Finiteness conditions and sums of rings

By A. V. KELAREV (Hobart)

Abstract

Let R be a ring, which is a sum of its additive subgroups $R_{s}, s \in S$. Suppose that all rings among the R_{s} satisfy one of the following classical finiteness properties: right or left Artinian or Noetherian, right or left perfect, semilocal or semiprimary. We provide new conditions on the interaction of the R_{s} sufficient for the whole ring R to enjoy the same property.

This paper is devoted to several well-known finiteness conditions which play important roles in ring theory. We start with the following natural problem. Let \mathcal{K} be a class of associative rings, S a set, R a ring, and let $R=\sum_{s \in S} R_{s}$ be a sum of additive subgroups R_{s} of R. Suppose that all rings among the R_{s} belong to \mathcal{K}. Find conditions sufficient for R to belong to \mathcal{K}.

In full generality this problem was first recorded in [7]. However, its many interesting special cases have been actively investigated by a number of authors including Bahturin, Beidar, Bokut', Chick, Ferrero, Fukshansky, Gardner, Kegel, Kelarev, Kepczyk, McConnell, Mikhalev, Petravchuk, PuczyŁowski and Salwa (see [3]-[8] for references).

We use two restrictions on the interaction of the components R_{s} introduced in [7]. Let S be a semigroup, $R=\sum_{s \in S} R_{s}$ a sum of additive subgroups R_{s} of R. If $T \subseteq S$, then we put $R_{T}=\sum_{s \in T} R_{s}$. We say that R is a structural S-sum if and only if, for each subsemigroup (left ideal, right ideal) T of S, the sum R_{T} is a subring (respectively, left ideal, right

Mathematics Subject Classification: Primary: 16L30, 16P20, 16P40; Secondary: 16S99. Key words and phrases: finiteness conditions, sums of rings.
The author was supported by a grant of Australian Research Council.
ideal) of R. For any $s \in S$, denote by $\langle s\rangle$ the subsemigroup generated in S by s, and put $R^{s}=R_{\langle s\rangle}$. We say that R is an S-sum if $R_{s} R_{t} \subseteq R^{s t}$ for all $s, t \in S$. Many ring constructions are examples of structural S-sums and S-sums.

This paper investigates the question of when several classical finiteness conditions are preserved by S-sums and structural S-sums. First, we deal with left or right Artinian or Noetherian rings.

A semigroup entirely consisting of idempotents is called a band. A band is said to be a semilattice (rectangular band; left zero band; right zero band; left regular band; right regular band) if it satisfies the identity $x y=y x(x y x=x ; x y=x ; x y=y ; x y x=x y ; x y x=y x)$.

Theorem 1. For any semigroup S, the following are equivalent:
(i) for every structural S-sum $R=\sum_{s \in S} R_{s}$, if all rings among the R_{s} are right Artinian (Noetherian), then R is right Artinian (Noetherian), too;
(ii) for every S-sum $R=\sum_{s \in S} R_{s}$, if all rings among the R_{s} are right Artinian (Noetherian), then R is right Artinian (Noetherian), too;
(iii) S is a finite left regular band.

Next, we look at semilocal, semiprimary, and left or right perfect rings. Let $\mathcal{J}(R)$ be the Jacobson radical of R. A ring R is semilocal if $R / \mathcal{J}(R)$ is Artinian. Recall that R is said to be right (left) T-nilpotent if, for every sequence of elements r_{1}, r_{2}, \ldots of R, there exists n such that $r_{n} \ldots r_{1}=0$ (respectively, $r_{1} \ldots r_{n}=0$). A semilocal ring is semiprimary (right perfect, left perfect) if $\mathcal{J}(R)$ is nilpotent (right T-nilpotent; left T nilpotent). A semigroup is said to be combinatorial if all its subgroups are singletons. We obtain the following conditions sufficient for preservation of these properties by structural sums of rings.

Theorem 2. Let S be a periodic combinatorial semigroup with a finite number of idempotents and locally nilpotent (nilpotent, right T-nilpotent, left T-nilpotent) nil factors, and let $R=\sum_{s \in S} R_{s}$ be an S-sum. If all rings among the R_{s} are semilocal (respectively, semiprimary, right perfect, left perfect), then R is semilocal (respectively, semiprimary, right perfect, left perfect), too.

A semigroup is said to be semisimple if all its principal factors are simple or 0 -simple.

Theorem 3. Let S be a semisimple periodic combinatorial semigroup with a finite number of idempotents, and let $R=\sum_{s \in S} R_{s}$ be a structural S-sum. If all rings among the R_{s} are semilocal (or semiprimary, or right perfect, or left perfect), then R possesses the same property, too.

Proof of Theorem 1. The case where $|S|=1$ is trivial, and so throughout we assume that S is not a singleton. The implication (i) \Rightarrow (ii) is obvious, because every S-sum is a structural S-sum.
(ii) \Rightarrow (iii): Suppose that S contains an element t such that $t \neq t^{2}$. Take any finite field F. Denote by P the ring of all polynomials over F in commuting variables x_{1}, x_{2}, \ldots without constant terms. Let I be the ideal generated in P by all polynomials $x_{i} x_{j}-x_{k} x_{\ell}$, for any positive integers i, j, k, ℓ. Consider the ring $R=P /\left(I+P^{3}\right)$ and its subrings $R_{t}=\sum_{i=1}^{\infty} F x_{i}$, $R_{t^{2}}=F x_{1}^{2}$. Put $R_{s}=0$ for all $s \in S \backslash\left\{t, t^{2}\right\}$. Clearly, $R=\sum_{s \in S} R_{s}$ is an S-sum. Moreover, it is an S-graded ring. The component R_{t} is not a subring. The component $R_{t^{2}}$ is finite, and so it is right Artinian and Noetherian. All the other components are zero. However, R is neither Artinian, nor Noetherian. This contradiction shows that S must be a band.

If S is a band, then every S-sum is an S-graded ring, and therefore [3], Corollary 6.4, shows that (iii) holds.
$($ iii $) \Rightarrow(\mathrm{i})$: Suppose that S is a finite left regular band. Take any structural S-sum $R=\sum_{s \in S} R_{s}$ such that all rings among the R_{s} are right Artinian (Noetherian). Clearly, R is an S-graded ring. Therefore [3], Corollary 6.4, tells us that R is right Artinian (Noetherian), as required.

For any semigroup S, denote by S^{0} the semigroup $S \cup\{0\}$ with zero adjoined. Let G be a group, I and Λ nonempty sets, and let $P=\left(p_{\lambda i}\right)$ be a $\Lambda \times I$-matrix with entries $p_{\lambda i} \in G^{0}$ for all $\lambda \in \Lambda, i \in I$. The Rees matrix semigroup $M^{0}(G ; I, \Lambda ; P)$ over the group G with sandwich-matrix P consists of zero and all triples $(g ; i, \lambda), i \in I, \lambda \in \Lambda$, and $g \in G$, where all triples of the form $(0 ; i, \lambda)$ are identified with zero, and multiplication is defined by the rule $\left(g_{1} ; i_{1}, \lambda_{1}\right)\left(g_{2} ; i_{2}, \lambda_{2}\right)=\left(g_{1} p_{\lambda_{1} i_{2}} g_{2} ; i_{1}, \lambda_{2}\right)$. Lemma 3.1 of [3] immediately gives us the following

Lemma 4. If S is a periodic combinatorial semigroup with a finite number of idempotents, then S^{0} has a finite ideal chain

$$
0=S_{0} \subseteq S_{1} \subseteq \cdots \subseteq S_{n}=S^{0}
$$

such that each factor S_{i+1} / S_{i}, where $0 \leq i \leq n-1$, is nil or is isomorphic to a finite Rees matrix semigroup $M^{0}(\{e\} ; I, \Lambda ; P)$.

We also need the following well-known properties of semilocal, semiprimary, right and left perfect rings (see, for example, [3], Lemma 4.3).

Lemma 5. The classes of semilocal, semiprimary, right perfect and left perfect rings are closed for ideal extensions, right and left ideals, homomorphic images and finite sums of one-sided ideals.

Proof of Theorem 2. Put $R_{0}=0$. Then $R=\sum_{s \in S^{0}} R_{s}$ is an S^{0} sum. Lemma 4 tells us that S^{0} has a finite ideal chain

$$
0=S_{0} \subseteq S_{1} \subseteq \cdots \subseteq S_{n}=S^{0}
$$

such that each factor S_{i+1} / S_{i}, where $0 \leq i \leq n-1$, is nil or is isomorphic to a finite Rees matrix semigroup $M^{0}(\{e\} ; I, \Lambda ; P)$. We show by induction on $k=0,1, \ldots, n$ that all rings $R_{S_{k}}$ are semilocal (semiprimary, right perfect, left perfect).

The induction basis is trivial, as $R_{S_{0}}=0$. Suppose that $k>0$ and $R_{S_{k-1}}$ has the desired property. Since $R_{S_{k}}$ is an extension of $R_{S_{k-1}}$ by $R_{S_{k}} / R_{S_{k-1}}$, in view of Lemma 5 it suffices to show that $R_{S_{k}} / R_{S_{k-1}}$ belongs to our class.

Clearly, $Q=R_{S_{k}} / R_{S_{k-1}}=\sum_{s \in S_{k} \backslash S_{k-1}} R_{s}$ is a structural $S_{k} / S_{k-1^{-}}$ sum. By the hypothesis S_{k} / S_{k-1} is isomorphic to a finite Rees matrix semigroup $M^{0}(\{e\} ; I, \Lambda ; P)$. The definition of multiplication in $M^{0}(\{e\} ; I, \Lambda ; P)$ implies that $M^{0}(\{e\} ; I, \Lambda ; P)$ is a union of its left ideals $L_{\lambda}=\{0\} \cup$ $\{(e ; i, \lambda) \mid i \in I\}$, where $\lambda \in \Lambda$. Besides, each L_{λ} is a union of its right ideals $I_{i}=\{0,(e ; i, \lambda)\}$, where $i \in I$. Given that Q is an S_{k} / S_{k-1}-sum, it follows that Q is a sum of its left ideals $Q_{L_{\lambda}}, \lambda \in \Lambda$, and every $Q_{L_{\lambda}}$ is a sum of its right ideals $Q_{I_{i}} \cong R_{(e ; i, \lambda)}$. Since $R_{(e ; i, \lambda)}$ is a subring, we know that it is semilocal (semiprimary, right perfect, left perfect). Lemma 5 implies that all the $Q_{L_{\lambda}}$ are semilocal (semiprimary, right perfect, left perfect), too, and so the same can be said of Q. This completes the proof.

Proof of Theorem 3. Set $R_{0}=0$. Evidently, $R=\sum_{s \in S^{0}} R_{s}$ is a structural S^{0}-sum. Given that S is semisimple, Lemma 4 tells us that S^{0} has a finite ideal chain

$$
0=S_{0} \subseteq S_{1} \subseteq \cdots \subseteq S_{n}=S^{0}
$$

such that each factor S_{i+1} / S_{i}, where $0 \leq i \leq n-1$, is isomorphic to a finite Rees matrix semigroup $M^{0}(\{e\} ; I, \Lambda ; P)$. We show by induction on $k=0,1, \ldots, n$ that all rings $R_{S_{k}}$ are semilocal (semiprimary, right perfect, left perfect).

The induction basis is trivial again. Suppose that $k>0$ and $R_{S_{k-1}}$ has the desired property. As above in view of Lemma 5 it suffices to show that $R_{S_{k}} / R_{S_{k-1}}$ belongs to our class.

Clearly, $R_{S_{k}} / R_{S_{k-1}}=\sum_{s \in S_{k} \backslash S_{k-1}} R_{s}$ is a structural S_{k} / S_{k-1}-sum. Given that S_{k} / S_{k-1} is isomorphic to a finite Rees matrix semigroup, since every structural S_{k} / S_{k-1}-sum is an S_{k} / S_{k-1}-sum, it follows from Theorem 3 that $R_{S_{k}} / R_{S_{k-1}}$ is semilocal (semiprimary, right perfect, left perfect). This completes our proof.

References

[1] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
[2] A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math. (Basel) 60 (1993), 431-435.
[3] A. V. Kelarev, Applications of epigroups to graded ring theory, Semigroup Forum 50 (1995), 327-350.
[4] A. V. Kelarev, On groupoid graded rings, J. Algebra 178 (1995), 391-399.
[5] A. V. Kelarev, A primitive ring which is a sum of two Wedderburn radical subrings, Proc. Amer. Math. Soc. 125 (1997), 2191-2193.
[6] A. V. Kelarev, An answer to a question of Kegel on sums of rings, Canad. Math. Bull. 41 (1998), 79-80.
[7] A. V. Kelarev and N. R. McConnell, Two versions of graded rings, Publ. Math. Debrecen 47 (1995)(3-4), 219-227.
[8] A. Petravchuk, On associative algebras which are sums of two almost commutative subalgebras, Publ. Math. Debrecen 53 (1998)(1-2), 191-206.
A. V. KELAREV

SCHOOL OF MATHEMATICS AND PHYSICS
UNIVERSITY OF TASMANIA
G.P.O. BOX 252-37

HOBART, TASMANIA 7001
aUstralia
E-mail: Andrei.Kelarev@utas.edu.au
(Received March 11, 1999)

