Yau's problem on Einstein field equation

By SHARIEF DESHMUKH (Riyadh)

Abstract

In this short note it is shown that on an n-dimensional compact connected positively curved Riemannian manifold (M, g) without boundary, a symmetric tensor field $T(X, Y)=g(A(X), Y)$ satisfies the Einstein field equation $R_{i j}-\frac{S}{2} g_{i j}=T_{i j}$ if and only if the following conditions are satisfied: (i) $\operatorname{tr} \cdot A=-\frac{(n-2)}{2} S$, (ii) $(\nabla A)(X, Y)-(\nabla A)(Y, X)=\frac{1}{2} R_{0}(X, Y) \operatorname{grad} S-F(X, Y)$, where $R_{i j}$ is the Ricci tensor, S the scalar curvature, F the divergence of the curvature tensor field and $R_{0}(X, Y) Z=g(Y, Z) X-g(X, Z) Y$.

1. Introduction

In a problem suggested by Yau, it is required to find necessary and sufficient conditions on a symmetric tensor $T_{i j}$ on a compact manifold so that one can find a metric $g_{i j}$ to satisfy the Einstein field equation

$$
R_{i j}-\frac{S}{2} g_{i j}=T_{i j},
$$

where $R_{i j}$ is the Ricci tensor and S is the scalar curvature (cf. [3], Problem 20, p. 675). Let (M, g) be an n-dimensional compact Riemannian manifold with covariant derivative operator ∇ with respect to the Riemannian connection. Then the divergence of the curvature tensor field R is a tensor field F of type $(1,2)$ defined by

$$
F(X, Y)=\sum_{i}\left(\nabla_{e_{i}} R\right)(X, Y) e_{i}, \quad X, Y \in \mathscr{X}(M),
$$

Mathematics Subject Classification: 83C05.
Key words and phrases: curvature tensor field, Ricci tensor, scalar curvature, divergence.
where $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local orthonormal frame and $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M. For a symmetric tensor field T of type $(0,2)$, there is an associated tensor field A of type $(1,1)$ given by $T(X, Y)=g(A X, Y), X, Y \in \mathfrak{X}(M)$, and its covariant derivative is given by

$$
(\nabla A)(X, Y)=\nabla_{X} A Y-A\left(\nabla_{X} Y\right), \quad X, Y \in \mathfrak{X}(M) .
$$

We also consider a tensor field R_{0} of type $(1,3)$ defined by

$$
R_{0}(X, Y) Z=g(Y, Z) X-g(X, Z) Y, \quad X, Y, Z \in \mathfrak{X}(M) .
$$

In this paper we prove the following
Theorem. Let (M, g) be an n-dimensional compact and connected positively curved Riemannian manifold without boundary. Then a symmetric tensor field $T(X, Y)=g(A X, Y)$ on M satisfies the Einstein field equation

$$
R_{i j}-\frac{S}{2} g_{i j}=T_{i j}
$$

if and only if the following conditions are satisfied:
(i) $\operatorname{tr} \cdot A=-\frac{(n-2)}{2} S$
(ii) $(\nabla A)(X, Y)-(\nabla A)(Y, X)=\frac{1}{2} R_{0}(X, Y) \operatorname{grad} S-F(X, Y)$, where $R_{i j}$ is the Ricci tensor, S the scalar curvature, F the divergence of the curvature tensor field and $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local orthonormal frame on M.

This theorem can be considered as a result in the direction of the above mentioned problem of YAU [3].

2. Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold and Ric be the Ricci tensor field of M. The Ricci operator $Q: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ is defined by

$$
\operatorname{Ric}(X, Y)=g(Q(X), Y), \quad X, Y \in \mathfrak{X}(M)
$$

and the scalar curvature S of M is given by

$$
S=\sum_{i} \operatorname{Ric}\left(e_{i}, e_{i}\right),
$$

where $\left\{e_{i}, \ldots, e_{n}\right\}$ is a local orthonormal frame on M.

We have the following well known (cf. [2])
Lemma 2.1. $\frac{1}{2} \operatorname{grad} S=\sum_{i}(\nabla Q)\left(e_{i}, e_{i}\right)$.
The divergence of the curvature tensor field R is a tensor field F given by

$$
\begin{equation*}
F(X, Y)=\sum_{i}\left(\nabla_{e_{i}} R\right)(X, Y) e_{i}, \quad X, Y \in \mathfrak{X}(M) \tag{2.1}
\end{equation*}
$$

Using (2.1), the second Bianchi identity, and the following expression for the Ricci operator Q,

$$
Q(X)=\sum_{i} R\left(X, e_{i}\right) e_{i}, \quad X \in \mathfrak{X}(M)
$$

the following lemma can be easily proved.
Lemma 2.2. $(\nabla Q)(X, Y)-(\nabla Q)(Y, X)=-F(X, Y), X, Y \in \mathfrak{X}(M)$.
For a symmetric tensor field T of type $(0,2)$ on M, we define a tensor field A of type $(1,1)$ by

$$
T(X, Y)=g(A X, Y), \quad X, Y \in \mathfrak{X}(M)
$$

which is also symmetric. We also define a curvature-like tensor field R_{0} by

$$
\begin{equation*}
R_{0}(X, Y) Z=g(Y, Z) X-g(X, Z) Y \tag{2.2}
\end{equation*}
$$

and a tensor field B of type $(1,1)$ by

$$
\begin{equation*}
B=A-Q \tag{2.3}
\end{equation*}
$$

The following lemma is a direct consequence of Lemma 2.2 and equation (2.3).

Lemma 2.3. If $(\nabla A)(X, Y)-(\nabla A)(Y, X)=\frac{1}{2} R_{0}(X, Y) \operatorname{grad} S-$ $F(X, Y)$, then the following hold:
(i) $(\nabla B)(X, Y)-(\nabla B)(Y, X)=\frac{1}{2} R_{0}(X, Y) \operatorname{grad} S$
(ii) $\left(\nabla^{2} B\right)(X, Y, Z)-\left(\nabla^{2} B\right)(X, Z, Y)=\frac{1}{2} R_{0}(X, Y) \nabla_{X} \operatorname{grad} S$.

Lemma 2.4. Let A be a symmetric tensor field on an n-dimensional connected Riemannian manifold (M, g) satisfying
(i) $\operatorname{tr} . A=-\frac{(n-2)}{2} S$
(ii) $(\nabla A)(X, Y)-(\nabla A)(Y, X)=\frac{1}{2} R_{0}(X, Y) \operatorname{grad} S-F(X, Y)$.

Then $\sum_{i}(\nabla A)\left(e_{i}, e_{i}\right)=0$ for a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$.
Proof. For $X \in \mathfrak{X}(M)$, as $\operatorname{tr} . A=-\frac{(n-2)}{2} S$, we get

$$
\sum_{i} g\left((\nabla A)\left(X, e_{i}\right), e_{i}\right)=-\frac{(n-2)}{2} g(\operatorname{grad} S, X)
$$

Now, using condition (ii) of the statement, we arrive at

$$
\begin{aligned}
\sum_{i} g & \left((\nabla A)\left(e_{i}, X\right), e_{i}\right)+\frac{1}{2} \sum_{i} g\left(R_{0}\left(X, e_{i}\right) \operatorname{grad} S, e_{i}\right)-\sum_{i} g\left(F\left(X, e_{i}\right), e_{i}\right) \\
& =-\frac{(n-2)}{2} g(\operatorname{grad} S, X)
\end{aligned}
$$

Using (2.2) in the above equation we arrive at

$$
\begin{equation*}
\sum_{i} g\left((\nabla A)\left(e_{i}, X\right), e_{i}\right)-\sum_{i} g\left(F\left(X, e_{i}\right), e_{i}\right)=\frac{1}{2} g(\operatorname{grad} S, X) \tag{2.4}
\end{equation*}
$$

Now equation (2.1) gives

$$
\begin{aligned}
\sum_{i} g\left(F\left(X, e_{i}\right), e_{i}\right) & =\sum_{i k}\left(\nabla_{e_{k}} R\right)\left(X, e_{i} ; e_{k}, e_{i}\right)=-\sum_{k}\left(\nabla_{e_{k}} \operatorname{Ric}\right)\left(X, e_{k}\right) \\
& =-\sum_{k} g\left(X,(\nabla Q)\left(e_{k}, e_{k}\right)\right)=-\frac{1}{2} g(X, \operatorname{grad} S)
\end{aligned}
$$

Thus the equation (2.4) gives $\sum_{i} g\left((\nabla A)\left(e_{i}, X\right), e_{i}\right)=0$, or $g\left(X, \sum_{i}(\nabla A)\left(e_{i}, e_{i}\right)\right)=0$, which proves the lemma.

Finally, we prove the following lemma which is the main ingredient in the proof of the main theorem.

Lemma 2.5. Let A be a symmetric tensor field on an n-dimensional connected Riemannian manifold (M, g) satisfying
(i) $\operatorname{tr} . A=-\frac{(n-2)}{2} S$,
(ii) $(\nabla A)(X, Y)-(\nabla A)(Y, X)=\frac{1}{2} R_{0}(X, Y) \operatorname{grad} S-F(X, Y)$.

Then $B=A-Q$ satisfies $\|\nabla B\|^{2} \geq \frac{n}{4}\|\operatorname{grad} S\|^{2}$, and for positively curved M the equality holds if and only if $B=-\frac{S}{2} I$.

Proof. From Lemmas 2.1 and 2.4 we have

$$
\begin{equation*}
\sum_{i}(\nabla B)\left(e_{i}, e_{i}\right)=-\frac{1}{2} \operatorname{grad} S . \tag{2.5}
\end{equation*}
$$

Define $C: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ by $C(X)=B(X)+\frac{S}{2} X, X \in \mathfrak{X}(M)$. Then we have

$$
(\nabla C)(X, Y)=(\nabla B)(X, Y)+\frac{1}{2} g(\operatorname{grad} S, X) Y
$$

and consequently

$$
\begin{align*}
\|\nabla C\|^{2}= & \|\nabla B\|^{2}+\frac{n}{4}\|\operatorname{grad} S\|^{2} \tag{2.6}\\
& +\sum_{i j} g\left((\nabla B)\left(e_{i}, e_{j}\right), g\left(\operatorname{grad} S, e_{i}\right) e_{j}\right) .
\end{align*}
$$

Note that B is symmetric as both A and Q are symmetric, and therefore we have

$$
g((\nabla B)(X, Y), Z)=g(Y,(\nabla B)(X, Z)), \quad X, Y, Z \in \mathfrak{X}(M)
$$

Using this equation and Lemma 2.3, we compute

$$
\begin{array}{rl}
\sum_{i j} & g\left((\nabla B)\left(e_{i}, e_{j}\right), g\left(\operatorname{grad} S, e_{i}\right) e_{j}\right) \\
& =\sum_{i j} g\left(\operatorname{grad} S, e_{i}\right) g\left(B\left(e_{j}, e_{i}\right)+\frac{1}{2} R_{0}\left(e_{i}, e_{j}\right) \operatorname{grad} S, e_{j}\right) \\
& =\sum_{j} g\left(\operatorname{grad} S,(\nabla B)\left(e_{j}, e_{j}\right)\right)+\frac{1}{2} \sum_{j} g\left(R_{0}\left(\operatorname{grad} S, e_{j}\right) \operatorname{grad} S, e_{j}\right) .
\end{array}
$$

Now use this equation, (2.2), and (2.5) in (2.6) to arrive at

$$
\|\nabla C\|^{2}=\|\nabla B\|^{2}-\frac{n}{4}\|\operatorname{grad} S\|^{2}
$$

which proves the inequality $\|\nabla B\|^{2} \geq \frac{n}{4}\|\operatorname{grad} S\|^{2}$.
Next suppose that M is positively curved and the equality holds. Then we shall have $\nabla C=0$, which gives $C=\lambda I$ (as M being positively
curved, it is irreducible) for a constant λ. Thus we have $n \lambda=\operatorname{tr} \cdot B+\frac{n S}{2}=$ $\operatorname{tr} . A-\operatorname{tr} . Q+\frac{n S}{2}=0$, where we have used condition (i); consequently $\lambda=0$ and this proves $B=-\frac{S}{2} I$.

3. Proof of the Theorem

If the tensor field T satisfies the Einstein field equation, then we have $A=Q-\frac{S}{2} I$, and from Lemma 2.2 we get the conditions (i), (ii). Conversely suppose that the given conditions are satisfied. Define $f: M \rightarrow R$ by $f=\frac{1}{2}\|B\|^{2}$. Then choosing a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ on M, we compute the Hessian H_{f} of f and obtain

$$
H_{f}(X, X)=\sum_{i j} g\left((\nabla B)\left(X, e_{i}\right), e_{j}\right)^{2}+\sum_{i} g\left(\left(\nabla^{2} B\right)\left(X, X, e_{i}\right), B\left(e_{i}\right)\right) .
$$

Thus the Laplacian $\Delta f=\sum_{k} H_{f}\left(e_{k}, e_{k}\right)$ is given by

$$
\begin{equation*}
\Delta f=\|\nabla B\|^{2}+\sum_{i k} g\left(\left(\nabla^{2} B\right)\left(e_{k}, e_{k}, e_{i}\right), B\left(e_{i}\right)\right) . \tag{3.1}
\end{equation*}
$$

The equation (2.5) gives

$$
\begin{equation*}
\sum_{k}\left(\nabla^{2} B\right)\left(e_{i}, e_{k}, e_{k}\right)=-\frac{1}{2} \nabla_{e_{i}} \operatorname{grad} S, \tag{3.2}
\end{equation*}
$$

and the Ricci identity implies

$$
\begin{equation*}
\left(\nabla^{2} B\right)\left(e_{k}, e_{i}, e_{k}\right)=\left(\nabla^{2} B\right)\left(e_{i}, e_{k}, e_{k}\right)+R\left(e_{k}, e_{i}\right) B e_{k}-B R\left(e_{k}, e_{i}\right) e_{k} \tag{3.3}
\end{equation*}
$$

Thus, using (2.2), (3.2), (3.3) and Lemma 2.3 in (3.1), we arrive at

$$
\begin{align*}
\Delta f= & \|\nabla B\|^{2}-\frac{1}{2} \sum_{i} g\left(\nabla_{e_{i}} \operatorname{grad} S, B\left(e_{i}\right)\right)+\sum_{i k}\left[R\left(e_{k}, e_{i} ; B e_{k}, B e_{i}\right)\right. \\
& \left.-R\left(e_{k}, e_{i} ; e_{k}, B^{2} e_{i}\right)\right]+\frac{1}{2} \sum_{i k} g\left(\nabla_{e_{k}} \operatorname{grad} S, e_{i}\right) g\left(e_{k}, B e_{i}\right) \tag{3.4}\\
& -\frac{1}{2} \sum_{i k} g\left(\nabla_{e_{k}} \operatorname{grad} S, e_{k}\right) g\left(e_{i}, B e_{i}\right) \\
= & \|\nabla B\|^{2}+\frac{n}{4} S \Delta S+\sum_{i k}\left[R\left(e_{k}, e_{i} ; B e_{k}, B e_{i}\right)-R\left(e_{k}, e_{i} ; e_{k}, B^{2} e_{i}\right)\right],
\end{align*}
$$

where we have used $\operatorname{tr} . B=-\frac{n}{2} S$, which follows from condition (i) and $B=A-Q$. Next, we choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ which diagonalizes B with $B\left(e_{i}\right)=\mu_{i} e_{i}$, and compute

$$
\begin{align*}
\sum_{i k} & {\left[R\left(e_{k}, e_{i} ; B e_{k}, B e_{i}\right)-R\left(e_{k}, e_{i} ; e_{k}, B^{2} e_{i}\right)\right] } \\
& =\sum_{i k} \mu_{i}^{2} K_{i k}-\mu_{i} \mu_{k} K_{i k}=\frac{1}{2} \sum_{i k} 2 \mu_{i}^{2} K_{i k}-2 \mu_{i} \mu_{k} K_{i k}, \tag{3.5}\\
& =\frac{1}{2}\left[\sum_{i k} \mu_{i}^{2} K_{i k}+\mu_{k}^{2} K_{i k}-2 \mu_{i} \mu_{k} K_{i k}\right]=\frac{1}{2} \sum_{i k}\left(\mu_{i}-\mu_{k}\right)^{2} K_{i k},
\end{align*}
$$

where $K_{i k}=R\left(e_{k}, e_{i} ; e_{i}, e_{k}\right)$ is the sectional curvature of the plane section spanned by $\left\{e_{i}, e_{k}\right\}$. Using (3.5) in (3.4) and integrating the resulting equation we get

$$
\int_{M}\left\{\|\nabla B\|^{2}+\frac{n}{4} S \Delta S+\frac{1}{2} \sum_{i k}\left(\mu_{i}-\mu_{k}\right)^{2} K_{i k}\right\} d v=0
$$

Integrating by parts the second term in the above integral, we arrive at

$$
\int_{M}\left\{\|\nabla B\|^{2}-\frac{n}{4}\|\operatorname{grad} S\|^{2}\right\} d v+\frac{1}{2} \int_{M}\left\{\sum_{i k}\left(\mu_{i}-\mu_{k}\right)^{2} K_{i k}\right\} d v=0
$$

Since $K_{i k}>0$, the above integral together with Lemma 2.5 gives

$$
\|\nabla B\|^{2}=\frac{n}{4}\|\operatorname{grad} S\|^{2},
$$

and this equality, again by Lemma 2.5 , implies $B=-\frac{S}{2} I$ and consequently the Einstein equation $A=Q-\frac{S}{2} I$.

References

[1] I. Chavel, Riemannian Geometry: A modern introduction, Cambridge Univ. Press, no. $108,1993$.
[2] B. O'Neill, Semi-Riemannian geometry, Academic Press, 1983.
[3] S. T. Yau, Problem section, Seminar on Differential Geometry, Princeton Univ. Press, 1982.

SHARIEF DESHMUKH
DEPARTMENT OF MATHEMATICS
KING SAUD UNIVERSITY
P.O. BOX 2455 RIYADH 11451

SAUDI ARABIA
E-mail: shariefd@ksu.edu.sa
(Received December 12, 1998; file received September 29, 1999)

