omega)})| = m$, then $x \equiv x' \pmod{m}$. Further by (7.7),

$$m > \begin{cases} T^{-11T^3} \deg \beta_s & \text{if } \beta_s \not\approx 1, \\ T^{-11T^3} \operatorname{ord} \beta_s & \text{if } \beta_s \approx 1. \end{cases}$$

When $\beta_s \not\approx 1$, we obtain from (7.5) that

$$h(\beta_s^m) = mh(\beta_s) > T^{-11T^3}/8T^7 > e^{-6T^4} = \hbar(T).$$

When $\beta_s \approx 1$, we note that $m \mid \text{ord } \beta_s$, so that

$$\operatorname{ord}(\beta_s^m) = m^{-1} \operatorname{ord} \beta_s < T^{11T^3} < e^{6T^4} = \hbar(T)^{-1}.$$

But β_s is a quotient α_i/α_j , and depending on whether $\alpha_i \not\approx \alpha_j$ or $\alpha_i \approx \alpha_j$, we get $h(\alpha_i^m/\alpha_j^m) > \hbar(T)$ or $\operatorname{ord}(\alpha_i^m/\alpha_j^m) < \hbar(T)^{-1}$.

How many classes do we have? Adding (7.11) to (7.14) we get

$$\exp\left((7T)^{5T}\right) + \exp\left(5T^3 + 3^nT\right) < \exp\left((7T)^{6T}\right) = H(T)$$

classes.

References

- J. H. EVERTSE, The number of solutions of linear equations in roots of unity, Acta Arith. 99.1 (1999), 45–51.
- [2] G. H. HARDY and E. M. WRIGHT, An introduction to the theory of numbers, 3rd edn, Clarendon Press, Oxford, 1954.
- [3] C. LECH, A note on recurring series, Ark. Math. 2 (1953), 417–421.
- [4] W. M. SCHMIDT, The zero multiplicity of linear recurrence sequences, Acta Math. 182 (1999), 243–282.

WOLFGANG M. SCHMIDT UNIVERSITY OF COLORADO BOULDER USA

(Received September 16, 1999; revised March 14, 2000)