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Abstract. We present a geometric construction of and constructive investigations
in Finsler spaces F̃ n = (M, L̃) whose indicatrices Ĩ(x) are affine images of a single

indicatrix: Ĩ(x) = a(x)I0. These are Finsler spaces modeled on a Minkowski space [4]
or Finsler spaces with 1-form metric [8]. Vectors are considered not at line elements:
ξ(x, y), but at points: ξ(x) (i.e. we work in a point Finsler space [3]).

We characterize these eF n in a geometric way as those Finsler spaces which admit
linear and at the same time metrical connections in the tangent bundle τM . Also the
linear automorphisms (the affine rigidity) of the indicatrices are investigated.

Introduction

Linear (called also affine) and at the same time metrical connections
in the tangent bundle τM (i.e. among the tangent vectors ξ(x) ∈ TxM

of the manifold M) play a basic role in the theory of Riemannian spaces
V n = (M, g). In a Finsler space Fn = (M,L) with fundamental (metric)
function L(x, y), x ∈ U ⊂ M , y ∈ TxM metrical and linear connections
among the tangent vectors ξ(x) do not exist in general. This can easily be
seen from the fact that the indicatrices I(x0) = {y | L(x0, y) = 1} which
play the role of the unit spheres cannot, in general, be taken into each
other by linear mappings (e.g. if I(x0) is an ellipsoid and I(x1) is not).
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This necessitated the introduction of the n-dimensional Finsler vectors
ξ(x, y) ∈ V TM = TM ×M TM defined at line elements (x, y). Among the
ξ(x, y) there exist metrical and linear connections (in fact with a variety
of choices, for a recent survey see [11]). Introduction of vectors defined at
line elements makes the theory of Finsler spaces a little more complicated.
– This problem does not emerge until we are concerned with the metric
only (arc length, geodesic, etc.) and we do not use parallelism. – We can
obtain in an Fn also metrical connections among the more simple tangent
vectors ξ(x), of course not linear, but only homogeneous ones [12], [14],
[7]. Finsler spaces with vectors from the tangent bundle are called point
Finsler spaces [3], [12].

In this work we present a geometric construction of and constructive
investigations in the Finsler spaces with metrical and linear connections
am

Γ (x). These spaces must be special Finsler spaces, for, as we have seen,

metrical and at the same time linear connections
am

Γ (x) do not exist in
general in an Fn. We want to contribute to their constructive geomet-
ric theory. These spaces are closely related to and concerning the metric
coincident with Finsler spaces of 1-form metric [8] or with Finsler spaces
modeled on Minkowski spaces [4]–[6], however the space of our investi-
gation is a point Finsler space, and not a line element space. So our
connections relate to τM and not to VTM .

In Section 1 we give a geometric construction of the spaces to be
investigated. Then in Section 2 we show that these spaces are exactly
those Finsler spaces which admit linear and at the same time metrical
connections in τM . The proof of this characterization will be performed
by constructive geometric means. Finally in Section 3 we investigate the
consequences of the fact that the holonomy group of our connection con-
sists of the identity alone or it has more elements (the affine rigidity of the
indicatrix).

1. Geometric construction of F̃n

Let Fn = (M,L) be a locally Minkowskian Finsler space denoted by
`Mn over the connected and paracompact manifold M . Then there exists
an atlas {(Uα, ϕα)}, α ∈ A of M , where the ϕα are diffeomorphisms from
En or from an open simply-connected part of it onto Uα. We concentrate
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on one Uα denoted by U . The situation on the other Uα is similar. On U

there exists an adapted coordinate system (x), such that L(x, y), and thus
also the indicatrix I0 of Fn = `Mn are independent of x. We consider (x)
as a Euclidean coordinate system. By dϕ we can indentify TxU = TxM

with TxEn ≈ En. Then these indicatrices I0 in the different TxU are
congruent and parallel displaced in the Euclidean sense.

We attach to each x ∈ U a nondegenerate affine transformation a(x) :
TxM → TxM (affine always means centro-affine). Then

(1) a(x)I0 =: Ĩ(x)

is a new indicatrix and we get on U a Finsler space (U, Ĩ(x)) ≡ (U, L̃)
determined by L or I0 and a, and denoted by F̃n = (M,L, a) or (M, I0, a).
If the fundamental function of the locally Minkowski space Fn = `Mn in
the adapted coordinate system (x) is L(y), then L̃(x, a(x)y) = 1 = L(y),
and L̃(x, y) = L(b(x)y), where b is the inverse of a. Thus the F̃n on U

are the Finsler spaces with 1-form metric introduced and investigated by
Y. Ichijyo [4]–[6], M. Matsumoto and H. Shimada [8], [9] etc., see also
P. Antonelli–R.S. Ingarden–M. Matsumoto [1].

a(x) takes the unit sphere S : δikyiyk = 1 of TxU into an ellipsoid

(2) Q(x) := a(x)S

with the equation gik(x)yiyk = 1, y ∈ TxU which is equivalent to a sym-
metric nondegenerate 2-form g(x) or a tensor of type (0, 2). Thus we obtain
a Riemannian space V n = (U, g) which is called conjugate to F̃n. How-
ever, to a Q(x) ⊂ TxM there is a number of a(x) satisfying (2), namely if
a0S = Q, then also a0fS = Q, where f is a rotation. – In the case of I0 = S

we obtain F̃n = V n, however such an F̃n = (M, S, a) can be generated by
many different fields a of affine transformations.

An interesting special case occurs when all a(x) are rotations. Then
all Ĩ(x) are congruent, but not parallel translated of each other. In this
case L̃(x, y) does depend of x. – Another special case is when a(x) are
equiaffine, i.e. ‖S‖E = ‖Q(x)‖E ⇒ ‖Ĩ(x)‖E = const.

In order to construct globally – not only on a chart U – the affine
deformated of an Fn = (M,L) = `Mn, let us consider a field A of affine,
transformations on M . Such fields exist. Since M is paracompact, it
can be equipped with Riemannian metrics. Let g and h be two such
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metrics having local components gij(x) and hij(x) on a chart U(x). Then
ak

i (x) = gij(x)hjk(x) are regular matrices, for both (gij) and (hjk) are
so, and thus they determine affine transformations a(x) : TxM → TxM ,
∀x ∈ M . So (1) is defined at each point of M , and this yields a Finsler
space denoted by F̃n = (M, L̃) or by (M, Ĩ), (M ;L, A), (M ; I, A) and
called the affine deformated of `Mn. Of course affine deformation can be
performed on every Finsler space Fn, however F̃n denote in this paper
affine deformated of locally Minkowski spaces `Mn.

Let V n = (M, g) and V̂ n = (M, ĝ) be two Riemannian manifolds
on M . g(p), p ∈ M is equivalent to an ellipsoid Q(p) ⊂ TpM , and ĝ(p)
to Q̂(p) ⊂ TpM . Then there exist always affine transformations a(p) such
that Q̂(p) = a(p)Q(p). So the arbitrary V̂ n = (M, ĝ) = (M, Q̂) is the
affine deformated Ṽ n = (M ; Q, A) of the arbitrary V n = (M, Q). A locally
Euclidean space `En = (M,

∗
g) is a special Riemannian space, where there

exist to each point p ∈ M a neighbourhood U and a coordinate system (x)
on U such that

∗
gij(x) = δij which is equivalent to a sphere S(p) ⊂ TpM :

`En = (M, S). Thus every Riemannian space is an affine deformated by
an appropriate A of a locally Euclidean space, where (2) Q̂(p) = a(p)S(p):

˜̀En = (M ;S, A) = (M, Q̂) = (M, ĝ) = V̂ n.

a(p) is not unique, for af in place of a also satisfies (2). However the affine
deformated of the locally Minkowskian spaces `Mn yield the F̃n only, and
not all Fn can be generated in this way:

A : `En −→ V n A : `Mn −→ F̃n

V n, `En =⇒ A F̃n, `Mn =⇒ A {F̃n} ⊂ {Fn}

∃A : V n −→ V̂ n

We remark that as a Euclidean space En is a special Minkowski space
Mn, so an `En = (M,

∗
g) = (M,S) is also a special locally Minkowskian

space `Mn = (M,
∗
L) = (M,

∗
I), where

∗
I = S in certain adapted coordinate

systems.
Finally we remark that a field a(p), p ∈ U can smoothly be extended

to a field A on a paracompact M . Let namely {Ui} i ∈ A be a locally
finite open cover of M with U = U1, and g

1
and h

1
two Riemannian metrics
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on U satisfying g
1
jk(x) = h

1
kr(x)ar

j(x) in a local coordinate system (x)

on U . We denote by Uβ β ∈ B ⊂ A those elements of {Ui} (including
U1) which intersect U1. We define g

β
∈ C∞ and h

β
∈ C∞ on Uβ such that

(a) g
β

¹ (Uβ ∩U1) = g
1

and (b) h
β

¹ (Uβ ∩U1) = h
1
. On the other Ui the g

i
and

h
i

may be arbitrary. Let now fi ∈ C∞(M) be a partition of unity on M

subordinate to {Ui}. Then
∑
i

fig
i

= g and
∑
i

fih
i

= h are two Riemannian

metrics on M , and aj
k(x) = gjr(x)hrk(x) gives a smooth field A on M .

Then for any x0 ∈ U (A(x0))k
j =

(∑
i

fi(x0)gjr(x0)
)(∑

i

fi(x0)h
i

rk(x0)
)
.

Here fi(x0) = 0 if i 6= β ∈ B. Then from (a) and (b)

(
A(x0)

)k

j
=

∑

β∈B

fβ(x0)
(
g
1
jr(x0)h

1

rk(x0)
)

= g
1
jr(x0)h

1

rk(x0) = aj
k(x0),

i.e. A ¹ U = a.

2. Characterization of F̃n by geometric means

We want to characterize the just constructed F̃n = (M ;
∗
I, A) = (M, Ĩ)

spaces among the Finsler spaces Fn = (M,L). F̃n is an affine deformated

by A of an `Mn = (M,
∗
I) space. So M must admit a locally Minkowskian

structure. This means that every p ∈ M has a neighbourhood U and co-
ordinate systems (x) on U such that L(x, y) is independent of x. These
coordinate systems are called adapted. Adapted coordinate systems are re-
lated to each other by linear transformations, and every coordinate system
obtained from an adapted one by a linear transformation is also adapted
([10] p. 158). Hence if U1(x) and U2(z) are adapted, then on U1 ∩ U2 6= ∅
(x) ↔ (z) is linear. It is clear that in case of a locally Minkowskian space

`Mn = (M,
∗
I) M has a cover {Uα(xα)} with adapted coordinate systems

(xα) on Uα. Then (a) (xα1) → (xα2) on Uα1 ∩ Uα2 6= ∅ must be linear.
A differentiable structure {(Uα, ϕα)}, α ∈ A, ϕα : Uα → En(xα) on M

will be called affine if the transformations (a) are linear. If (M,
∗
I) is a

locally Minkowskian space, then M clearly admits an affine differentiable
structure. This is clearly necessary for an Fn to be an F̃n.
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Theorem 1. The F̃n spaces are those Finsler spaces Fn = (M,L)

which admit a metrical linear connection
am

Γ (x) and an affine differentiable
structure on M .

Proof. A) Every F̃n has a metrical linear connection.
Since F̃n = (M, Ĩ) is the affine deformated of an `Mn = (M,

∗
I), we

have affine transformations a(p), p ∈ M and charts (U,ϕ) p0 ∈ U for

any p0 ∈ M with adapted coordinates (x) on U . Then
∗
I(p) is a parallel

translate of
∗
I(p0) in any adapted coordinate system on U , and also (1)

holds in the form: a
∗
I = Ĩ. Let t be the Euclidean parallel translation in

an adapted coordinate system from p0 ∈ U to p ∈ U . Then

(3) g(p0, p) := a(p) ◦ t ◦ a−1(p0)

is an affine transformation, and g(p0, p)
→
ξ
0
(p0) =

→
ξ (p),

→
ξ
0
∈ Tp0U =

Tp0M is a vector field on U . Let
→
ε
0

i ∈ Ĩ0 be a basis of Tp0M ,
→
ε i(p) =

g(p0, p)
→
ε
0

i(p0) and
→
ξ
0

= ξ
0

i→ε
0

i. Then
→
ξ (p) = ξ

0

i→ε i(p), for g is affine, and

the differential d
→
ξ has the form

(4)
(

d
→
ξ

)
(p0, dp) = ξ

0

id
→
ε i(p0, dp), ∀ p0,

→
ξ
0
.

Since g is independent of the adapted coordinate system used, so are
→
ξ

and d
→
ξ . So (3) determines by

→
ξ
0
→

→
ξ
0

+ d
→
ξ = g(p0, dp)

→
ξ
0

a mapping

Tp0M → Tp0+dpM , ∀ p0, dp linear in
→
ξ
0
, and thus a linear connection

a

Γ.

The coefficients of this connection in an adapted coordinate system (x)
can be obtained from (4) by writing its components in (x):

dξj(x0, dx) = ξ
0

idεj
i (x0, dx) = ξ

0

i
a

Γ j
i k(x0)dxk, ∀x0, ξ

0

i,

where
a

Γ j
i k(x0) =

∂εj
i

∂xk
(x0).

Moreover

g(p0, p)Ĩ(p0) = a(p) ◦ t ◦ a−1(p0)Ĩ(p0) = a(p) ◦ t
∗
I(p0) = a(p)

∗
I(p) = Ĩ(p),

i.e. g : Tp0M → TpM is metrical, and thus so is the constructed
a

Γ. ¤
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B) Every Fn = (M,L) = (M, I) admitting an affine differentiable

structure and a metrical affine connection
am

Γ (x) on M is a Finsler manifold
of type F̃n.

Fn = F̃n means that it is an affine deformated by A of a locally

Minkowskian space `Mn = (M ;
∗
I,A). So we have to give

∗
I and A on M .

First we consider the local case (when M is covered by a single chart
(U,ϕ) with local coordinates x).

Let (x) be considered as a Descartes coordinate system (i.e. the ∂
∂xi (x)

are considered as an orthonormal system in TxM). This makes M into
an En. t denotes a translation in this En sending x0 to x. We define

tI0 =
∗
I(x) ≡

∗
I, where I0 = I(x0) is the indicatrix of Fn at x0, and thus

∗
I(x0) = I0. This process makes M into a Minkowski space Mn. Let γ be a
curve in En from x0 to x, and denote by P (γ) the parallel transport along

γ according to the metrical connection
am

Γ (x). Then P (γ)I(x0) = I(x) and
P (γ) ◦ t−1 : TxM → TxM is an affine transformation:

a(x) := P (γ) ◦ t−1 ∀x ∈ U = M,(5)

and

a(x)
∗
I(x) = P (γ) ◦ t−1

∗
I(x) = P (γ)I(x0) = I(x).(6)

This means that F̃n = (M,
∗
I, A) = (M, I) = Fn.

We start with the global case. Let {(Uα, ϕα(xα))}, α ∈ A be an
affine differentiable structure on M such that the Uα are connected. Let
p0 be a fixed and p an arbitrary point of M . If we have translations
t : Tp0M → TpM , then we can construct affine transformations a(p) as we
did it in (5) in the local case, and then we can finish our proof similarly as
in (6). Translations t (i.e. linear transformations t : Tx0M → TxM defined
by t ∂

∂xi (x0) = ∂
∂xi (x)) depend on the coordinate systems, except they are

related by linear transformation. So we have to use such coordinate sys-
tems. Fortunately, coordinate systems belonging to an affine defferentiable
structure (used by us) have this property. Moreover p0 and p may be in
different Uα. However this difficulty can be surmounted relatively easily.

Let C(t), t ∈ [t0, t̂ ], t = arc length, be a curve of Fn joining p0 and p.
Then C is bounded and closed in Fn, so it is compact. Hence it is covered
by finitely many Ui, i = 1, 2, . . . , N . We renumber a subclass of them.
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Let U1 be such a Ui which contains p0 = C(t0) and cuts out the longest
segment [t0, t1] from C such thtat the endpoint C(t1) = p̃(t1) still belongs
to ∂U1. Suppose that p̃1 6= C(t̂ ). Then among the Ui containing p̃1 there
is a U2 which cuts out again the longest segment from C1(t), t ∈ [t1, t̂ ].
We denote the endpoint of this segment by p̃2. It is C(t2) ∈ C1 ∩ ∂U2.
Continuing this, the process arrives to p = C(t̂ ), and breaks down in
N̄ ≤ N steps. The Ui used in the above process are Uk, k = 1, 2, . . . , N̄ .
Then Uj ∩Uj+1 ∩C 6= ∅, 1 ≤ j < N̄ is a segment of C. Let pj ∈ Uj ∩Uj+1

be a point of this segment. We denote by tj the translation from pj−1

to pj in the coordinate system (xj) over Uj . tj is independent of the
coordinate system (xj) used, since we allow coordinate systems of the
affine differentiable structure only, which are related to each other by linear
transformations. Then we define t := tN̄ ◦ · · · ◦ t2 ◦ t1. With the aid of t we

can construct an `Mn = (M,
∗
I) on M . Let

∗
I0 = I(p0) be the indicatrix of

Fn at p0, and
∗
I(p) = t−1

∗
I0. Then we have an

∗
I(p) on M . They are parallel

translate on Uα, and the coordinate systems (xα) relate to each other by
linear transformations, so they are adapted. Thus we obtain an `Mn. Now
let γ be a curve (coincident with or different from C) joining p0 with p, and
let P (γ) denote the parallel transport along γ according to the metrical

connection
am

Γ (x) of Fn. Then P (γ) ◦ t−1 : TpM → TpM is an affine
transformation a(p). This can be done for every p ∈ M , and we obtain a

field A. These a(p) take indicatrices
∗
I(p) of the locally Minkowskian `Mn

into the indicatrices I(p) of Fn:

a(p)
∗
I(p) = P (γ) ◦ t−1

∗
I(p) = P (γ)

∗
I(p0) = P (γ)I(p0) = I(p).

Thus Fn = (M, I) = (M ;
∗
I,A) = F̃n. ¤

We remark that the constructed A depends on the curves C connecting
p0 and p. This is related to the affine automorphisms of the indicatrices
of F̃n discussed in Section 3.

Y. Ichijyo ([4]–[6]) obtained by a completely different approach, re-
sults quite similar to Theorem 1.

We have constructed A, but we have not proved the smoothness of A.
This is assured if the family of curves {C(p0, p)} joining the fixed p0 with

the arbitrary p is such that P (C)
→
ξ
0

=
→
ξ (p) depends smoothly on p.
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In an adapted coordinate system (x) the coefficients of the metrical

linear connection
a

Γ(x) of part A) can also be expressed by the components
aj

m(x) of the affine transformations a(x) as follows: Let us denote the
matrix of a(x) by ai

h(x) and that of the inverse b(x) by bk
j (x). By (3) the

parallel displaced of y0 ∈ Ĩ(x0) from x0 to x along a curve γ : xi = xi(t) is

P
a
Γ
x0,x;γy0 = y(x(t)) = a(x(t)) ◦ b(x0)y0,

or in components

(7) yj(t) = aj
m(x(t))b0

m
s y0

s.

Then
a

Γk
j
i(x) must satisfy

dyj

dt
=

a

Γk
j
iy

k dxi

dt
,(8)

i.e.

∂aj
m

∂xi

dxi

dt
b0

m
s y0

s =
a

Γk
j
ia

k
mb0

m
s y0

s dxi

dt
.

From this we have ([8] p. 162)

a

Γk
j
i(x) = bm

k (x)
∂aj

m

∂xi
(x).

Then (8) is satisfied by (7).

3. Automorphisms (rigidity) of the indicatrix

1. Suppose that
am

Γ ≡ Γ is a metrical linear connection on M for
the Finsler manifold Fn = (M,L). We know that the parallel transport
P (γ) : Tp0M → Tp1M , according to the given connection Γ along a curve
γ connecting p0 with p1, takes I(p0) into I(p1):

(9) P (γ)I(p0) = I(p1),

for Γ is supposed to be metrical. This also means that P (γ)I(p0) is inde-
pendent of the curve connecting p0 and p1. Thus P (γ)y = y ∈ I(p1) for
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any y ∈ I(p0) and for any γ joining p0 with p1. However this does not
assure that

(10) P (γ1)y = P (γ2)y, ∀y ∈ I(p0)

for two different curves γ1 and γ2 joining p0 and p1, i.e. (9) does not imply
the independence of y of γ.

It is easy to see that if P (γ)y = y ∀y ∈ I(p0) is independent of γ,
then so is P (γ)z for any z ∈ Tp0M . Indeed, for a given z ∈ Tp0M let r be
the ray in Tp0M through the origin p0 and z, and let y = r ∩ I(p0). Then
z = λy, λ ∈ R, and P (γ)z = z = λy on the ray P (γ)r = r, independently
of γ.

In this case P (γ) is independent of γ, hence a(p) = P (γ) ◦ t−1, and

thus
a

Γ(p), and also A are unique, and A determines a single V n = (M, g)
conjugate to F̃n.

If (10) holds for any p0, p1 and γ1, γ2, then the holonomy group of
Γ consists of the indentity alone. In this case we also can say that I(p)
is rigid with respect to Γ. In this case Γ has a vanishing curvature, and
conversely. If, moreover, Γ is torsion-free, then its coefficients vanish in
an appropriate coordinate system, and the indicatrices I(p) are congruent
and parallel displaced in this coordinate system. Hence Fn is a Minkowski
space.

If in a Finsler manifold of type F̃n

y1 = P (γ1)y 6= P (γ2)y = y2, y ∈ Ĩ(x0)

occurs, then Ĩ(p1) admits a proper (nontrivial) affine (linear) automor-
phism c

cĨ(p1) = Ĩ(p1), c 6= id.

Namely P (γ1) ◦ (P (γ2))−1 : Tp1M → Tp1M is an affine transformation,
and it takes Ĩ(p1) into Ĩ(p1). Thus c(p1) = P (γ1) ◦ P (γ−1

2 ) is an affine
automorphism of Ĩ(p1) (γ−1

2 means γ2 running in the opposite direction).
Moreover, it takes y2 into y1, and thus it is not the identity. This c(p1) can
be transferred to any other point p ∈ M . Namely let γ3 be a curve joining
p1 with p. Then P (γ3)◦P (γ1)◦P (γ−1

2 )◦P (γ−1
3 ) = P (γ3)◦c(p1)◦P (γ3)−1 =

c(p) is a proper affine automorphism of Ĩ(p), similar to c(p1) and generated
by a paralllel translation along a closed curve. Since in F̃n every Ĩ(p) is
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affine to Ĩ(p1), every Ĩ(p) admits the same proper affine automorphisms.
– We denote by C(p) the set {c(p)} of the affine automorphisms of the
indicatrices of an F̃n = (M, Ĩ) generated by parallel translations along
closed curves.

So if an indicatrix Ĩ(p) of the F̃n = (M, Ĩ) admits no proper affine

automorphism generated by
am

Γ (i.e. C = id.), then the curvature of its

linear metrical connection
am

Γ vanishes, and conversely. If moreover
am

Γ is
torsion-free, then F̃n is a Minkowski space.

2. Let us suppose that there exists a c0(p0) ∈ C, c0 6= id. generated
by parallel translation along a closed curve γ0 which, through a family of
curves γt in M , can continuously be shrunk to p0. (This is certainly the
case if M is simply connected.) Then the γt yield a continuous set ct(p0) of
proper automorphisms of Ĩ(p0) consisting of orientation preserving affine
transformations. The same is true for all Ĩ(p). Thus we obtain

Theorem 2. If in a simply connected F̃n there exists an automor-

phism c(p0) 6= id. of the indicatrix Ĩ(p0) generated by parallel translation,

then there exists a continuous set ct(p) of proper automorphisms of every

Ĩ(p).

3. We want to show that the case of n = 2 is exceptional.

Theorem 3. If in a simply connected F̃ 2 an indicatrix admits a proper

affine automorphism C 6= id. (i.e. it is not affinely rigid), then F̃ 2 is a

Riemannian space.

Proof. F̃n makes Tp0M into a Minkowski space with indicatrix
Ĩ(p0) : F̃n(Tp0M) = Mn(Tp0M, Ĩ(p0)). The Minkowski norm (length) of
a vector

−→
AB, A,B ∈ Tp0M is the Minkowski (or Finsler) length ‖OB̂‖M ,

where
−→
OB̂ is the parallel translate of

−→
AB to the origin O of Tp0M . ‖OB̂‖M

equals the value of the ratio (O, B̂, P ) = ‖OB̂‖E

‖OP‖E
, where P is the intersec-

tion point of the ray r through O and B̂ with the indicatrix Ĩ(p0) : P =
r ∩ Ĩ(p0), and ‖ ‖E is the Euclidean length with respect to a Euclidean
metric in Tp0M . Then any centroaffine transformation a of Tp0M which
leaves Ĩ(p0) (as a whole) invariant (e.g. c ∈ C) is an isometry of Mn

0 =
Mn(Tp0M, Ĩ(p0)). Namely, a takes P into a(P ) =: P ′ ∈ Ĩ(p0), and leaves
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the parallelism, and also the ratios invariant: (O, P, B̂) = (O, P ′, a(B̂)).
Thus, denoting the images by a by a dash, we have

‖−→AB‖M = (O, P, B̂) = (O, P ′, B̂′) = ‖OB̂′‖M = ‖A′B′‖M .

This means that any ct(p0) ∈ C is an isometry of Mn(Tp0M, Ĩ(p0)).
We recall that the linear isometry group of a not Euclidean two-

dimensional Minkowski space is finite ([15] p. 83 or [2]). However, if in
a simply connected F̃n C consists not of the identity alone (i.e. the in-

dicatrices are not affinely rigid with respect to
am

Γ ), then, according to
our Theorem 2, in Tp0M there exist infinitely many different centroaffine
transformations ct(p0). Each of them generates a linear isometry of Mn.
Then according to the recalled result, in the case of n = 2 the geometry in
Tp0M must be Euclidean, since the cardinality of ct(p0) is not finite. This
is true also for all TpM . Thus this F̃ 2 (C 6= id.) is a Riemannian space.

¤

4. Let us consider an F̃n = (M, I0,A) = (M, Ĩ), where A consists of
rotations. We denote such a manifold by M̂n.

Theorem 4. F̃n is manifold of type M̂n iff the Riemannian manifold

V n = (M, g) conjugate to the F̃n is a Euclidean space En: F̃n = M̂n ⇔
V n = En.

A) If F̃n = M̂n, then f(p0)I0 = Ĩ(p), where f is a rotation. Hence
the indicatrix Q(p) of the V n conjugate to F̃n is f(p)S = S, and thus
V n = En.

B) If V n = En, then in an appropriate coordinate system (x)
Q(x) ≡ S, and from a(x)S = Q(x) we get a(x)S = S. Thus a(x) = f(x),
and F̃n = M̂n. ¤

Similarly, one can also see that F̃n = Mn ⇔ ∃ a coordinate system
(x) : a(x) = id.

a) If F̃ = Mn then in an adapted coordinate system (x) Ĩ(x) ≡ I0.
Thus (1) is satisfied by a(x) ≡ id.

b) If a(x) ≡ id. then Ĩ(x) ≡ I0, and F̃n = Mn(M, I0).
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