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Hardy classes and Briot–Bouquet
differential subordinations

By GHEORGHE MICLĂUŞ (Satu Mare)

Abstract. In this paper we determined Hardy classes for the operator of Singh
and his logarithm when it is applied to a function satisfying an Briot–Bouquet differ-
ential subordination.

1. Introduction

In this paper we obtain a result for Hardy classes of some integral
operators, applying some functions satisfying Briot–Bonquet differential
subordination.

Let β and γ be complex numbers, let h be univalent in the unit disk U ,
and let p(z) = h(0) + p1z + . . . be analytic in U and satisfy

(1) p(z) +
zp′(z)

βp(z) + γ
≺ h(z).

This first-order differential subordination is said to be of Briot–Bou-
quet type.

This particular differential subordination has some special properties
and has many applications in the theory of univalent functions.

In 1973 R. Singh has shown that if

(2) I[f ](z) =

[
β + γ

zγ

∫ z

0

fβ(t)tγ−1dt

] 1
β
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for β, γ = 1, 2, . . . then I(S∗) ⊂ S∗, where S∗ is the class of starlike
functions.

In [2] we determined Hardy classes of Singh’s operator. Here we obtain
Hardy classes for the operator of Singh and its logarithm when it is applied
to a function satisfying a Briot–Bouquet differential subordination.

2. Preliminaries

For f ∈ H(U) and z = reiθ we denote

M(r, f) =

(
1
2π

∫ 2π

0

|f(reiθ)|pdθ

) 1
p

, for 0 < p < ∞

M(r, f) = sup
0≤θ≤2π

bf(reiθ)c, for p = ∞.

A function is said to be of Hardy class Hp, 0 < p < ∞, if M(r, f)
remains bounded as r → 1−. H∞ is the class of bounded analytic functions
in the unit disk.

First we introduce a special mapping from U onto a slit domain [4].
Let c be a complex number such that Re c > 0 and

N = N(c) =
1

Re c

[
|c|(1 + 2 Re c)

1
2 + Im c

]
.

If h is the univalent function h(z) = 2Nz
1−z2 and b = h−1(c) then we

define the “open door” function Qc as

Qc(z) = h

(
z + b

1 + b̄z

)
, z ∈ U.

From its definition we see that Qc is univalent, Qc(0) = c, and
Qc(U) = h(U) is the complex plane slit along the half-lines Re w = 0,
Im w≥N and Rew = 0, Im w ≤ −N .

Let β and γ be complex numbers with β 6= 0, let Qc be the univalent
function given, and define the following subclasses of analytic functions:

Kβ,γ = {f ∈ A | Re(βzf ′(z)/f(z) + γ) > 0}
Hβ,γ = {f ∈ A | βzf ′(z)/f(z)zγ ≺ Qβ+γ},
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where A denotes the class of functions f that are analytic in the unit
disk U , normalized by f(0) = 0 and f ′(0) = 1.

From the properties of the open door function Qβ+γ we have Kβ,γ ⊂
Hβ,γ .

Lemma 1 ([4]). Let h be convex in U with Re(βh(z) + γ) > 0. If p is
analytic in U with p(0) = h(0) and if p satisfies (1) then p(z) ≺ h(z).

Lemma 2 ([4]). Let h be convex in U with Re(βh(z) + γ) > 0 and

h(0) = 1. If f ∈ A and zf ′(z)
f(z) ≺ h(z), then F = I[f ], and I given by (2)

satisfies zF ′(z)
F (z) ≺ h(z).

Lemma 3 ([4]). Let f ∈ A and let g ∈ Kβ,γ be such that zg′(z)
g(z) is

convex. Let F = I[f ] and G = I[g], where I is given by (2) and suppose
zG′(z)
G(z) is univalent in U .

If zf ′(z)
f(z) ≺ zg′(z)

g(z) then zF ′f(z)
F (z) ≺ zG′(z)

G(z) , and this result is sharp.

Lemma 4 ([4]). Let h be analytic in U , with h(0)= a. If Re(βa+γ)> 0
and βh(z) + γ ≺ Qβa+γ(z), where Qc is the open door function, then the
solution q of the differential equation

(3) q(z) +
zq(z)

βq(z) + γ
= h(z), q(0) = h(0)

is analytic and Re(βq(z) + γ) > 0.

3. Main results

Theorem 1. If h is a convex function with Re(βh(z) + γ) > 0 and
p is analytic in U with p(0) = h(0) and satisfies (1), then

(i) if β > nλ, 0 < λ < 1 then In(p) ∈ H
βλ

β−nλ .

(ii) if β ≤ nλ, 0 < λ < 1 then In(p) ∈ H∞,
(
In = I ◦ I ◦ · · · ◦ I︸ ︷︷ ︸

n

)
.

Proof. Because h is a convex function, from Lemma 1 we have p ≺ h.
Applying the subordination theorem of Littlewood we obtain p ∈ Hλ,
λ < 1. From Theorem 5 [2] we obtain for the operator of Singh

In(f) ∈ H
βλ

β−nλ for β − nλ > 0 and In(f) ∈ H∞ for β − nλ ≤ 0.
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Theorem 2. Let h be convex in U with Re(βh(z)+ γ)> 0 and h(0)=1.

If f ∈ A and zf ′(z)
f(z) ≺ h(z) and I is the operator of Singh, then

(i) log I[f ](z)
z ∈ H∞,

(ii)
[
log I[f ](z)

z

]′
∈ Hλ, for all λ, λ < 1.

Proof. (ii) We have
[
log I[f ](z)

z

]′
= [I[f ](z)]′

I[f ](z) − 1
z = 1

z

(
z[I[f ](z)]′

I[f ](z) − 1
)
.

Hence
[
log I[f ](z)

z

]′
has the same Hardy class as z[I[f ](z)]′

I[f ] and from Lem-

ma 2 z[I[f ](z)]′

I[f ] ≺ h(z). From the subordination theorem z[I[f ](z)]′

I[f ] ∈ Hλ.

Hence
[
log I[f ](z)

z

)′
∈ Hλ, λ < 1.

(i) From the theorem of Hardy–Littlewood [1] we obtain (i). ¤

Theorem 3. Let f ∈ A and g ∈ Kβ,γ and let zg′(z)
g(z) be a convex

function. Also, let F = I[f ] and G = I[g] where I is the operator of Singh

and suppose zG′(z)
G(z) is univalent in U . If zf ′(z)

f(z) < zg′(z)
g(z) then

(i) log f(z)
z ∈ H∞;

[
log f(z)

z

]′
∈ Hλ, λ < 1,

(ii) log F (z)
z ∈ H

λ
1−λ ;

[
log F (z)

z

]
∈ Hλ, λ < 1

2 ,

(iii) log G(z)
z ∈ H

λ
1−λ ;

[
log G(z)

z

]′
∈ Hλ, λ < 1

2 .

Proof. (i)
[
log f(z)

z

]′
= 1

2

(
zf ′(z)
f(z) − 1

)
.

Because zg′(z)
g(z) is convex we have zf ′(z)

z ∈ Hλ, for all λ < 1. Hence[
log f(z)

z

]′
∈ Hλ, λ < 1 and from the theorem of Hardy–Littlewood [1]

log f(z)
z ∈ H∞.

(ii) From Lemma 3 we have zF ′(z)
F (z) ≺ zG′(z)

G(z) .

Because zG′(z)
G(z) is univalent we obtain zF ′(z)

F (z) ∈ Hλ, λ < 1
2 and[

log F (z)
z

]′
∈ Hλ, λ < 1

2 . Hence we obtain (ii).

(iii) zG′(z)
G(z) is univalent. Hence zG′(z)

G(z) ∈ Hλ, λ < 1
2 and analogously to

(i)
[
log G(z)

z

]′
has the same Hardy class as zG′(z)

G(z) . Hence
[
log G(z)

z

]′
∈Hλ,

λ < 1
2 .
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Applying the theorem of Hardy–Littlewood [1] we obtain
[
logG(z)

z

]′
∈

Hλ, λ < 1
2 . ¤

Theorem 4. Let h be analytic in U with h(0) = a. If Re(βa+γ) > 0
and βh(z) + γ ≺ Qβa+γ(z) where Qc is the open door function, then for

the solution q of (3) and I (2) we have

(i) if β > nλ, λ < 1 then In(q) ∈ H
βλ

β−nλ ,

(ii) if β ≤ nλ, λ < 1 then In(q) ∈ H∞.

Proof. From Lemma 4 we have Re(βq(z) + γ) > 0.
Let βq(z) + γ = f(z). Hence q(z) = 1

β f(z)− γ
β , and q and f have the

same Hardy class.
Because Re f(z) > 0, from [1] we have f ∈ Hλ, λ < 1.
From Theorem 5 [2] we obtain for the operator of Singh

In[f ] ∈ H
βλ

β−nλ for β − λn ≥ 0 and In[f ] ∈ H∞ for β − λn ≤ 0. ¤
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GHEORGHE MICLĂUŞ
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