Publ. Math. Debrecen 42 / 1-2 (1993), 45-50

Completeness of Finsler manifolds

By CONSTANTIN UDRIŞTE* (Bucharest)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. This paper analyses some constructions that produce complete Finsler manifolds:

- 1) Let the Finsler manifolds (M, g(x, y)) and $(M, \overline{g}(x, y))$ be given. Then $(M, \overline{g}(x, y))$ is complete if (M, g(x, y)) is complete and the tensor field $\overline{g} g$ is positive semi-definite.
- 2) If (M, g(x, y)) is a Finsler manifold and $f : M \to \mathbb{R}$ is a proper function then the Finsler manifold $(M, g(x, y)+df(x)\otimes df(x))$ is complete. Using this construction we prove that a Finsler manifold which supports a proper function whose differential has bounded relative length is complete.
- 3) Let the Finsler manifolds $(M_1, g_1(x_1, y_1))$ and $(M_2, g_2(x_2, y_2))$ be given and suppose that f > 0 is a differentiable function on M_1 . The warped product $(M_1 \times M_2, g_1 + fg_2)$ is complete if and only if $(M_1, g_1(x_1, y_1))$ and $(M_2, g_2(x_2, y_2))$ are complete.

$\S1$. Complete Finsler manifolds [2], [4], [5]

Let M be an n-dimensional connected C^3 -manifold and TM its tangent bundle. Denote by (x, y) an arbitrary point in TM and by x the corresponding point in M.

Definition 1.1. A Finsler tensor field g(x, y) of type (0, 2) which is symmetric, positive definite and whose components $g_{ij}(x, y)$ are homogeneous functions of degree zero with respect to y is called a *Finsler metric* on M. The pair (M, g(x, y)) is called a Finsler manifold.

The function

$$L:TM \to \mathbb{R}, \ L(x,y) = \sqrt{g_{ij}(x,y)y^iy^j}$$

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision): 53C60, 54E50.

Keywords: Finsler manifolds, criteria for completeness, warped products.

^{*}This paper was presented at the Conference on Finsler Geometry and its Application

to Physics and Control Theory, August 26–31, 1991, Debrecen, Hungary.

is called fundamental Finsler function and L^2 is called *absolute Finsler* energy.

For a vector field $V = V^i(x) \frac{\partial}{\partial x^i}$ on M we have two kinds of lengths: the absolute length

$$L(x, V(x)) = \sqrt{g_{ij}(x, V(x))V^i(x)V^j(x)}$$

and the relative length

$$||V(x)||_y = \sqrt{g_{ij}(x,y)V^i(x)V^j(x)}.$$

Remark. If $g_{ij}(x, V(x)) - g_{ij}(x, y)$ is negative semidefinite, then the absolute length of V(x) is the minimum of the relative length of V(x).

In a Finsler manifold (M, g(x, y)) the length ℓ of a curve arc $\gamma : [0, 1] \to M$ is given by

$$\ell(\gamma) = \int_0^1 L(\gamma(t), \dot{\gamma}(t)) dt$$

Definition 1.2. let (M, g(x, y)) be a Finsler manifold. The function

$$\exp_x : 0_x \subset T_x M \to M, \quad X \to \exp_x X,$$

where $\exp_x X$ is the terminal point $\gamma(1)$ of the geodesic $\gamma : [0,1] \to M, \ \gamma(0) = x, \ \dot{\gamma}(0) = X$ is called the *exponential map*.

The curve $\gamma : [0,1] \to M$, $\gamma(t) = \exp_x(tX)$, $X \in T_x M$ is a geodesic which joins the points x and $\exp_x X$. The length of this geodesic is L(x, X).

Definition 1.3. The distance d(x, x') between the points $x, x' \in M$ is the infimum of the lengths of all curves from x to x'.

This definition is correctly in sense that the properties:

- 1) $d(x, x') \ge 0, \quad \forall x, x' \in M$
- 2) d(x, x') = 0, if and only if x = x'
- 3) $d(x, x') = d(x', x), \quad \forall x, x' \in M$

4)
$$d(x, x') \le d(x, x'') + d(x'', x'), \quad \forall x, x', x'' \in M$$

are satisfied. Also, the topology of M induced by the distance d coincides with the manifold topology of M.

Definition 1.4. The Finsler manifold (M, g(x, y)) is called *geodesically* complete if the exponential map \exp_x is defined on the whole of $T_x M$ for any point of M.

Definition 1.5. The Finsler manifold (M, g(x, y)) is called *metrically* complete if the metric space (M, d) is complete.

Theorem 1.1. [2] For a Finsler manifold (M, g(x, y)) the following three conditions are equivalent:

- 1) (M, g(x, y)) is geodesically complete.
- 2) (M, g(x, y)) is metrically complete.
- 3) Any bounded closed subset of M is compact.

Remarks. 1) Let (M, g) and (M, \bar{g}) be two Finsler manifolds. Then (M, \bar{g}) is complete if (M, g) is complete and the tensor field $\bar{g} - g$ is positive semidefinite.

2) Let (M_1, d_1) and (M_2, d_2) be complete metric spaces. The product space $(M_1 \times M_2, d_1 + d_2)$ is complete.

3) Let $g_{ij}(x,y) = \gamma_{ij}(x) + c^{-2}y_iy_j$,

where γ_{ij} is a Riemann metric tensor, c is the universal speed-of light constant, \dot{x}^i is the tangent vector supported by a point $x = (x^i)$ and $y_i = \gamma_{ij}(x)\dot{x}^j$. If the Riemann manifold $(M, \gamma_{ij}(x))$ is complete, then the generalized Lagrange manifold $(M, g_{ij}(x, y))$ is complete. This generalized Lagrange manifold is not reducible to a Lagrange manifold, neither to a Finsler manifold nor to a Riemannian manifold [3].

\S **2.** Analytical criterion for completeness

Definition 2.1. A continuous function $f: M \to \mathbb{R}$ is called *proper* if $f^{-1}(K)$ is a compact set whenever K is compact.

Theorem 2.1. Let (M, g(x, y)) be a Finsler C^3 -manifold (not necessarily complete) and $f: M \to \mathbb{R}$ a proper C^3 function.

The Finsler manifold $(M, \tilde{g}(x, y) = g(x, y) + df(x) \otimes df(x))$ is complete.

PROOF. We consider the Finsler manifold $(M \times \mathbb{R}, h)$, where $h_{ij} = g_{ij}, h_{i\,n+1} = 0, i, j = 1, 2, ..., n, h_{n+1n+1} = 1$. The graph

$$G(f) = \{(x, f(x)) | x \in M\}$$

is a submanifold of the product manifold $M \times \mathbb{R}$, diffeomorphic to M.

The Finsler metric $h_{\alpha\beta}$ induces on G(f) the Finsler metric $\tilde{g} = g + df \otimes df$.

If $\{(x_n, f(x_n))\}$ is a Cauchy sequence of elements in G(f), then $\{f(x_n)\}$ is a Cauchy sequence in \mathbb{R} because

$$d_{G(f)}[(x, f(x)), (x', f(x'))] \ge d_{M \times R}[(x, f(x)), (x', f(x'))] \ge \\ \ge |f(x) - f(x')|.$$

Then there exists $z \in \mathbb{R}$ with $z = \lim_{n \to \infty} f(x_n)$ and hence $\{z, f(x_1), \ldots, f(x_n), \ldots\}$ is a compact set in \mathbb{R} . But $\{x_1, \ldots, x_n, \ldots\} \subset f^{-1}(\{z, f(x_1), \ldots\})$

 $\ldots, f(x_n), \ldots$) and f is proper. Hence the sequence $\{x_n\}$ contains a convergent subsequence since $\{x_n\}$ is contained in a compact set.

So the sequence $\{(x_n, f(x_n))\}$ is covergent and hence $(M, \tilde{g}(x, y))$ is complete.

Theorem 2.2. Let (M, g(x, y)) be a Finsler C^3 -manifold. If there exists a proper C^3 function $f: M \to \mathbb{R}$ such that the Finsler tensor field $g(x, y) - df(x) \otimes df(x)$ is positive definite, then (M, g(x, y)) is complete.

PROOF. Put, $\tilde{g} = g - df \otimes df$. If \tilde{g} is positive definite, then $(M, \tilde{g}(x, y))$ is a Finsler C^3 -manifold. As $f : M \to \mathbb{R}$ is a proper function, we apply theorem 2.1 which says that $(M, \tilde{g}+df \otimes df)$ is complete. But $\tilde{g}+df \otimes df = g$. Hence (M, g(x, y)) is complete.

Theorem 2.3. [1]. Any C^3 -manifold M supports a proper C^3 function $f: M \to \mathbb{R}$.

Theorem 2.4. Let (M, g(x, y)) be a Finsler C^3 -manifold and $f : M \to \mathbb{R}$ a C^3 function. Then the Finsler tensor field

$$\tilde{g}(x,y) = g(x,y) - df(x) \otimes df(x)$$

is positive definite iff $||df(x)||_y < 1$, for any vector y.

PROOF. Let $V^i(x,y) = g^{ij}(x,y)\frac{\partial f(x)}{\partial x^j}$ and $V(x,y) = V^i(x,y)\frac{\delta}{\delta x^i}$. Here $\frac{\delta}{\delta x^i} = \frac{\partial}{\partial x^i} - N^j_i \frac{\partial}{\partial y^j}$ is a local base adapted to the horizontal canonical distribution $N = (N^j_i(x,y))$ of the manifold (M,g).

Suppose that $\tilde{g}(x, y)$ is positive definite and x is not a critical point of f. Hence

$$0 < \tilde{g}_{ij}(x,y)V^{i}(x,y)V^{j}(x,y) = g_{ij}(x,y)g^{ik}(x,y)\frac{\partial f(x)}{\partial x^{k}}g^{j\ell}(x,y)\frac{\partial f(x)}{\partial x^{\ell}} - \frac{\partial f(x)}{\partial x^{i}}\frac{\partial f(x)}{\partial x^{j}}g^{ik}(x,y)\frac{\partial f(x)}{\partial x^{k}}g^{j\ell}(x,y)\frac{\partial f(x)}{\partial x^{\ell}} = \delta_{j}^{k}g^{j\ell}(x,y)\frac{\partial f(x)}{\partial x^{\ell}}\frac{\partial f(x)}{\partial x^{k}} - g^{ik}(x,y)\frac{\partial f(x)}{\partial x^{i}}\frac{\partial f(x)}{\partial x^{k}}g^{j\ell}(x,y)\frac{\partial f(x)}{\partial x^{j}}\frac{\partial f(x)}{\partial x^{\ell}} = \|df(x)\|_{y}^{2}(1-\|df(x)\|_{y}^{2}).$$

Thus $||df(x)||_y < 1, \forall y.$

Now suppose that $\|df(x)\|_y < 1$, $\forall y$. Then for any vector field $X(x) = X^i(x)\frac{\partial}{\partial x^i}$ we have

$$\begin{split} \tilde{g}_{ij}(x,y)X^{i}(x)X^{j}(x) &= g_{ij}(x,y)X^{i}(x)X^{j}(x) - \frac{\partial f(x)}{\partial x^{i}}X^{i}(x)\frac{\partial f(x)}{\partial x^{j}}X^{j}(x) = \\ &= \|X(x)\|_{y}^{2} - \delta_{k}^{i}\frac{\partial f(x)}{\partial x^{i}}X^{k}(x)\delta_{\ell}^{j}\frac{\partial f(x)}{\partial x^{j}}X^{\ell}(x) = \|X(x)\|_{y}^{2} - \\ &- g_{km}(x,y)g^{im}(x,y)\frac{\partial f(x)}{\partial x^{i}}X^{k}(x)g_{\ell s}(x,y)g^{js}(x,y)\frac{\partial f(x)}{\partial x^{j}}X^{\ell}(x) = \\ &= \|X(x)\|_{y}^{2} - (g_{km}(x,y)g^{im}(x,y)\frac{\partial f(x)}{\partial x^{i}}X^{k}(x))^{2} \geq \\ &\geq \|X(x)\|_{y}^{2} - (g_{km}(x,y)X^{k}(x)X^{m}(x))^{2} \left(g^{is}(x,y)\frac{\partial f(x)}{\partial x^{i}}\frac{\partial f(x)}{\partial x^{s}}\right)^{2} = \\ &= \|X(x)\|_{y}^{2}(1 - \|df(x)\|_{y}^{2})\,, \end{split}$$

and hence $\tilde{g}(x, y)$ is positive definite.

From theorems 2.2 and 2.4 follows

Theorem 2.5. A Finsler C^3 -manifold (M, g(x, y)) which supports a proper C^3 function $f: M \to \mathbb{R}$ such that $\|df(x)\|_y < 1, \forall y$, is complete.

Theorem 2.6. Let (M, g(x, y)) be a Finsler C^3 -manifold and $f : M \to \mathbb{R}$ a proper C^3 function. Then

$$(M, \ \tilde{g}(x,y) = e^{\|df(x)\|_y^2}g(x,y))$$

is a complete Finsler manifold.

PROOF. Obviously $\tilde{g}(x, y)$ is symmetric, positive definite and its components $\tilde{g}_{ij}(x, y)$ are homogeneous functions of degree zero with respect to y. On the other hand

$$\|\widetilde{df(x)}\|_y^2 = e^{-\|df(x)\|_y^2} \|df(x)\|_y^2 \le \frac{1}{e}.$$

So the proper function $\varphi: M \to \mathbb{R}, \ \varphi = \sqrt{e}f$ satisfies $\|\widetilde{d\varphi}\|_y^2 < 1, \forall y$. Applying theorem 2.5 we obtain the desired result.

\S 3. Warped products of complete Finsler manifolds

Let $(M_1, g_1(x_1, y_1))$ and $(M_2, g_2(x_2, y_2))$ be Finsler manifolds and f > 0 a differentiable function on M_1 . Consider the product manifold $M_1 \times M_2$ with its projections

$$\pi: M_1 \times M_2 \to M_1, \quad \eta: M_1 \times M_2 \to M_2.$$

The Finsler manifold

$$(M_1 \times M_2, g_1 + fg_2)$$

is called the warped product between (M_1, g_1) and (M_2, g_2) .

Theorem 3.1. $(M_1 \times M_2, g_1 + fg_2)$ is complete if and only if (M_1, g_1) and (M_2, g_2) are complete.

PROOF. If $(M_1 \times M_2, g_1 + fg_2)$ is complete, then a Cauchy sequence in (M_1, g_1) or (M_2, g_2) imbeds in a (horizontal) leaf or a (vertical) fiber as a Cauchy sequence, and hence converges.

If (M_1, g_1) and (M_2, g_2) are complete, let $\{p_i = (p_{1i}, p_{2i})\}$ be a Cauchy sequence in $(M_1 \times M_2, g_1 + fg_2)$. Denote by α_{ij} a curve from p_i to p_j in $(M_1 \times M_2, g_1 + fg_2)$ having length at most $2d(p_i, p_j)$. We can assume that all projections $\pi \circ \alpha_{ij}$ lie in a compact region in M_1 , and on this we have $f \ge c > 0$. Consequently the speed of α_{ij} at each point is at least c times the speed of $\eta \circ \alpha_{ij}$. Thus

$$d(p_{2i}, p_{2j}) \le \frac{2}{c} d(p_i, p_j)$$

showing that $\{p_{2i}\}$ is Cauchy and hence convergent.

Since π is distance-nonincreasing, the sequence $\{p_{1i}\}$ is also Cauchy, hence convergent. Thus $\{p_i\}$ is convergent, and $(M_1 \times M_2, g_1 + fg_2)$ is complete.

References

- W. B. GORDON, An analytical criterion for the completeness of Riemannian manifolds, Proc. Amer. Math. Soc. 37, 1 (1973), 221–225.
- [2] B. T. M. HASSAN, The theory of geodesics in Finsler spaces, Thesis, Southampton, 1967.
- [3] T. KAWAGUCHI and R. MIRON, On the generalized Lagrange spaces with the metric $\gamma_{ij}(x) + c^{-2}y_iy_j$, Tensor, N.S. 48 (1989), 52–63.
- [4] M. MATSUMOTO, Foundations of Finsler Geometry and Special Finsler Spaces, *Kyoto*, 1982.
- [5] R. MIRON and M. ANASTASIEI, Fibrate vectoriale. Spații Lagrange. Aplicații în teoria relativitătii, *Editura Academiei, București*, 1987.
- [6] C. UDRIŞTE, Convexity of Finsler energies, An. St. Univ. Al. I. Cuza, Iaşi, XXX (1984–4), 91–94.
- [7] C. UDRIŞTE and O. SANDRU, An analytical criterion for the completeness of Finsler manifolds, preprint.

CONSTANTIN UDRIŞTE DEPARTMENT OF MATHEMATICS I POLYTECHNIC INSTITUTE BUCHAREST ROMANIA

(Received August 28, 1991; revised April 13, 1992)