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Completeness of Finsler manifolds

By CONSTANTIN UDRIŞTE∗ (Bucharest)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. This paper analyses some constructions that produce complete Finsler
manifolds:

1) Let the Finsler manifolds (M, g(x, y)) and (M, ḡ(x, y)) be given. Then (M, ḡ(x, y))
is complete if (M, g(x, y)) is complete and the tensor field ḡ − g is positive semi-
definite.

2) If (M, g(x, y)) is a Finsler manifold and f : M → R is a proper function then the
Finsler manifold (M, g(x, y)+df(x)⊗df(x)) is complete. Using this construction we
prove that a Finsler manifold which supports a proper function whose differential
has bounded relative length is complete.

3) Let the Finsler manifolds (M1, g1(x1, y1)) and (M2, g2(x2, y2)) be given and sup-
pose that f > 0 is a differentiable function on M1. The warped product (M1 ×
M2, g1 + fg2) is complete if and only if (M1, g1(x1, y1)) and (M2, g2(x2, y2)) are
complete.

§1. Complete Finsler manifolds [2], [4], [5]

Let M be an n–dimensional connected C3–manifold and TM its tan-
gent bundle. Denote by (x, y) an arbitrary point in TM and by x the
corresponding point in M .

Definition 1.1. A Finsler tensor field g(x, y) of type (0, 2) which is
symmetric, positive definite and whose components gij(x, y) are homoge-
neous functions of degree zero with respect to y is called a Finsler metric
on M . The pair (M, g(x, y)) is called a Finsler manifold.

The function

L : TM → R, L(x, y) =
√

gij(x, y)yiyj
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is called fundamental Finsler function and L2 is called absolute Finsler
energy.

For a vector field V = V i(x) ∂
∂xi on M we have two kinds of lengths:

the absolute length

L(x, V (x)) =
√

gij(x, V (x))V i(x)V j(x)

and the relative length

‖V (x)‖y =
√

gij(x, y)V i(x)V j(x) .

Remark. If gij(x, V (x)) − gij(x, y) is negative semidefinite, then the
absolute length of V (x) is the minimum of the relative length of V (x).

In a Finsler manifold (M, g(x, y)) the length ` of a curve arc
γ : [0, 1] → M is given by

`(γ) =
∫ 1

0

L(γ(t), γ̇(t))dt .

Definition 1.2. let (M, g(x, y)) be a Finsler manifold. The function

expx : 0x ⊂ TxM → M, X → expx X ,

where expx X is the terminal point γ(1) of the geodesic γ : [0, 1] →
M, γ(0) = x, γ̇(0) = X is called the exponential map.

The curve γ : [0, 1] → M, γ(t) = expx(tX), X ∈ TxM is a geodesic
which joins the points x and expx X. The length of this geodesic is L(x, X).

Definition 1.3. The distance d(x, x′) between the points x, x′ ∈ M is
the infimum of the lengths of all curves from x to x′.

This definition is correctly in sense that the properties:
1) d(x, x′) ≥ 0, ∀x, x′ ∈ M
2) d(x, x′) = 0, if and only if x = x′

3) d(x, x′) = d(x′, x), ∀x, x′ ∈ M
4) d(x, x′) ≤ d(x, x′′) + d(x′′, x′), ∀x, x′, x′′ ∈ M

are satisfied. Also, the topology of M induced by the distance d coincides
with the manifold topology of M .

Definition 1.4. The Finsler manifold (M, g(x, y)) is called geodesically
complete if the exponential map expx is defined on the whole of TxM for
any point of M .

Definition 1.5. The Finsler manifold (M, g(x, y)) is called metrically
complete if the metric space (M, d) is complete.
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Theorem 1.1. [2] For a Finsler manifold (M, g(x, y)) the following
three conditions are equivalent:
1) (M, g(x, y)) is geodesically complete.
2) (M, g(x, y)) is metrically complete.
3) Any bounded closed subset of M is compact.

Remarks. 1) Let (M, g) and (M, ḡ) be two Finsler manifolds. Then
(M, ḡ) is complete if (M, g) is complete and the tensor field ḡ−g is positive
semidefinite.

2) Let (M1, d1) and (M2, d2) be complete metric spaces. The product
space (M1 ×M2, d1 + d2) is complete.

3) Let gij(x, y) = γij(x) + c−2yiyj ,
where γij is a Riemann metric tensor, c is the universal speed-of light
constant, ẋi is the tangent vector supported by a point x = (xi) and
yi = γij(x)ẋj . If the Riemann manifold (M, γij(x)) is complete, then the
generalized Lagrange manifold (M, gij(x, y)) is complete. This generalized
Lagrange manifold is not reducible to a Lagrange manifold, neither to a
Finsler manifold nor to a Riemannian manifold [3].

§2. Analytical criterion for completeness

Definition 2.1. A continuous function f : M → R is called proper if
f−1(K) is a compact set whenewer K is compact.

Theorem 2.1. Let (M, g(x, y)) be a Finsler C3–manifold (not neces-
sarily complete) and f : M → R a proper C3 function.

The Finsler manifold (M, g̃(x, y) = g(x, y)+df(x)⊗df(x)) is complete.

Proof. We consider the Finsler manifold (M × R, h), where
hij = gij , hi n+1 = 0, i, j = 1, 2, . . . , n, hn+1n+1 = 1. The graph

G(f) = {(x, f(x))|x ∈ M}
is a submanifold of the product manifold M × R, diffeomorphic to M .

The Finsler metric hαβ induces on G(f) the Finsler metric g̃ = g +
df ⊗ df .

If {(xn, f(xn))} is a Cauchy sequence of elements in G(f), then
{f(xn)} is a Cauchy sequence in R because

dG(f)[(x, f(x)), (x′, f(x′))] ≥ dM×R[(x, f(x)), (x′, f(x′))] ≥
≥ |f(x)− f(x′)| .

Then there exists z ∈ R with z = lim
n→∞

f(xn) and hence {z, f(x1), . . . ,

f(xn), . . . } is a compact set in R. But {x1, . . . , xn, . . . } ⊂ f−1({z, f(x1),
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. . . , f(xn), . . . }) and f is proper. Hence the sequence {xn} contains a
convergent subsequence since {xn} is contained in a compact set.

So the sequence {(xn, f(xn))} is covergent and hence (M, g̃(x, y)) is
complete.

Theorem 2.2. Let (M, g(x, y)) be a Finsler C3–manifold. If there
exists a proper C3 function f : M → R such that the Finsler tensor field
g(x, y)− df(x)⊗ df(x) is positive definite, then (M, g(x, y)) is complete.

Proof. Put, g̃ = g−df⊗df . If g̃ is positive definite, then (M, g̃(x, y))
is a Finsler C3–manifold. As f : M → R is a proper function, we apply
theorem 2.1 which says that (M, g̃+df⊗df) is complete. But g̃+df⊗df = g.
Hence (M, g(x, y)) is complete.

Theorem 2.3. [1]. Any C3–manifold M supports a proper C3 func-
tion f : M → R.

Theorem 2.4. Let (M, g(x, y)) be a Finsler C3–manifold and f : M →
R a C3 function. Then the Finsler tensor field

g̃(x, y) = g(x, y)− df(x)⊗ df(x)

is positive definite iff ‖df(x)‖y < 1, for any vector y.

Proof. Let V i(x, y) = gij(x, y)∂f(x)
∂xj and V (x, y) = V i(x, y) δ

δxi .
Here δ

δxi = ∂
∂xi −N j

i
∂

∂yj is a local base adapted to the horizontal canonical

distribution N = (N j
i (x, y)) of the manifold (M, g).

Suppose that g̃(x, y) is positive definite and x is not a critical point
of f . Hence

0 < g̃ij(x, y)V i(x, y)V j(x, y) = gij(x, y)gik(x, y)
∂f(x)
∂xk

gj`(x, y)
∂f(x)
∂x`

−

−∂f(x)
∂xi

∂f(x)
∂xj

gik(x, y)
∂f(x)
∂xk

gj`(x, y)
∂f(x)
∂x`

=

= δk
j gj`(x, y)

∂f(x)
∂x`

∂f(x)
∂xk

− gik(x, y)
∂f(x)
∂xi

∂f(x)
∂xk

gj`(x, y)
∂f(x)
∂xj

∂f(x)
∂x`

=

= ‖df(x)‖2y(1− ‖df(x)‖2y) .

Thus ‖df(x)‖y < 1, ∀y.
Now suppose that ‖df(x)‖y < 1, ∀y. Then for any vector field X(x) =

Xi(x) ∂
∂xi we have



Completeness of Finsler manifolds 49

g̃ij(x, y)Xi(x)Xj(x) = gij(x, y)Xi(x)Xj(x)− ∂f(x)
∂xi

Xi(x)
∂f(x)
∂xj

Xj(x) =

= ‖X(x)‖2y − δi
k

∂f(x)
∂xi

Xk(x)δj
`

∂f(x)
∂xj

X`(x) = ‖X(x)‖2y−

−gkm(x, y)gim(x, y)
∂f(x)
∂xi

Xk(x)g`s(x, y)gjs(x, y)
∂f(x)
∂xj

X`(x) =

= ‖X(x)‖2y − (gkm(x, y)gim(x, y)
∂f(x)
∂xi

Xk(x))2 ≥

≥ ‖X(x)‖2y − (gkm(x, y)Xk(x)Xm(x))2
(

gis(x, y)
∂f(x)
∂xi

∂f(x)
∂xs

)2

=

= ‖X(x)‖2y(1− ‖df(x)‖2y) ,

and hence g̃(x, y) is positive definite.

From theorems 2.2 and 2.4 follows
Theorem 2.5. A Finsler C3–manifold (M, g(x, y)) which supports a

proper C3 function f : M → R such that ‖df(x)‖y < 1, ∀y, is complete.

Theorem 2.6. Let (M, g(x, y)) be a Finsler C3–manifold and f : M →
R a proper C3 function. Then

(
M, g̃(x, y) = e‖df(x)‖2yg(x, y)

)

is a complete Finsler manifold.

Proof. Obviously g̃(x, y) is symmetric, positive definite and its com-
ponents g̃ij(x, y) are homogeneous functions of degree zero with respect to
y. On the other hand

‖d̃f(x)‖2y = e−‖df(x)‖2y‖df(x)‖2y ≤
1
e

.

So the proper function ϕ : M → R, ϕ =
√

ef satisfies ‖d̃ϕ‖2y < 1, ∀y.
Applying theorem 2.5 we obtain the desired result.

§3. Warped products of complete Finsler manifolds

Let (M1, g1(x1, y1)) and (M2, g2(x2, y2)) be Finsler manifolds and f >
0 a differentiable function on M1. Consider the product manifold M1×M2
with its projections

π : M1 ×M2 → M1, η : M1 ×M2 → M2 .
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The Finsler manifold
(M1 ×M2, g1 + fg2)

is called the warped product between (M1, g1) and (M2, g2).

Theorem 3.1. (M1×M2, g1 +fg2) is complete if and only if (M1, g1)
and (M2, g2) are complete.

Proof. If (M1×M2, g1 + fg2) is complete, then a Cauchy sequence
in (M1, g1) or (M2, g2) imbeds in a (horizontal) leaf or a (vertical) fiber as
a Cauchy sequence, and hence converges.

If (M1, g1) and (M2, g2) are complete, let {pi = (p1i, p2i)} be a Cauchy
sequence in (M1 ×M2, g1 + fg2). Denote by αij a curve from pi to pj in
(M1×M2, g1 +fg2) having length at most 2d(pi, pj). We can assume that
all projections π ◦ αij lie in a compact region in M1, and on this we have
f ≥ c > 0. Consequently the speed of αij at each point is at least c times
the speed of η ◦ αij . Thus

d(p2i, p2j) ≤ 2
c

d(pi, pj)

showing that {p2i} is Cauchy and hence convergent.
Since π is distance-nonincreasing, the sequence {p1i} is also Cauchy,

hence convergent. Thus {pi} is convergent, and (M1 × M2, g1 + fg2) is
complete.
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