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Some remarks on Finsler vector bundles

By TADASHI AIKOU (Kagoshima)

Abstract. Let (E, F ) be a Finsler vector bundle modeled on a Minkowski space
(V, f). Then, by definition, the structure group of E is reducible to the isometry group
Gf of f . In this paper, we shall give a condition for a Finsler vector bundle (E, F ) to
be a Riemannian vector bundle in terms of Gf .

1. Introduction

Recently Finsler geometry became an important branch in differen-
tial geometry, and numbers of articles in this field have been published
(cf. Abate–Patrizio [1], Bao–Chern [5], Chern [6], Kobayashi [8],
Shen [10], e.t.c.). In particular, the notion of Finsler manifolds modeled
on a Minkowski space due to Ichijyō [7] is an important object in Finsler
geometry. This is a natural generalization of so-called Berwald spaces (or
affinely connected spaces)(cf. Matsumoto [9]). In the present paper, we
shall extend this notion to a vector bundles over a smooth manifold. In the
case of complex Finsler manifolds, we have investigated in Aikou [2], [3].

Let V be an n-dimensional vector space with a Minkowski norm f . If
we denote by GL(V) the general linear transformation group of V, we can
define a natural action of GL(V) to f . If we denote by Gf the isometry
group of f , we know that Gf is isomorphic to a closed subgroup of the
orthogonal group O(n) (cf. [7]).

Let π : E → M be a vector bundle of rank E = n over a connected
C∞-manifold M . A Finsler structure F : E → R on E is a smooth
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assignment for each point x ∈ M a Minkowski norm Fx on each fibre
π−1(x) := Ex. Roughly speaking, a Finsler vector bundle (E,F ) is said to
be modeled on a Minkowski space (V, f) if E admits a Gf -structure and,
moreover, each fibre Ex = π−1(x) is isometric to (V, f) (Proposition 3.1).
We note that a Riemannian vector bundle is modeled on an inner product
space. Since the Lie group Gf is isomorphic to a closed subgroup of O(n),
it is a natural question whether Gf can be maximum, that is, Gf

∼= O(n).
In this short note, we shall give a condition for (E, F ) to be a Rie-

mannian vector bundle in terms of the isometry group Gf .

2. Minkowski space

We shall recall the notion of Minkowski space. For an introduction to
Minkowski space and some examples, see Thompson [12].

A vector space V is called a Minkowski space if it admits a function
f : V→ R satisfying the following conditions:

1. f(ξ) ≥ 0, and f(ξ) = 0 if and only if ξ = O.

2. f(ξ) is C∞ on V− {O}, and f is continuous on V.

3. f(λξ) = λf(ξ) for ∀ξ ∈ V and ∀λ > 0.

4. f is strongly convex.

If we denote by (ξ1, . . . , ξn) the coordinate on V with respect to a fixed
bases {e1, . . . , en}, the strong convexity means that

1
2

n∑

A,B=1

∂2f2

∂ξA∂ξB
XAXB > 0

for ∀ξ ∈ V − {O} and ∀(X1, . . . , Xn) 6= O. The norm ‖ξ‖ of ∀ξ ∈ V is
defined by ‖ξ‖ = f(ξ). For a Minkowski norm f , we define the indicatrix
Df ⊂ V of f by

Df = {ξ ∈ V; ‖ξ‖ < 1} .

Df is a bounded and strictly convex domain centered at the origin O.
Since

[f(ξ)]2 =
1
2

n∑

A,B=1

∂2f2

∂ξA∂ξB
(λξ)ξAξB > 0

for ∀λ ∈ R, it is easily shown that the following conditions are equivalent:
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1. Df is linear isomorphic to the unit ball, that is, there exists ∃(gA
B) ∈

GL(n,R) satisfying

Df =





n∑

A,B=1

(gA
BξB)2 < 1



 .

2. f is C∞ on V.

3. f(ξ) =
√

(ξ, ξ) for an inner product ( · , · ) on V.

For a Minkowski norm f on V, we denote by Gf the isometry group
of f :

Gf = {A ∈ GL(V); f(Aξ) = f(ξ) for ∀ξ ∈ V} .

Because of the continuity of f , it is proved that Gf is a compact Lie group,
and so it is isomorphic to a closed subgroup of the orthogonal group O(n).
Since f(gξ) = f(ξ) = 1 for ∀ξ ∈ Sf = ∂Df and ∀g ∈ Gf , Gf acts on
the f -sphere Sf . The action is transitive if and only if (V, f) is an inner
product space(cf. [2]). We shall give another characterization of inner
product spaces.

Proposition 2.1. Let (V, f) be Minkowski space. Then (V, f) is an

inner product space if and only if the isometry group Gf is isomorphic to

the orthogonal group O(n).

Proof. Since Gf is compact, there exists a bi-invariant Haar measure
dg. Then, for an arbitrary inner product ( · , · ), we define a Gf -invariant
inner product 〈 · , · 〉 by

(2.1) 〈ξ, η〉 =
∫

Gf

(gξ, gη)dg.

If we put f0(ξ) =
√
〈ξ, ξ〉, the indicatrix Df0 of f0 is the open unit ball

centered at the origin O with Gf0
∼= O(n). The group Gf0 acts on the unit

sphere Sn−1 = ∂Df0 transitively. We can assume without loss of generality
that Df ∩Df0 6= φ, because if it is necessary we multiply the inner product
( · , · ) in (2.1) by a positive constant. Let ξ0 be a fixed point in Df ∩Df0 .

We suppose that Gf
∼= O(n). Then Gf also acts on Sn−1 transitively.

For an arbitrary point η ∈ Sn−1, there exists a g ∈ Gf satisfying η = gξ0.
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Then we have f(η) = f(gξ0) = f(ξ0) = 1. Hence η ∈ Sf , from which we
have f(ξ) =

√
〈ξ, ξ〉. The converse is true. ¤

The group GL(V) also acts on the set of Minkowski norms on V as
follows. For ∀A ∈ GL(V) and a Minkowski norm f , we define a Minkowski
norm A∗f by (A∗f)(ξ) = f(Aξ) for ξ ∈ V. By this action, a Minkowski
norm f is invariant by Gf , and moreover by Proposition 2.1, a Minkowski
space (V, f) is an inner product space if and only if Gf

∼= O(n).
In the following, we shall identify GL(V) with the general linear group

GL(n,R) with respect to a fixed bases {e1, . . . , en} of V. Under this iden-
tification, we also denote by Gf the closed subgroup of O(n).

3. Finsler vector bundles

Let π : E → M be a vector bundle with rank E = n over a connected
C∞-manifold M . We denote by (x, y) a point of the total space E, where
x means the point of the base manifold M and y the point of the fibre
π−1(x).

On each fibre Ex, if a Minkowski norm Fx(y) is assigned smoothly, the
function F (x, y) defined by F (x, y) = Fx(y) is called a Finsler structure
on E.

Definition 3.1. A function F : E → R is called a Finsler structure if
it satisfies the following conditions:

1. F (x, y)≥0, and F (x, y) = 0 if and only if y = O,

2. F (x, y) is C∞ on the outside of the zero-section and continuous on E,

3. F (x, λy) = λF (x, y) for ∀λ > 0 and ∀y ∈ Ex.

4. The restriction Fx of F to each fibre Ex is strongly convex for all
x ∈ M .

A Finsler structure F is said to be Riemannian structure if F is the norm
function defined by an inner product g on E: F (x, y) =

√
g(y, y).

Let {s1, . . . , sn} be a local frame field of E. If we denote by (y1, . . . , yn)
the fibre coordinate of Ex, the strong convexity condition is written as

1
2

n∑

A,B=1

∂2F 2

∂yA∂yB
XAXB > 0
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for ∀y ∈ Ex − {O} and ∀(X1, . . . , Xn) 6= O.
We suppose that the structure group GL(n,R) of E is reducible to

the Lie group Gf . Let {tA} = {t1, . . . , tn} be a frame field on E adapted
to the Gf -structure. Identifying each fibre Ex (x ∈ M) with V, we define
an isomorphism Tx : Ex → V by

Txy =
∑

A

yAeA

for ∀y =
∑

yAtA ∈ Ex.

Definition 3.2 ([6]). If a Finsler vector bundle (E,F ) satisfies the
following conditions, then (E,F ) is said to be modeled on a Minkowski
space (V, f).

1. The structure group GL(n,R) of E is reducible to Gf .

2. The norm ‖y‖F = F (x, y) of y ∈ Ex is given by ‖y‖F = f(Txy).

Remark 3.1. Since {tA} is an adapted frame field of the Gf -structure
and f is Gf -invariant, the definition of ‖y‖F is well-defined.

Let ∇ be a connection on E. The connection forms Π = (ΠA
B ) and

Θ = (ΘA
B) with respect to the frames {sA} and {tA} are defined y

∇sB =
∑

A

ΠA
BsA, ∇tB =

∑

A

ΘA
BtA,

respectively. If we denote by sA =
∑

tBTB
A (x) the change of local frame

field, the connection forms Π and Θ satisfy the relation

(3.1) ΘA
B =

∑

C

TA
C

(
dSC

B +
∑

D

ΠB
DSD

C

)
,

where (SA
B) is the inverse of (TA

B ).
A connection ∇ on E said to be adapted to the Gf -structure, if its

connection form Θ = (ΘA
B) with respect to an adapted frame {tA} is a 1-

form with values in the Lie algebra g of Gf . Since Θ is a 1-form with values
in g, we have exp(tΘ) ∈ Gf for ∀t ∈ R. Hence we have f(exp(tΘ)ξ) = f(ξ)
for ∀ξ ∈ V. Differentiating at t = 0, we have

(3.2)
∑

A,B

∂f

∂ξA
ΘA

BξB = 0.
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The second condition in Definition 3.2 implies that each fibre (Ex, Fx) is
isometric to (Ex0 , Fx0). In fact, the equation (3.1) and (3.2) imply

(3.3)
d

dt
F (c(t), y(t)) = 0.

for any parallel field y(t) with respect to ∇ along a curve c(t). Hence the
connection ∇ preserves the metric F . By the well-known theorem due to
Szabó [11], the connection ∇ is a metrical connection of a Riemannian
structure. We shall show an example of Finsler vector bundle which is
modeled on a Minkowski space.

Example 3.1. Let (E1, g1) and (E2, g2) be Riemannian vector bundles
over a manifold M of rank E1 = n1 and rank E2 = n2 respectively. (E1, g1)
and (E2, g2) are modeled on an inner product space (V1, f1) and (V2, f2)
respectively. The direct sum E = E1 ⊕E2 with the Riemannian structure

g =
(

g1 O

O g2

)
admits an O(n1) × O(n2)-structure. We define a Finsler

structure F on E by

[F (x, y)]2 =
1
2

{
‖y‖2 +

√
‖y‖4 + 4t ‖y2‖4

}

for y = y1 ⊕ y2 ∈ E, where t ≥ 0 is sufficiently small so that F is strong
convex, and we put ‖y‖2 = g(y, y) and ‖y2‖2 = g2(y2, y2). This bundle
(E, F ) is modeled on (V1 ⊕ V2, f) with

[f(ξ)]2 =
1
2

{
‖ξ‖2 +

√
‖ξ‖4 + 4t ‖ξ2‖4

}
,

where we put ‖ξ‖2 = [f1(ξ1)]2 + [f2(ξ2)]2 and ‖ξ2‖2 = [f2(ξ2)]2 for ξ =
ξ1 ⊕ ξ2 ∈ V1 ⊕ V2. (E,F ) is reducible to a Riemannian vector bundle if
and only if t = 0.

Suppose that (E, F ) is modeled on a Minkowski space (V, f). As
stated in the previous section, the group Gf is isomorphic to a closed
subgroup of O(n) for an arbitrary Minkowski norm f . The main result of
this paper, a characterization of Riemannian vector bundle in terms of the
Lie group Gf , is the following:
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Theorem 3.1. Let (E,F ) be a Finsler vector bundle modeled on a

Minkowski space (V, f). Then (E,F ) is a Riemannian vector bundle if and

only if the isometry group Gf is isomorphic to the orthogonal group O(n).

Proof. Since each fibre (Ex, Fx) is isometric to a fixed Minkow-
ski space (Ex0 , Fx0), the proof of this theorem is obtained from Propo-
sition 2.1. ¤
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