Publ. Math. Debrecen 57 / 3-4 (2000), 367–373

Some remarks on Finsler vector bundles

By TADASHI AIKOU (Kagoshima)

Abstract. Let (E, F) be a Finsler vector bundle modeled on a Minkowski space (\mathbb{V}, f) . Then, by definition, the structure group of E is reducible to the isometry group G_f of f. In this paper, we shall give a condition for a Finsler vector bundle (E, F) to be a Riemannian vector bundle in terms of G_f .

1. Introduction

Recently Finsler geometry became an important branch in differential geometry, and numbers of articles in this field have been published (cf. ABATE–PATRIZIO [1], BAO–CHERN [5], CHERN [6], KOBAYASHI [8], SHEN [10], e.t.c.). In particular, the notion of Finsler manifolds modeled on a Minkowski space due to ICHIJY \bar{O} [7] is an important object in Finsler geometry. This is a natural generalization of so-called Berwald spaces (or affinely connected spaces)(cf. MATSUMOTO [9]). In the present paper, we shall extend this notion to a vector bundles over a smooth manifold. In the case of complex Finsler manifolds, we have investigated in AIKOU [2], [3].

Let \mathbb{V} be an *n*-dimensional vector space with a Minkowski norm f. If we denote by $GL(\mathbb{V})$ the general linear transformation group of \mathbb{V} , we can define a natural action of $GL(\mathbb{V})$ to f. If we denote by G_f the isometry group of f, we know that G_f is isomorphic to a closed subgroup of the orthogonal group O(n) (cf. [7]).

Let $\pi: E \to M$ be a vector bundle of rank E = n over a connected C^{∞} -manifold M. A *Finsler structure* $F: E \to \mathbb{R}$ on E is a smooth

Mathematics Subject Classification: 53B40.

Key words and phrases: Minkowski space, Finsler vector bundles.

This work is supported in part by Research Grant 10640083 (1998), the Ministry of Education of Japan.

Tadashi Aikou

assignment for each point $x \in M$ a Minkowski norm F_x on each fibre $\pi^{-1}(x) := E_x$. Roughly speaking, a Finsler vector bundle (E, F) is said to be modeled on a Minkowski space (\mathbb{V}, f) if E admits a G_f -structure and, moreover, each fibre $E_x = \pi^{-1}(x)$ is isometric to (\mathbb{V}, f) (Proposition 3.1). We note that a Riemannian vector bundle is modeled on an inner product space. Since the Lie group G_f is isomorphic to a closed subgroup of O(n), it is a natural question whether G_f can be maximum, that is, $G_f \cong O(n)$.

In this short note, we shall give a condition for (E, F) to be a Riemannian vector bundle in terms of the isometry group G_f .

2. Minkowski space

We shall recall the notion of Minkowski space. For an introduction to Minkowski space and some examples, see THOMPSON [12].

A vector space \mathbb{V} is called a *Minkowski space* if it admits a function $f: \mathbb{V} \to \mathbb{R}$ satisfying the following conditions:

- 1. $f(\xi) \ge 0$, and $f(\xi) = 0$ if and only if $\xi = \mathbb{O}$.
- 2. $f(\xi)$ is C^{∞} on $\mathbb{V} \{\mathbb{O}\}$, and f is continuous on \mathbb{V} .
- 3. $f(\lambda\xi) = \lambda f(\xi)$ for $\forall \xi \in \mathbb{V}$ and $\forall \lambda > 0$.
- 4. f is strongly convex.

If we denote by (ξ^1, \ldots, ξ^n) the coordinate on \mathbb{V} with respect to a fixed bases $\{e_1, \ldots, e_n\}$, the strong convexity means that

$$\frac{1}{2}\sum_{A,B=1}^{n}\frac{\partial^{2}f^{2}}{\partial\xi^{A}\partial\xi^{B}}X^{A}X^{B} > 0$$

for $\forall \xi \in \mathbb{V} - \{\mathbb{O}\}$ and $\forall (X^1, \ldots, X^n) \neq \mathbb{O}$. The norm $\|\xi\|$ of $\forall \xi \in \mathbb{V}$ is defined by $\|\xi\| = f(\xi)$. For a Minkowski norm f, we define the *indicatrix* $\mathcal{D}_f \subset \mathbb{V}$ of f by

$$\mathcal{D}_f = \{\xi \in \mathbb{V}; \|\xi\| < 1\}.$$

 \mathcal{D}_f is a bounded and strictly convex domain centered at the origin \mathbb{O} . Since

$$[f(\xi)]^2 = \frac{1}{2} \sum_{A,B=1}^n \frac{\partial^2 f^2}{\partial \xi^A \partial \xi^B} (\lambda \xi) \xi^A \xi^B > 0$$

for $\forall \lambda \in \mathbb{R}$, it is easily shown that the following conditions are equivalent:

368

1. \mathcal{D}_f is linear isomorphic to the unit ball, that is, there exists $\exists (g_B^A) \in GL(n, \mathbb{R})$ satisfying

$$\mathcal{D}_f = \left\{ \sum_{A,B=1}^n (g_B^A \xi^B)^2 < 1 \right\}.$$

- 2. f is C^{∞} on \mathbb{V} .
- 3. $f(\xi) = \sqrt{(\xi, \xi)}$ for an inner product (\cdot, \cdot) on \mathbb{V} .

For a Minkowski norm f on \mathbb{V} , we denote by G_f the isometry group of f:

$$G_f = \{ A \in GL(\mathbb{V}); \ f(A\xi) = f(\xi) \text{ for } \forall \xi \in \mathbb{V} \}$$

Because of the continuity of f, it is proved that G_f is a compact Lie group, and so it is isomorphic to a closed subgroup of the orthogonal group O(n). Since $f(g\xi) = f(\xi) = 1$ for $\forall \xi \in \mathbb{S}_f = \partial \mathcal{D}_f$ and $\forall g \in G_f$, G_f acts on the f-sphere \mathbb{S}_f . The action is transitive if and only if (\mathbb{V}, f) is an inner product space(cf. [2]). We shall give another characterization of inner product spaces.

Proposition 2.1. Let (\mathbb{V}, f) be Minkowski space. Then (\mathbb{V}, f) is an inner product space if and only if the isometry group G_f is isomorphic to the orthogonal group O(n).

PROOF. Since G_f is compact, there exists a bi-invariant Haar measure dg. Then, for an arbitrary inner product (\cdot, \cdot) , we define a G_f -invariant inner product $\langle \cdot, \cdot \rangle$ by

(2.1)
$$\langle \xi, \eta \rangle = \int_{G_f} (g\xi, g\eta) dg.$$

If we put $f_0(\xi) = \sqrt{\langle \xi, \xi \rangle}$, the indicatrix \mathcal{D}_{f_0} of f_0 is the open unit ball centered at the origin \mathbb{O} with $G_{f_0} \cong O(n)$. The group G_{f_0} acts on the unit sphere $\mathbb{S}^{n-1} = \partial \mathcal{D}_{f_0}$ transitively. We can assume without loss of generality that $\mathcal{D}_f \cap \mathcal{D}_{f_0} \neq \phi$, because if it is necessary we multiply the inner product (\cdot, \cdot) in (2.1) by a positive constant. Let ξ_0 be a fixed point in $\mathcal{D}_f \cap \mathcal{D}_{f_0}$.

We suppose that $G_f \cong O(n)$. Then G_f also acts on \mathbb{S}^{n-1} transitively. For an arbitrary point $\eta \in \mathbb{S}^{n-1}$, there exists a $g \in G_f$ satisfying $\eta = g\xi_0$. Then we have $f(\eta) = f(g\xi_0) = f(\xi_0) = 1$. Hence $\eta \in \mathbb{S}_f$, from which we have $f(\xi) = \sqrt{\langle \xi, \xi \rangle}$. The converse is true.

The group $GL(\mathbb{V})$ also acts on the set of Minkowski norms on \mathbb{V} as follows. For $\forall A \in GL(\mathbb{V})$ and a Minkowski norm f, we define a Minkowski norm A^*f by $(A^*f)(\xi) = f(A\xi)$ for $\xi \in \mathbb{V}$. By this action, a Minkowski norm f is invariant by G_f , and moreover by Proposition 2.1, a Minkowski space (\mathbb{V}, f) is an inner product space if and only if $G_f \cong O(n)$.

In the following, we shall identify $GL(\mathbb{V})$ with the general linear group $GL(n, \mathbb{R})$ with respect to a fixed bases $\{e_1, \ldots, e_n\}$ of \mathbb{V} . Under this identification, we also denote by G_f the closed subgroup of O(n).

3. Finsler vector bundles

Let $\pi: E \to M$ be a vector bundle with rank E = n over a connected C^{∞} -manifold M. We denote by (x, y) a point of the total space E, where x means the point of the base manifold M and y the point of the fibre $\pi^{-1}(x)$.

On each fibre E_x , if a Minkowski norm $F_x(y)$ is assigned smoothly, the function F(x, y) defined by $F(x, y) = F_x(y)$ is called a Finsler structure on E.

Definition 3.1. A function $F: E \to \mathbb{R}$ is called a *Finsler structure* if it satisfies the following conditions:

- 1. $F(x, y) \ge 0$, and F(x, y) = 0 if and only if $y = \mathbb{O}$,
- 2. F(x,y) is C^{∞} on the outside of the zero-section and continuous on E,
- 3. $F(x, \lambda y) = \lambda F(x, y)$ for $\forall \lambda > 0$ and $\forall y \in E_x$.
- 4. The restriction F_x of F to each fibre E_x is strongly convex for all $x \in M$.

A Finsler structure F is said to be *Riemannian structure* if F is the norm function defined by an inner product g on E: $F(x, y) = \sqrt{g(y, y)}$.

Let $\{s_1, \ldots, s_n\}$ be a local frame field of E. If we denote by (y^1, \ldots, y^n) the fibre coordinate of E_x , the strong convexity condition is written as

$$\frac{1}{2}\sum_{A,B=1}^{n}\frac{\partial^{2}F^{2}}{\partial y^{A}\partial y^{B}}X^{A}X^{B} > 0$$

for $\forall y \in E_x - \{\mathbb{O}\}$ and $\forall (X^1, \dots, X^n) \neq \mathbb{O}$.

We suppose that the structure group $GL(n, \mathbb{R})$ of E is reducible to the Lie group G_f . Let $\{t_A\} = \{t_1, \ldots, t_n\}$ be a frame field on E adapted to the G_f -structure. Identifying each fibre E_x $(x \in M)$ with \mathbb{V} , we define an isomorphism $T_x : E_x \to \mathbb{V}$ by

$$T_x y = \sum_A y^A e_A$$

for $\forall y = \sum y^A t_A \in E_x$.

Definition 3.2 ([6]). If a Finsler vector bundle (E, F) satisfies the following conditions, then (E, F) is said to be modeled on a Minkowski space (\mathbb{V}, f) .

- 1. The structure group $GL(n, \mathbb{R})$ of E is reducible to G_f .
- 2. The norm $||y||_F = F(x, y)$ of $y \in E_x$ is given by $||y||_F = f(T_x y)$.

Remark 3.1. Since $\{t_A\}$ is an adapted frame field of the G_f -structure and f is G_f -invariant, the definition of $||y||_F$ is well-defined.

Let ∇ be a connection on E. The connection forms $\Pi = (\Pi_B^A)$ and $\Theta = (\Theta_B^A)$ with respect to the frames $\{s_A\}$ and $\{t_A\}$ are defined y

$$\nabla s_B = \sum_A \Pi_B^A s_A, \quad \nabla t_B = \sum_A \Theta_B^A t_A,$$

respectively. If we denote by $s_A = \sum t_B T_A^B(x)$ the change of local frame field, the connection forms Π and Θ satisfy the relation

(3.1)
$$\Theta_B^A = \sum_C T_C^A \left(dS_B^C + \sum_D \Pi_D^B S_C^D \right),$$

where (S_B^A) is the inverse of (T_B^A) .

A connection ∇ on E said to be *adapted* to the G_f -structure, if its connection form $\Theta = (\Theta_B^A)$ with respect to an adapted frame $\{t_A\}$ is a 1form with values in the Lie algebra \mathfrak{g} of G_f . Since Θ is a 1-form with values in \mathfrak{g} , we have $\exp(t\Theta) \in G_f$ for $\forall t \in \mathbb{R}$. Hence we have $f(\exp(t\Theta)\xi) = f(\xi)$ for $\forall \xi \in \mathbb{V}$. Differentiating at t = 0, we have

(3.2)
$$\sum_{A,B} \frac{\partial f}{\partial \xi^A} \Theta^A_B \xi^B = 0.$$

Tadashi Aikou

The second condition in Definition 3.2 implies that each fibre (E_x, F_x) is isometric to (E_{x_0}, F_{x_0}) . In fact, the equation (3.1) and (3.2) imply

(3.3)
$$\frac{d}{dt}F(c(t), y(t)) = 0.$$

for any parallel field y(t) with respect to ∇ along a curve c(t). Hence the connection ∇ preserves the metric F. By the well-known theorem due to SZABÓ [11], the connection ∇ is a metrical connection of a Riemannian structure. We shall show an example of Finsler vector bundle which is modeled on a Minkowski space.

Example 3.1. Let (E_1, g_1) and (E_2, g_2) be Riemannian vector bundles over a manifold M of rank $E_1 = n_1$ and rank $E_2 = n_2$ respectively. (E_1, g_1) and (E_2, g_2) are modeled on an inner product space (\mathbb{V}_1, f_1) and (\mathbb{V}_2, f_2) respectively. The direct sum $E = E_1 \oplus E_2$ with the Riemannian structure $g = \begin{pmatrix} g_1 & O \\ O & g_2 \end{pmatrix}$ admits an $O(n_1) \times O(n_2)$ -structure. We define a Finsler structure F on E by

$$[F(x,y)]^{2} = \frac{1}{2} \left\{ \|y\|^{2} + \sqrt{\|y\|^{4} + 4t \|y_{2}\|^{4}} \right\}$$

for $y = y_1 \oplus y_2 \in E$, where $t \ge 0$ is sufficiently small so that F is strong convex, and we put $||y||^2 = g(y, y)$ and $||y_2||^2 = g_2(y_2, y_2)$. This bundle (E, F) is modeled on $(\mathbb{V}_1 \oplus \mathbb{V}_2, f)$ with

$$[f(\xi)]^{2} = \frac{1}{2} \left\{ \left\| \xi \right\|^{2} + \sqrt{\left\| \xi \right\|^{4} + 4t \left\| \xi_{2} \right\|^{4}} \right\},\$$

where we put $\|\xi\|^2 = [f_1(\xi_1)]^2 + [f_2(\xi_2)]^2$ and $\|\xi_2\|^2 = [f_2(\xi_2)]^2$ for $\xi = \xi_1 \oplus \xi_2 \in \mathbb{V}_1 \oplus \mathbb{V}_2$. (E, F) is reducible to a Riemannian vector bundle if and only if t = 0.

Suppose that (E, F) is modeled on a Minkowski space (\mathbb{V}, f) . As stated in the previous section, the group G_f is isomorphic to a closed subgroup of O(n) for an arbitrary Minkowski norm f. The main result of this paper, a characterization of Riemannian vector bundle in terms of the Lie group G_f , is the following: **Theorem 3.1.** Let (E, F) be a Finsler vector bundle modeled on a Minkowski space (\mathbb{V}, f) . Then (E, F) is a Riemannian vector bundle if and only if the isometry group G_f is isomorphic to the orthogonal group O(n).

PROOF. Since each fibre (E_x, F_x) is isometric to a fixed Minkowski space (E_{x_0}, F_{x_0}) , the proof of this theorem is obtained from Proposition 2.1.

Acknowledgements. The author wishes to express his sincere gratitude to referees for the invaluable suggestions and comments.

References

- P. ABATE and G. PATRIZIO, Finsler metrics A global approach with applications to geometric function theory, Lecture Notes, vol. 1591, Springer, 1994.
- [2] T. AIKOU, Complex manifolds modeled on a complex Minkowski space, J. Math. Kyoto Univ. 35 (1995), 83–101.
- [3] T. AIKOU, Some remarks on locally conformal complex Berwald spaces, Contemp. Math. 196 (1996), 109–120.
- [4] D. AMIR, Characterization of Inner Product Spaces, Birkhäuser, Basel, 1986.
- [5] D. BAO and S. S. CHERN, On a notable connection in Finsler geometry, Houston J. Math. 19 (1) (1993), 137–182.
- [6] S. S. CHERN, On Finsler geometry, C. R. Acad. Sc. Paris 314 (1992), 757-761.
- [7] Y. ICHIJYŌ, Finsler manifolds modeled on a Minkowski space, J. Math. Kyoto Univ. 6 (1975), 639–652.
- [8] S. KOBAYASHI, Complex Finsler vector bundles, Contemp. Math. 196 (1996), 14–153.
- [9] M. MATSUMOTO, Foundation of Finsler geometry and special Finsler spaces, Kaiseisha-Press, Otsu, Japan, 1986.
- [10] Z. SHEN, Finsler manifolds of constant positive curvature, Contemp. Math. 196 (1996), 83–93.
- [11] Z. I. SZABÓ, Positive definite Berwald spaces, Tensor N. S. 35 (1981), 25-39.
- [12] A. C. THOMPSON, Minkowski Geometry, Cambridge University Press, 1996.

TADASHI AIKOU DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE FACULTY OF SCIENCE KAGOSHIMA UNIVERSITY KORIMOTO 1–21–35 KAGOSHIMA 890–0065 JAPAN

E-mail: aikou@sci.kagoshima-u.ac.jp

(Received December 18, 1998; revised August 30, 1999; file arrived February 15, 2000)