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Paraopen spaces – a class of peculiar spaces

By MILOŠ S. KURILIĆ (Novi Sad)

Abstract. If a Hausdorff space has a base which consists of clopen sets and
each union of < κ basic sets is closed, we call it a κ-paraopen space. Properties of such
spaces are investigated and this class of spaces is compared with some classes of peculiar
spaces. Using these results some results concerning paracompactness in products and
topological groups are obtained.

0. Introduction

The definition and some basic properties of paraopen spaces are given
in the first section. Although paraopen spaces are very pathological (never
k-spaces and always totally non-compact) they are often paracompact and
this property is preserved in box products.

In Section 2, this class of spaces is compared with some classes of
peculiar spaces. For example, a κ-paraopen space X satisfying χ(X) ≤
|X| = κ is extremally disconnected iff it is discrete. Also, X is basically
disconnected iff it is an F -space, iff it is a P -space.

A construction of nontrivial paraopen spaces is given in Section 3:
a reduced ideal-product (r.i.p.) of a countable family of regular spaces is
always ω1-paraopen.

Paracompactness in products is considered in Section 4. So, Theo-
rem 11 is an extension of results of K. Kunen and M.E. Rudin and the
result of P. Bankston. Paracompactness of the special r.i.p. investigated
by B. Lawrence is considered in Theorem 14. By the theorems of Sec-
tion 3 we can construct paraopen spaces which are not κ-metrizable. So,
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Theorem 12 extends the results about box products of κ-metrizable spaces
obtained by M.E. Rudin and J.E. Vaughan.

A.V. Arhangel’skii asked whether there is a non-discrete extremally
disconnected (n.d.e.d.) topological group. Such groups were constructed:
under CH by S.M. Sirota, under MA by A. Louveau and under P (c)
by V.I. Malyhin. Sirota’s group is countable and it can be embedded
into the ideal-product Y =

∏Λ
D given in Section 5. It is natural to ask

whether the group Y or the corresponding r.i.p. X =
∏Λ

Ψ D is a n.d.e.d.
group. This problem is solved (under some set-theoretic assumptions) at
the end of the paper.

1. Paraopen spaces (basic facts)

Let κ be an infinite cardinal. We will say that a Hausdorff space
(X,O) is κ-paraopen iff there is a base B for the topology O consisting of
clopen sets such that each union of < κ elements of B is a closed set. Such
a base will be called canonical . By [6] Theorem 1.1.15 it always may be
chosen such that |B| = w(X).

Clearly, κ-paraopen spaces are zero-dimensional and completely reg-
ular (i.e. T3

1
2 ). A κ-paraopen space is λ-paraopen for all λ < κ. Discrete

spaces are κ-paraopen for each cardinal κ. Moreover, there holds

Theorem 1. Let (X,O) be a Hausdorff space and κ =min{|X|, w(X)}.
Then the space (X,O) is κ+-paraopen ⇔ (X,O) is a discrete space.

Proof. (⇒) Let (X,O) be a κ+-paraopen T2-space and x ∈ X. Since
the set X \{x} is open, it is the union of ≤ κ members of a canonical base,
thus it is closed and {x} is an open set. (⇐) is trivial. ¤

Theorem 2. κ-paraopenness is a property which is hereditary, addi-

tive, finitely multiplicative and preserved in box products. It is preserved

by clopen continuous mappings.

Proof. We prove preservation in box-products only. Let (Xi,Oi),
i ∈ I be κ-paraopen spaces and Bi, i ∈ I the corresponding canonical
bases. Then the base B = {∏i∈I Bi : Bi ∈ Bi, i ∈ I} for the box product
X = ¤i∈IXi consists of clopen sets. Let µ < κ be a cardinal and Bα ∈ B,
α < µ, where Bα =

∏
i∈I Bα

i . We prove that
⋃

α<µ Bα is a closed set. If
f /∈ ⋃

α<µ Bα and Si = {α < µ : fi /∈ Bα
i }, then for each α < µ there
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is i ∈ I such that α ∈ Si, thus µ =
⋃

i∈I Si. Since fi /∈ ⋃
α∈Si

Bα
i and

|Si| < κ, the set
⋃

α∈Si
Bα

i is closed and we can choose Vi ∈ Oi such that
fi ∈ Vi and Vi ∩

⋃
α∈Si

Bα
i = ∅. Now, V =

∏
i∈I Vi is a neighbourhood

of f which does not intersect
⋃

α<µ Bα. ¤

The Cantor cube 2ω is a (Tychonov) product of ω1-paraopen spaces
which is not ω1-paraopen.

Theorem 3. Let (X,O) be a κ-paraopen space and B a canonical

base for O. Then

(a) Each Y ∈ [X]<κ is a closed discrete subspace of X.

(b) If κ > ω, then each compact subspace of X is finite (i.e. the space X

is totally non-compact).

(c) Each open set O ⊂ X of cardinality ≤ κ is the union of ≤ κ disjoint

sets from B.

(d) For each open O ⊂ X there are disjoint sets Bj ∈ B, j ∈ J such that

Bj ⊂ O and
⋃

j∈J Bj = O.

(e) If κ ≥ L(X), then (X,O) is a strongly paracompact space.

(f) If κ ≥ min{|X|, w(X)}, then the space (X,O) is hereditarily strongly

paracompact.

Proof. (a) If |Y | = µ < κ, x ∈ X and Y \ {x} = {yα : α < µ}, we
choose Bα ∈ B satisfying x /∈ Bα 3 yα and define O = X \⋃

α<µ Bα. Then
x ∈ O ∈ O and O ∩ Y ⊂ {x}.

(b) Suppose K is an infinite compact subset of X. Let K0 ⊂ K,
|K0| = ω. By (a), the set K0 is closed in X (and clearly in K) thus K0 is
a compact subspace of X. But by (a), K0 is a discrete subspace of X. A
contradiction.

(c) Let O = {xα : α < µ}, where µ ≤ κ. We define sequences αξ, ξ < µ

and Bξ, ξ < µ as follows. Let αξ and Bξ be defined for all ξ < η(< µ).
If

⋃
ξ<η Bξ = O, we put αη = µ and Bη = ∅. If

⋃
ξ<η Bξ 6= O we define

αη = min{α ∈ µ : xα ∈ O\⋃
ξ<η Bξ} and choose Bη ∈ B satisfying

xαη ∈ Bη ⊂ O\⋃
ξ<η Bξ (such a choice is possible since

⋃
ξ<η Bξ is a

closed set). Now, {Bξ : ξ < µ}\{∅} is the desired family.
(d) The set P = {D : D ⊂ B ∧ ⋃D ⊂ O ∧ D is a disjoint family}

partially ordered by the set inclusion satisfies the conditions of the Zorn’s
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lemma. Let D = {Bj : j ∈ J} be a maximal element of P. Clearly D ⊂ B
and O ⊃ ⋃

j∈J Bj . If x ∈ O and V ∈ U(x), then ∅ 6= V ∩O ∈ O. Suppose

(V ∩ O) ∩ ⋃
j∈J Bj = ∅. Then there is B ∈ B satisfying B ⊂ V ∩ O, a

contradiction to the maximality of D. Thus V ∩ ⋃
j∈J Bj 6= ∅ for each

V ∈ U(x), so x ∈ ⋃
j∈J Bj . Hence O ⊂ ⋃

j∈J Bj .

(e) Let κ ≥ L(X) and let {Oi : i ∈ I} be an open cover of X. If

for x ∈ X we pick ix ∈ I and Bx ∈ B such that x ∈ Bx ⊂ Oix , then

{Bx : x ∈ X} is an open cover of X. It contains a subcover {Bα : α < µ}
where µ ≤ L(X), which is an open refinement of {Oi : i ∈ I}. Now, we

define Vα = Bα\
⋃

ξ<α Bξ, α < µ. Since |α| < µ ≤ κ, the sets Vα are open.

Clearly, {Vα : α < µ} is a disjoint (hence star-finite) open refinement of

{Oi : i ∈ I}.
(f) Follows from hL(X) ≤ min{|X|, w(X)} and (e). ¤

2. Paraopen vs peculiar spaces

We compare the class of paraopen spaces with some related classes
described in [7]. A space (X,O) is κ-open iff each intersection of < κ open
sets is open. P -spaces are completely regular, ω1-open spaces. For κ > ω,
all κ-open T3 1

2
spaces are zero-dimensional. Clearly it holds

Theorem 4. For each κ > ω, κ-open T3 1
2

spaces are κ-paraopen.

Specially, P -spaces are ω1-paraopen.

According to [22], Definition 2.7, a completely regular space (X,O) is
κ-metrizable iff uw(X) ≤ κ and (X,O) is a κ-open space. Thus we have

Theorem 5. For each κ > ω, κ-metrizable spaces are κ-paraopen.

According to [7], a completely regular space (X,O) is extremally dis-
connected iff the closure of each open set is open, it is basically disconnected
iff the closure of each cozero-set is open, and it is an F -space provided any
two disjoint cozero-sets are completely separated. The well-known facts
are: e.d. ⇒ b.d. ⇒ F -sp. and P -sp. ⇒ b.d. ⇒ zero-dim.
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Theorem 6. Let (X,O) be a κ-paraopen, extremally disconnected

space. Then

(a) Each point x ∈ X of character ≤ κ is an isolated point.

(b) If |X| = κ and κ is a (Ulam) nonmeasurable cardinal, then each

singleton is a Gδ-set.

Proof. If all the points of X are isolated, then (a) and (b) hold
trivially.

(a) Let x∈X be a nonisolated point. By Theorem 3(d) there are
disjoint Bα ∈B, α < µ satisfying Bα⊂X\{x} and

⋃
α<µ Bα=X\{x}=X.

Clearly, µ ≥ κ. If B(x) = {Vξ : ξ < λ} is a local base at x such that
λ = χ(x), for each ξ < λ we define Sξ = {α ∈ µ : Vξ ∩ Bα 6= ∅}. Now,
|Sξ| < κ would imply that Vξ\

⋃
α∈Sξ

Bα is a neighbourhood of x disjoint
from

⋃
α<µ Bα which is impossible so, |Sξ| ≥ κ for all ξ < λ. Obviously,

{Sξ : ξ < λ} is a base for some filter Ψ on µ.
Suppose Ψ is not an ultrafilter. Choose A ⊂ µ such that A,µ\A /∈ Ψ.

Define G =
⋃

α∈A Bα and H =
⋃

α∈µ\A Bα. For each ξ < λ we have
Sξ ∩ A 6= ∅ and Vξ ∩ G 6= ∅, so x ∈ G. Similarly x ∈ H. But G and H

are disjoint open sets in an extremally disconnected space so they have
disjoint closures. A contradiction.

Thus Ψ is an (clearly non-principal) ultrafilter. By [4] Corollary 7.8,
we have χ(x) = λ > µ ≥ κ.

(b) By Theorem 3(c) there are disjoint Bα ∈ B, α < µ such that
X\{x} =

⋃
α<µ Bα. Now µ = κ. Like in (a) we define Sξ’s and Ψ and

we conclude that Ψ is non-principal ultrafilter on κ. Since κ is nonmea-
surable, Ψ is countably incomplete i.e. there are ξn ∈ λ, n ∈ ω such that⋂

n∈ω Sξn = ∅.
Suppose y ∈ ⋂

n∈ω Vξn\{x}. Then y ∈ Bα0 for some α0 ∈ κ, hence
Bα0 ∩ Vξn 6= ∅ for all n ∈ ω and α0 ∈

⋂
n∈ω Sξn . A contradiction. Thus⋂

n∈ω Vξn = {x}, that is {x} is a Gδ-set. ¤

Theorem 7. Let (X,O) be a κ-paraopen F -space, where |X| = κ.

Then each point x ∈ X of character ≤ κ is a P -point.

Proof. Suppose that for some x ∈ X, χ(x) = µ ≤ κ and x is not
a P -point. Let B be a canonical base for O and Un ∈ B, n ∈ ω, such
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that x ∈ ⋂
n∈ω Un /∈ O. Then O = X\⋂

n∈ω Un is an open Fσ-set and
V ∩ O 6= ∅ for each V ∈ U(x), that is x ∈ O. By Theorem 3(c), there are
disjoint Bα ∈ B, α < λ such that O =

⋃
α<λ Bα. Since O is not closed,

λ = κ. So, O =
⋃

α<κ Bα.
Let B(x) = {Vξ : ξ < µ} be a local base at x. Again define Sξ =

{α < κ : Vξ ∩ Bα 6= ∅}, ξ < µ. Like in the preceding theorem, x ∈ O

gives |Sξ| = κ for each ξ < µ and {Sξ : ξ < µ} is a base for the filter Ψ
on κ. Since µ ≤ κ,Ψ is not an ultrafilter. Thus there is A ⊂ κ such that
A, κ\A /∈ Ψ. Let G =

⋃
α∈A Bα and H =

⋃
α∈κ\A Bα.

By Theorem 3(f), X is a T4-space so, by [6] Corollary 1.5.12, G and H

are disjoint cozero-sets. But G∩H 6= ∅, thus G and H are not completely
separated. A contradiction because X is an F -space. ¤

Corollary 1. Let (X,O) be a |X|-paraopen space, where |X| > ω and

χ(X) ≤ |X|. Then there holds

(a) X is extremally disconnected ⇔ X is discrete.

(b) X is basically disconnected ⇔ X is a F -space ⇔ X is a P -space.

Example 1. Let κ be an infinite cardinal, Ψ an uniform ultrafilter on κ

and p /∈ κ. The family B = {{α} : α ∈ κ} ∪ {{p} ∪ F : F ∈ Ψ} is a base
for some topology O on X = κ ∪ {p}. It is easy to verify that (X,O)
is a |X|-paraopen, extremally disconnected, non-discrete space. If κ is
nonmeasurable, then, by a theorem of Isbell (see 12H of [7]), (X,O) is
not a P -space.

A Hausdorff space (X,O) is a k-space iff each A ⊂ X such that K∩A

is closed for all compact K ⊂ X, is closed in X. By Theorem 3(b) we have

Theorem 8. Let (X,O) be a κ-paraopen space where κ > ω. Then,

X is a k-space ⇔ X is discrete.

The space described in Section 5 is (under CH or MA or some weaker
assumptions) an example of a paraopen space which is not an F -space.

According to M. Henriksen (see [11]) a base B for a topological
space is called pretty if B consists of clopen sets and the closure of each
countable union of elements of B is in B. Clearly, each ω1-paraopen space
has a pretty base (this is the family of all countable unions of elements of
the canonical base). The two classes are not equal because the spaces with
a cocompact pretty base are not ω1-paraopen. (These spaces are, by [11],
ω-bounded, but Theorem 3(b) holds.)
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3. A construction of paraopen spaces

Completely regular κ-open spaces and specially, κ-metrizable spaces
are the trivial examples of κ-paraopen spaces. A κ-paraopen space which
is not κ-open was constructed in Example 1. Now, the construction given
in [9] will be used for obtaining more such spaces.

Given a family of spaces (Xi,Oi), i ∈ I and an ideal Λ ⊂ P (I) we ob-
serve the topology OΛ on

∏
Xi defined by the base BΛ = {⋂i∈L π−1

i (Oi) :
L ∈ Λ, Oi ∈ Oi}. The space (

∏
i∈I Xi,OΛ) will be called the ideal-product

and denoted by
∏Λ

Xi. If Ψ is a filter on P (I) it determines the equiv-
alence relation ∼ on

∏
Xi given by: f ∼ g iff {i ∈ I : fi = gi} ∈ Ψ.

The quotient space (
∏

Xi,OΛ)/ ∼ is the reduced ideal-product (r.i.p.) in
notation

∏Λ
Ψ Xi. The quotient mapping q :

∏
Xi →

∏
Xi/ ∼ assigns to

each f ∈ ∏
Xi its equivalence class [f ] that is q(f) = [f ].

“Nice” r.i.p.’s preserve separation axioms Tk, for k ≤ 31
2 . By [9], this

holds iff the condition

(ΛΨ) ∀B /∈ Ψ ∃L ∈ Λ (L ⊂ Bc ∧ Lc /∈ Ψ)

is satisfied. Some special “nice” r.i.p.’s are Tychonov products, box prod-
ucts, reduced products and ultraproducts.

If I is an infinite set and Φ ⊂ P (I) an ultrafilter, then Λ = {I\F :
F ∈Φ} is a maximal ideal on P (I) (i.e. for each A⊂ I, A∈Λ or I\A∈Λ).
In the sequel we will observe r.i.p.’s

∏Λ
Ψ Xi where Λ is as above and Ψ =

{A ⊂ I : |I \ A| < |I|}. Firstly we check that such r.i.p.’s are “nice” and
prove one combinatorial lemma.

Lemma 1. Let κ be an infinite cardinal. Then each maximal ideal Λ ⊂
P (κ) and the filter Ψ = {F ⊂ κ : |κ\F | < κ} satisfy the condition (ΛΨ).

Proof. If B /∈ Ψ, then |κ\B| = κ. Let κ\B = L1 ∪ L2 where
L1 ∩ L2 = ∅ and |L1| = |L2| = κ. Then L1 ∈ Λ or L2 ∈ Λ. Suppose
L1 ∈ Λ. Clearly L1 ⊂ κ\B and since |L1| = κ we have Lc

1 /∈ Ψ. ¤
Lemma 2. Let κ ≥ ω be a cardinal satisfying κκ = κ and Λ ⊂ P (κ)

a maximal ideal. If ∆α ∈ Λ, α ∈ κ, and |∆α| = κ for each α ∈ κ, then

∃L ∈ Λ ∀α ∈ κ |L ∩∆α| = κ.

Proof. Suppose that ∀L ∈ Λ ∃α ∈ κ(|L ∩∆α| < κ). Let D =
{∆α\K : α < κ, K ∈ [κ]<κ}. Since |[κ]<κ| = κκ = κ we have |D| = κ,
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thus there is an enumeration D = {Dβ : β ∈ κ}. By the assumption
∀L ∈ Λ ∃β ∈ κ(L ∩Dβ) = ∅ so, if Φ is the ultrafilter corresponding to Λ,
then ∀F ∈ Φ ∃β ∈ κ(Dβ ⊂ F ). Since |Dβ | = κ, β < κ, by the Disjoint
refinement lemma (see [4], pp. 146) there are disjoint Sβ , β ∈ κ such that
Sβ ⊂ Dβ and |Sβ | = κ, for all β < κ. Now ∀F ∈ Φ ∃β ∈ κ(Sβ ⊂ F ). We
pick sβ ∈ Sβ , β < κ and define S = {sβ : β < κ}. So, F ∩ S 6= ∅ for each
F ∈ Φ hence S ∈ Φ since Φ is an ultrafilter. But there is β0 ∈ κ satisfying
Sβ0 ⊂ S which is impossible, because Sβ0 ∩ S = {sβ0}. ¤

Theorem 9. Let κ ≥ ω be a cardinal satisfying κκ = κ, Λ ⊂ P (κ) a

non-principal maximal ideal and Ψ = {F ⊂ κ : |κ\F | < κ}. If (Xi,Oi),
i ∈ κ are zero-dimensional, κ-open spaces, then X =

∏Λ
Ψ Xi is a κ+-

paraopen space.

Proof. Let Bi, i ∈ κ be the bases for the topologies Oi consisting
of clopen sets. The family B of sets of the form q(

⋂
i∈L π−1

i (Bi)), where
L ∈ Λ and Bi ∈ Bi is a clopen base for the topology O on X. Thus, X is
a zero-dimensional space. We show that any union of κ elements of B is
closed in X.

Suppose Bα ∈ B, α < κ, where Bα = q(
⋂

i∈Lα
π−1

i (Bα
i )) and [f ] /∈⋃

α<κ Bα. Then for ∆α = {i ∈ Lα : fi /∈ Bα
i }, α < κ, we have |∆α| = κ.

By the previous lemma there is L ∈ Λ such that

(1) |L ∩∆α| = κ, for all α < κ.

For each α < κ we define open sets Uα
i , i ∈ κ as follows : if i ∈ L∩∆α,

we choose Uα
i ∈ Oi satisfying fi ∈ Uα

i ⊂ Xi\Bα
i ; if i /∈ L ∩ ∆α, we put

Uα
i = Xi. We also define Vi =

⋂i
α=0 Uα

i for all i ∈ κ. Clearly

(2) ∀α < κ ∀i ≥ α Vi ⊂ Uα
i

and Vi ∈ Oi (Xi are κ-open). Moreover fi ∈ Vi for all i ∈ κ, so for
B = q(

⋂
i∈L π−1

i (Vi)) we have [f ] ∈ B ∈ O. It remains to show that
B ∩⋃

α<κ Bα = ∅. Suppose that there is [g] ∈ B ∩⋃
α<κ Bα. Then

(3) |{i ∈ L : gi /∈ Vi}| < κ

and [g] ∈ Bα0 for some α0 ∈ κ, that is |{i ∈ Lα0 : gi /∈ Bα0
i }| < κ. Since

∆α0 ⊂ Lα0 it follows that

(4) |{i ∈ ∆α0 : gi /∈ Bα0
i }| < κ.
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By (3) and (4), |{i ∈ L∩∆α0 : gi /∈ Vi∨gi /∈ Bα0
i }| < κ and since (1) gives

|L ∩∆α0 | = κ we have

(5) |{i ∈ L ∩∆α0 : gi ∈ Vi ∩Bα0
i }| = κ.

The last set is cofinal in κ, so there is i0 ≥ α0 such that i0 ∈ L ∩ ∆α0

and gi0 ∈ Vi0 ∩ Bα0
i0

. By (2), Vi0 ⊂ Uα0
i0

and we have Uα0
i0
∩ Bα0

i0
6= ∅. A

contradiction with the choice of Uα
i . ¤

If κ = ω Then the assumption that the spaces Xi are zero-dimensional
can be weakened.

Theorem 10. Let Λ ⊂ P (ω) be a non-principal maximal ideal and

Ψ ⊂ P (ω) the Frechét filter. If the spaces (Xi,Oi), i ∈ ω are T3, then

X =
∏Λ

Ψ Xi is an ω1-paraopen space.

Proof. If (Xi,Oi), i ∈ ω are T3-spaces, then, by Theorem 3.2
of [14], the space

∏Λ
Ψ Xi is zero-dimensional. If we modify the proof of

the mentioned theorem for the case when Λ ⊂ P (ω) is a maximal ideal
and Ψ is the Frechét filter, we easily conclude that the sets of the form⋂

m∈ω q(
⋂

i∈L π−1
i (Bi,m)), where L ∈ Λ, Bi,m ∈ Oi for all i ∈ L and m ∈ ω

and Bi,0 ⊃ Bi,1 ⊃ Bi,1 ⊃ Bi,2 ⊃ Bi,2 ⊃ . . . make a clopen base B for the
topology on X. The ω1-paraopenness remains to be shown.

Let Uk ∈ B, k ∈ ω, where Uk =
⋂

m∈ω q(
⋂

i∈Lk
π−1

i (Bk
i,m)) and let

[f ] /∈ ⋃
k∈ω Uk. For each k ∈ ω we choose mk ∈ ω such that [f ] /∈

q(
⋂

i∈Lk
π−1

i (Bk
i,mk

). If we define ∆k = {i ∈ Lk : fi /∈ Bk
i,mk

} then
|∆k| = ω for every k ∈ ω and applying Lemma 2 there is L ∈ Λ satisfying

(1) ∀k ∈ ω |L ∩∆k| = ω.

For each k ∈ ω we define open sets Uk
i , i ∈ ω as follows: if i ∈ L ∩∆k we

choose Uk
i ∈ Oi satisfying fi ∈ Uk

i ⊂ Xi \Bk
i,mk

, and if i /∈ L ∩∆k we put
Uk

i = Xi. The sets Vi, i ∈ ω defined by Vi =
⋃i

k=0 Uk
i obviously satisfy

(2) ∀k ∈ ω ∀i ≥ k Vi ⊂ Uk
i .

Now B = q(
⋂

i∈L π−1
i (Vi)) is open in X and [f ] ∈ B.

Suppose that there exists a [g] ∈ B ∩⋃
k∈ω Uk. Then

(3) |{i ∈ L : gi /∈ Vi}| < ω
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and [g] ∈ Uk0 , for some k0 ∈ ω, that is for each m ∈ ω, |{i ∈ Lk0 : gi /∈
Bk0

i,m}| < ω. Thus, for m = mk0 we have |{i ∈ Lk0 : gi /∈ Bk0
i,mk0

}| < ω and
since ∆k0 ⊂ Lk0 , it holds

(4) |{i ∈ ∆k0 : gi /∈ Bk0
i,mk0

}| < ω.

Now (3) and (4) give |{i ∈ L ∩∆k0 : gi /∈ Vi ∨ gi /∈ Bk0
i,mk0

}| < ω. By (1),
L ∩ ∆k0 is an infinite set, thus there is i0 ∈ L ∩ ∆k0 such that i0 ≥ k0

and gi0 ∈ Vi0 ∩ Bk0
i0,mk0

. Because of (2), from i0 ≥ k0 follows Vi0 ⊂ Uk0
i0

so, Uk0
i0
∩ Bk0

i0,mk0
6= ∅, which is false regarding the construction of Uk0

i0
.

Finally, B ∩⋃
k∈ω Uk = ∅, thus

⋃
k∈ω Uk is a closed set. ¤

4. Paraopenness and paracompactness in products

Paracompactness in topological products is widely considered. Spe-
cially, there are many results when the box products of countably many
factors are in question. The results are mainly obtained for compact,
locally compact paracompact, metrizable, κ-metrizable and countable fac-
tors (see the survey of S.W. Williams [22]). By Theorem 3, paraopen
spaces having some additional properties are paracompact. This fact will
be used in the sequel.

Theorem 11. Let (Xi,Oi), i ∈ I be regular spaces, Ψ ⊂ P (I) an
|I|-regular filter and X = ¤ΨXi (reduced box product). Then

(a) If L(X) ≤ |I|+, X is strongly paracompact.

(b) (GCH) If sup |Xi| ≤ |I|+ or sup w(Xi) ≤ |I|+, then X is a hereditarily
strongly paracompact space.

Proof. Here Λ = P (I), so Λ is a |I|+-complete ideal. Since Ψ is a
|I|-regular filter, by [15] Corollary 3.1 the r.i.p.

∏Λ
Ψ Xi = X is a |I|+-open

space. Now, (a) follows from Theorem 3(e) or from [13], Lemma 1.3 and
(b) follows from Theorem 3(f) and |X| ≤ ∏

i∈I 2|I| = 2|I| = |I|+ in the
first case or w(X) ≤ |I|+ in the second. ¤

A consequence of the previous theorem is the result about paracom-
pactness of the nabla-product (see Rudin [19] or Kunen[13]) and Theo-
rem 6.2 of Bankston (in [2]) concerning paracompactness of ultraprod-
ucts.

According to Theorem 5, the following statement is an extension of
the results concerning box products of κ-metrizable spaces obtained by
M. E. Rudin and J. E. Vaughan (see [22]).
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Theorem 12. If (Xi,Oi), i ∈ I are κ-paraopen spaces, then for the

box product X = ¤Xi we have

(a) If L(X) ≤ κ, then X is strongly paracompact.

(b) If κ|I| = κ and sup |Xi| ≤ κ or supw(Xi) ≤ κ, then X is a hereditarily,

strongly paracompact space. (The condition κ|I| = κ holds if, for

example, the GCH holds and cf(κ) > |I|.)

Proof. By Theorem 2, X is a κ-paraopen space. Now, (a) follows
from Theorem 3(e) and (b) follows from Theorem 3(f) and |X| ≤ ∏

i∈I κ =
κ|I| = κ in the first case or w(X) ≤ κ in the second. ¤

Example 2. If in Example 1 we put κ = 2ω, then, under the CH,
(X,O) is a c-paraopen space of cardinality c. Since cω = c, the box
product ¤i∈ωX is a paracompact space (which is not a P -space).

Example 3. Let Λ ⊂ P (ω) be a maximal ideal, Ψ ⊂ P (ω) the Frechét
filter and R the usual real line. If the CH holds, then by Theorem 10 the
space Y =

∏Λ
Ψ R is a c-paraopen space of cardinality c. Using the previous

theorem we conclude that the box product ¤i∈ωY is a paracompact space.
(Clearly, instead of R we may take arbitrary regular spaces Xi, i ∈ ω of
cardinality c.)

Using Theorem 3(f), Theorem 9 and Theorem 10 in the similar way
we obtain two results concerning products considered by B. Lawrence

in [16].

Theorem 13 (GCH). Let κ be an infinite cardinal and let Λ and Ψ
be as in Theorem 9. If (Xi,Oi), i ∈ κ, are zero-dimensional, κ-open spaces

and sup |Xi| ≤ 2κ or sup w(Xi) ≤ 2κ, then
∏Λ

Ψ Xi is a hereditarily strongly

paracompact space.

Theorem 14 (CH). Let Λ ⊂ P (ω) be a non-principal maximal ideal

and Ψ the Frechét filter on ω. If the spaces (Xi,Oi), i ∈ ω are T3 and

sup |Xi| ≤ 2ω or supw(Xi) ≤ 2ω, then
∏Λ

Ψ Xi is a hereditarily strongly

paracompact space.
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5. An example

In the sequel Φ will be a non-principal ultrafilter on ω (i.e. Φ ∈ βω\ω)
and Λ the corresponding maximal ideal: Λ = {ω\F : F ∈ Φ}. The
Fréchet filter on P (ω) will be denoted by Ψ and by D we will denote
the two-element discrete space {0, 1}. We consider the r.i.p. X =

∏Λ
Ψ D

and introduce a convenient notation: for L ∈ Λ and ϕ ∈ L2 we define
〈L,ϕ〉 = {f ∈ ∏

i∈ω D : f | L = ϕ}. Obviously, 〈L,ϕ〉 =
⋂

i∈L π−1
i ({ϕi}),

so B = {q(〈L,ϕ〉) : L ∈ Λ, ϕ ∈ L2} is a base for the topology on X. If ϕ

is the zero-function, we will simply write 〈L, 0〉.
〈D, · 〉 is a (discrete) topological group, if the operation is defined by

0 · 0 = 1 · 1 = 0 and 0 · 1 = 1 · 0 = 1. The corresponding operation on X

is defined (as usual in reduced products) by: [〈fi : i ∈ I〉] · [〈gi : i ∈ I〉] =
[〈figi : i ∈ I〉]. The element [〈0 : i ∈ I〉] of X will be denoted by 0. By [10],
X is a non-discrete Hausdorff topological group. By Theorem 10, it is an
ω1-paraopen space and by Theorem 8, it is not a k-space.

Theorem 15.

(a) X is a P -space iff Φ is a P -point of βω\ω.

(b) If Φ is a P -point of βω \ ω, then X does not contain a non-discrete

extremally disconnected subspace. Specially, X is not an extremally

disconnected space.

Proof. (a) follows from Theorem 1 of [16].
(b) If Φ is a P -point, then by (a), X is a P -space. Moreover, each

subspace of X is a P -space. But extremally disconnected P -spaces of
non-measurable cardinality are discrete (see [7]). ¤

Theorem 16 (CH).

(a) X is a hereditarily strongly paracompact space.

(b) X does not contain a nondiscrete extremally disconnected subspace.

(c) X is an F -space iff Φ is a P -point of βω \ ω.

Proof. (a) follows from Theorem 14. (b) is true since each Y ⊂ X is
ω1 = 2ω-paraopen and χ(Y ) ≤ w(X) = 2ω, so, we can apply Theorem 6(a).
(c) follows from Corollary 1(b) and Theorem 15. ¤

Let Φ ∈ βω \ ω. A family A ⊂ Φ is a base for Φ iff ∀F ∈ Φ ∃A ∈ A
(A ⊂ F ). A family P ⊂ [ω]ω is a π-base for Φ iff ∀F ∈ Φ ∃P ∈ P(P ⊂ F ).
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So, let u(Φ) = min{|A| : A is a base for Φ} and πu(Φ) = min{|P| : P ⊂
[ω]ω is a π-base for Φ}.

Also, we remind that the small cardinals u and πu are defined by:
u = min{|A| : A ⊂ [ω]ω and A is a base for some Φ ∈ βω \ ω} and
πu = min{|P| : P ⊂ [ω]ω and P is a π-base for some Φ ∈ βω \ ω}. Basic
facts concerning these cardinals are available in [5] and [21]. The following
lemma will be used in the sequel.

Lemma 3. If Φ ∈ βω \ ω and κ < πu(Φ), then for each family

{∆α : α < κ} ⊂ Λ ∩ [ω]ω there holds

(∗) ∃L ∈ Λ ∀α < κ |L ∩∆α| = ω.

Proof. Suppose that ∀L ∈ Λ ∃α < κ(|L ∩∆α| < ω). Then ∀F ∈ Φ
∃α < κ(|∆α \ F | < ω). The family D = {∆α \ K : α ∈ κ,K ∈ [ω]<ω}
is of cardinality κω = κ and, by the assumption there holds ∀F ∈ Φ
∃D ∈ D (D ⊂ F ). So, D is a π-base for Φ which is impossible since
|D| = κ < πu(Φ). ¤

Theorem 17.

(a) χ(X) = u(Φ).

(b) The space X is πu(Φ)-paraopen.

(c) If πu(Φ) = u(Φ) or specially, if πu = c, then X does not contain a

non-discrete extremally disconnected subspace.

Proof. (a) Let {q(〈Lα, 0〉) : α < κ} be a local base at 0. Then
for each L ∈ Λ there is α < κ satisfying q(〈Lα, 0〉) ⊂ q(〈L, 0〉) that is
|L \ Lα| < ω. If we put Lc = F and Lc

α = Fα we have

(1) ∀F ∈ Φ ∃α < κ |Fα \ F | < ω.

Define A = {Fα \ K : α ∈ κ, K ∈ [ω]<ω}. Then A ⊂ Φ and |A| = κ.
From (1) we have ∀F ∈ Φ ∃A ∈ A(A ⊂ F ) so, A is a base for Φ and there
holds κ ≥ u(Φ). Thus χ(X) ≥ u(Φ).

On the other hand, let A = {Fα : α < κ} be a base for Φ and
κ = u(Φ). Then for Lα = ω \ Fα we have ∀L ∈ Λ ∃α < κ(L ⊂ Lα).
Hence for each neighbourhood q(〈L, 0〉) of 0, there exists α < κ such that
L ⊂ Lα, that is q(〈Lα, 0〉) ⊂ q(〈L, 0〉). Now, {q(〈Lα, 0〉) : α < κ} is a local
base at 0, thus χ(X) ≤ u(Φ).
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(b) Let κ < πu(Φ) and [f ] /∈ ⋃
α<κ q(〈Lα, ϕα〉). Then for ∆α = {i ∈

Lα : fi 6= ϕα(i)} we have |∆α| = ω, α < κ. By the previous lemma, there
is L ∈ Λ satisfying

(2) ∀α < κ |L ∩∆α| = ω.

Define B = q(〈L, f | L〉) and suppose [g] ∈ B∩q(〈Lα, ϕα〉) for some α < κ.
Then fi 6= ϕα(i) for at most finitely many i ∈ L∩Lα, and since ∆α ⊂ Lα

we have |{i ∈ L ∩∆α : fi 6= ϕα(i)}| < ω. Now, by (2) there is i ∈ L ∩∆α

such that fi = ϕα(i) which is not possible because of the definition of ∆α.
Thus, [f ] ∈ B ⊂ X \ ⋃

α<κ q(〈Lα, ϕα〉) and
⋃

α<κ q(〈Lα, ϕα〉) is a closed
set.

(c) If πu(Φ) = u(Φ) = κ, then each subspace of X is a κ-paraopen
space of character ≤ κ and we can apply Theorem 6(a). ¤

A.V. Arhangel’skii asked whether there is a non-discrete extremally
disconnected group (see [1]). The answer “Yes” is consistent. Namely,
〈G, ∆,OΦ〉 is a topological group, where G = [ω]<ω, ∆ is the symmet-
ric difference operation on G, Φ ∈ βω \ ω and the topology OΦ on G is
generated by sets of the form UF (K) = {K∆K1 : K1 ∈ [F ]<ω} where
K ∈ G and F ∈ Φ. Each of the following conditions implies that G is an
extremally disconnected space: (1) Φ is a k-ultrafilter (Sirota [20], CH
is used); (2) Φ is a selective ultrafilter which exists if MA holds (Lou-

veau [17]); (3) Φ is a P (c)-point of βω \ ω (Malyhin [18]). Such an
ultrafilter exists if there holds p = c.

If Λ is the maximal ideal corresponding to Φ and if we identify the
elements of G with their characteristic functions, it is easy to prove that
UF (K) = 〈L, χK∩L | L〉, where L = ω\F . Thus, the space G is homeomor-
phic to the subgroup Z = {χK : K ∈ G} of the ideal-product Y =

∏Λ
D.

If X =
∏Λ

Ψ = q(Y ) is the space from the previous paragraph, it is natural
to ask whether X (or Y ) is an extremally disconnected space if there holds
some of the conditions given above.

According to the results of the previous paragraph we know that if Φ
is a P -point or if πu(Φ) = u(Φ) (obviously, CH → p = c → πu = c →
πu(Φ) = u(Φ)) then X is not extremally disconnected and it does not
contain a non-discrete e.d. subgroup. Since e.d. is preserved by continuous
open surjections, the space Y is not e.d. too. Also, Y does not contain a
non-discrete open e.d. subgroup.
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Question. Is it consistent that there is Φ ∈ βω\ω such that the group
X (or some non-discrete subgroup of X) is extremally disconnected?

Clearly, such Φ cannot be a P -point and it must satisfy πu(Φ) < u(Φ).
It is possible to satisfy the second condition. Namely, M. Goldstern and
S. Shelah in [8] constructed a model of ZFC such that πu < u, so one
can take Φ ∈ βω \ ω satisfying πu(Φ) = πu.
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