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Binomial coefficients in arithmetic progressions

By CS. RAKACZKI (Debrecen)

Dedicated to Professor Kálmán Győry on his 60th birthday

Abstract. In this paper we consider arithmetic progressions of polynomial values
and binomial coefficients. Under certain conditions we obtain effective finiteness results
concerning such progressions. Moreover, in some special cases we determine all the
arithmetic progressions in question.

1. Introduction

In this paper we consider three-term arithmetic progressions of bi-
nomial coefficients and polynomial values. More precisely, we consider
arithmetic progressions of the form

(1) f(x) + g(x),
(

y

m

)
,

(
x

n

)
,

where m, n are given positive integers, f(x) ∈ Q[x] is an integer-valued
polynomial with deg f(x) ≤ n − 1, and g(x) ∈ Z[x]. Our purpose is to
investigate those integers x ≥ n, y ≥ m, for which the corresponding
values in (1) form an arithmetic progression in some order.

For m ∈ {2, 4} we will provide (cf. Theorem 1) an effective upper
bound for these solutions x, y of (1). For these values of m the study of such

Mathematics Subject Classification: 11D25, 11D41.
Key words and phrases: combinatorial diophantine equations, elliptic equations.



548 Cs. Rakaczki

arithmetic progressions can be reduced to the investigation of equations of
the form

(2) u2 = a

(
x

n

)
+ b (f(x) + g(x)) + c in integers x, u,

where a, b, c are given integers. This is a special hyperelliptic equation. In
1993 Pintér [12] showed that under certain conditions equation (2) has
only finitely many solutions which can be effectively determined. Further,
in the special case when the polynomial f(x) + g(x) = k is constant, a
result of Ping Zhi [11] implies the same assertion. In the latter case, we
have to examine the equation

(3) 2
(

x

n

)
=

(
y

m

)
+ k.

A recent theorem of Beukers, Shorey and Tijdeman [3] implies that
apart from some particular cases (e.g. m = n = 2) this equation has
only finitely many solutions when k = 0. Further, in the case (n,m, k) =
(4, 4, 0), Cohn [5] gave all the solutions.

An important equation of similar type is

(4)
(

x

n

)
=

(
y

m

)
in integers x, y with x ≥ n, y ≥ m

where n,m ≥ 2. There are many effective and numerical results concerning
this equation. In 1988 Kiss [9] proved that if p is a given odd prime, then
the equation (

x

p

)
=

(
y

2

)

has only finitely many positive integer solutions which can be effectively
determined. In 1991 Brindza [4] using Baker’s method proved that for
any integer n with n ≥ 3, the hyperelliptic equation

(
x

n

)
=

(
y

2

)

has only finitely many solutions. There are also several numerical re-
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sults concerning the equation (4). For (n,m) = (3, 2) Avanesov [1],
for (n,m) = (2, 4) de Weger [21] and independently Pintér [13], for
(n,m) = (3, 4) de Weger [22], for (n,m) = (6, 2) and (n,m) = (6, 4)
Stroeker and de Weger [19] and independently Hajdu and Pintér [8],
for (n,m) = (3, 6), (n,m) = (2, 8) and (n, m) = (4, 8) Stroeker and
de Weger [19] determined all the integer solutions of equation (4).

In our Theorem 2 we give all the integer solutions x, y of equation (3)
in the case when 0 ≤ k ≤ 10 and

(n,m) ∈ {(2, 3) , (3, 2) , (3, 4) , (4, 3) , (2, 6) , (6, 2) , (4, 6) , (6, 4)} .

For each pair (n,m) in the above set we can transform equation (3) to an
elliptic equation of the form

(5) u2 = v3 + rv + s in integers u, v,

where r, s are given integers depending on n, m and k. In 1994 Gebel,

Pethő and Zimmer [17], and independetly Stroeker and Tzanakis [17]
worked out an efficient algorithm for the computation of all solutions of
a concrete elliptic equation. This algorithm was implemented in the pro-
gram package Simath [16]. We used this program package to solve our
transformed elliptic equations (5), and hence equation (3), too.

2. Results

Our first result is an effective finiteness theorem concerning arithmetic
progressions, whose terms are binomial coefficients and polynomial values.
The main tool of the proof will be a result of Pintér [12], which ultimately
relies on Baker’s method.

Theorem 1. Let n ≥ 5 be an integer and m ∈ {2, 4}. Further, let f(x)
be an integer-valued polynomial with deg f(x) ≤ n−1, and let g(x) ∈ Z[x].
Then there exists an effectively computable constant C depending only

on n and the polynomials f(x) and g(x) such that if for the integers x, y

with x ≥ n, y ≥ m the numbers

f(x) + g(x),
(

y

m

)
,

(
x

n

)
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in some order form an arithmetic progression, then

(6) max{x, y} ≤ C.

In particular, our theorem applies to the case when f(x) =
(
x
k

)
with 1 ≤

k ≤ n − 1 and g(x) ≡ 0. Then we get that if n ≥ 5, m ∈ {2, 4} and
(
x
k

)
,(

y
m

)
,

(
x
n

)
form an arithmetic progression, so (6) follows with an effective

constant C depending only on n.

We note that for n = m = 2 our Theorem 1 does not remain valid. In
this case 0,

(
y
2

)
and

(
x
2

)
form an arithmetic progression, which is equivalent

to the Pell equation 2(2y−1)2−(2x−1)2 = 1 and this equation has infinity
many solutions in integers x, y ≥ 2. We do not know whether Theorem 1
is true or not for n = 3 and 4.

Now we give the complete list of solutions of equation (3), correspond-
ing to some fixed values of m, n and k. The following table contains the
examined equations. All these equations turn out to be elliptic equations
after suitable substitutions. We also provide the transformations which
were used.

equation transformed elliptic equation transformations

(3.1) 2
�x
2

�
=
�y
3

�
+ k u2 = v3 − 36v + 324(4k + 1)

u = 36x− 18,
v = 6y − 6

(3.2) 2
�x
3

�
=
�y
2

�
+ k u2 = v3 − 36v − 81(8k − 1)

u = 18y − 9,
v = 6x− 6

(3.3) 2
�x
3

�
=
�y
4

�
+ k u2 = v3 − 64v − 64(24k + 1)

u = 2(2y − 3)2 − 10,
v = 8x− 8

(3.4) 2
�x
4

�
=
�y
3

�
+ k u2 = v3 − 64v + 256(12k + 1)

u = 4(2x− 3)2 − 20,
v = 8y − 8

(3.5) 2
�x
2

�
=
�y
6

�
+ k

u2 = v3 − 302400v +

4320000(972k + 235)

u = 64800x− 32400,

v = 45(2y − 5)2 − 525

(3.6) 2
�x
6

�
=
�y
2

�
+ k

u2 = v3 − 302400v −
1080000(1944k − 211)

u = 32400y − 16200,

v = 45(2x− 5)2 − 525

(3.7) 2
�x
4

�
=
�y
6

�
+ k

u2 = v3 − 33600v +

160000(972k + 73)

u = 900(2x− 3)2 − 4500,

v = 15(2y − 5)− 175

(3.8) 2
�x
6

�
=
�y
4

�
+ k

u2 = v3 − 33600v −
40000(1944k − 49)

u = 450(2y − 3)2 − 2250,

v = 15(2x− 5)2 − 175

Table 1.
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Theorem 2. Let k be an integer with 0 ≤ k ≤ 10. Then all the

solutions (x, y) ∈ N2, x ≥ n, y ≥ m, of the eight equations occurring in

the first column of Table 1 are listed in the following Tables 2–9. (We

indicate only those values of k for which there is at least one solution.)

(3.1) 2
�x
2

�
=
�y
3

�
+ k

k (x, y)

0 (85, 36); (5, 6); (8, 8); (1190, 205)

1 (2, 3); (970, 179)

2
(158, 54); (167, 56); (25482929, 157357); (4, 5); (37, 21);

(3, 4); (1234, 210)

5 (3, 3)

6 (743, 150); (758, 152); (2530912508, 3374701); (61, 29); (10, 9)

7 (7, 7); (5209, 547); (22, 15)

8 (4, 4)

10 (195, 62); (71, 32); (5, 5); (6, 6); (360311, 9202); (5866, 592)

Table 2.

(3.2) 2
�x
3

�
=
�y
2

�
+ k

k (x, y)

1 (3, 2)

2 (20, 68); (4, 4)

4 (6, 9); (7, 12); (590, 11672)

5 (4, 3); (90, 686); (5, 6); (12, 30); (11, 26); (166, 1731)

7 (4, 2); (15, 43); (8, 15)

9 (10, 22)

10 (5, 5)

Table 3.
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(3.3) 2
�x
3

�
=
�y
4

�
+ k

k (x, y)

0 (7, 8); (11, 11)

1 (3, 4)

3 (4, 5)

5 (5, 6); (6, 7)

7 (4, 4)

Table 4.

(3.4) 2
�x
4

�
=
�y
3

�
+ k

k (x, y)

0 (5, 5)

1 (4, 3)

6 (5, 4)

9 (5, 3)

10 (6, 6)

Table 5.

(3.5) 2
�x
2

�
=
�y
6

�
+ k

k (x, y)

0 (15, 10); (22, 11)

1 (2, 6)

2 (90, 16); (6, 8)

5 (3, 6); (4, 7)

6 (10, 9); (31, 12); (42, 13)

Table 6.

(3.6) 2
�x
6

�
=
�y
2

�
+ k

k (x, y)

0 (18, 273)

1 (6, 2); (8, 11)

4 (7, 5)

8 (7, 4)

Table 7.

(3.7) 2
�x
4

�
=
�y
6

�
+ k

k (x, y)

1 (4, 6)

2 (6, 8)

3 (5, 7)

9 (5, 6)

Table 8.

(3.8) 2
�x
6

�
=
�y
4

�
+ k

k (x, y)

1 (6, 4)

9 (7, 5)

Table 9.

3. Proofs

To prove Theorem 1 we need the following lemmas.

Lemma 1. Let n ≥ 5 be an integer. Then there is a prime number p

which satisfies

n ≥ p ≥ n + 3
2

.
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Proof. As usual, let π(x) denote the number of primes not exceed-
ing x. Then by a Theorem of Rosser and Schoenfeld [15]

3x

5 log x
< π(2x)− π(x) for x ≥ 20.5.

This implies our assertion for 20.5 ≤ n+3
2 . A simple direct computation

shows that the statement of Lemma 1 is also true for n+3
2 < 20.5. ¤

The next lemma is a slightly modified version of a result of Pin-

tér [12].

Lemma 2. Let n ≥ 5 be an integer, f̃(x) ∈ Q[x] an integer-valued

polynomial with deg f̃(x) ≤ n− 1 and g̃(x) ∈ Z[x]. Let a be an integer for

which there exists a prime p with

n ≥ p ≥ n + 3
2

such that (a, p) = 1. Then the polynomial

F (x) = a

(
x

n

)
+ f̃(x) + g̃(x)

has at least three simple zeros.

Proof. To prove the statement one can repeat Pintér’s argument
with a slight modification. However, for convenience of the reader we give
the full proof here.

Put fi(x) = x(x− 1) · · · (x− i + 1) for i = 1, . . . , n and f0(x) = 1. As
f̃(x) is an integer-valued polynomial,

f̃(x) = an−1

(
x

n− 1

)
+ . . . + a1

(
x

1

)
+ a0

(cf. [14]), where the coefficients an−1, . . . , a1, a0 are rational integers. We
get

n!F (x) = afn(x) + · · ·+ apn(n− 1) · · · (p + 1)fp(x) + · · ·
· · ·+ n! a0 + n! g̃(x) ∈ Z[x].
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For S(x) ∈ Z[x], we denote by (S(x))p the image of S(x) in Zp[x] under
the canonical homomorphism Z→ Zp. There is a h(x) ∈ Z[x] such that

(n!F (x))p = (fp(x))p(h(x))p

and deg(h(x))p = n − p. Since all the zeros of (fp(x))p are simple, the
polynomial (n!F (x))p as well as the polynomial n!F (x) has at least p −
(n− p) = 2p− n ≥ 3 simple zeros. ¤

The next lemma is a famous result of Baker [2], which provides a
bound for the solutions of superelliptic equations.

Lemma 3. Let f(x) ∈ Z[x] be a polynomial having at least three

simple zeros and let b be an integer. Then all the integer solutions x, y of

the equation

f(x) = by2

satisfy

max{|x|, |y|} ≤ C,

where C is an effectively computable constant depending only on b and f .

Pproof of Theorem 1. Suppose that for the integers x, y with x ≥ n,
y ≥ m, the numbers

f(x) + g(x),
(

y

m

)
,

(
x

n

)

in some order form an arithmetic progression. It is easy to verify that in
this case (x, y) is a solution to one of the following equations:

u2 = 4
(

x

n

)
+ 4f(x) + 4g(x) + 1 where u = 2y − 1(a)

u2 = 192
(

x

n

)
+ 192f(x) + 192g(x)+ 16 where u=(2y−3)2− 5(b)

u2 = 16
(

x

n

)
− 8f(x)− 8g(x) + 1 where u = 2y − 1(c)

u2 = 768
(

x

n

)
− 384f(x)− 384g(x)+ 16 where u=(2y− 3)2− 5(d)



Binomial coefficients in arithmetic progressions 555

u2 = −8
(

x

n

)
+ 16f(x) + 16g(x) + 1 where u = 2y − 1(e)

u2 =−384
(

x

n

)
+768f(x)+768g(x)+16 where u=(2y−3)2−5.(f)

Each of the above equations is of the form

(2) u2 = a

(
x

n

)
+ b (f(x) + g(x)) + c,

where a, b, c are integers, and a is of the form 2t3s with some t, s ≥ 0.
Thus by Lemma 1 there exists a prime number p satisfying

n ≥ p ≥ n + 3
2

and p - a.

Applying now Lemma 2 and Lemma 3 to equations (a) to (f), we imme-
diately obtain our statement. ¤

To prove Theorem 2, we need some further notation. Let E be an
elliptic curve defined by

(7) E : y2 = x3 + ax + b = p(x) (a, b ∈ Z).

By a famous theorem of Mordell [10] we know that the group of the
rational points on E is finitely generated. We denote by E(Q) the group
of the the rational points on E. Let r denote the rank, g the number of
torsion points of E. For any point P of E denote by ĥ(P ) the canonical
height of P . ĥ is a positive definite quadratic form; denote by λ its smallest
eigenvalue. Let ∆0 denote the discriminant of E then

∆0 = 4a3 + 27b2.

Let P1, . . . , Pr ∈ E(Q) denote a basis of the Mordell–Weil group of E, and
let ui be the elliptic logarithm of Pi for i = 1, . . . , r. We put u

′
i = gu/ω1

where ω1 is the real period of E. Each rational point P ∈ E(Q) has a
unique representation of the form

P =
r∑

i=1

niPi + Pr+1 (ni ∈ Z),
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where Pr+1 is some torsion point. Put

N = max
1≤i≤r

{|ni|}.

The following result of Pethő, Zimmer, Gebel and Herrmann [6]
gives an upper bound for the value N , if P is an integral point of E(Q).

Lemma 4. Let the elliptic curve E be defined by equation (7). As-
sume that the integral point P = (x, y) ∈ E(Q) has the representation

P =
r∑

i=1

niPi + Pr+1

where Pr+1 is some torsion point. For N = max
1≤i≤r

{|ni|} we have

N ≤ N0 =
√

(k1/2 + k2)/λ

with

k2 = log max
{
|2a| 12 , |4b| 13

}
,

k1 = 5× 1064k3 log(k3(k3 + log k4))
where

k3 =
32
3

√
|∆0|

(
8 +

1
2

log |∆0|
)4

,

k4 = 104 max
{

16a2, 256
√
|∆0|

3
}

.

Moreover ∣∣∣∣
r∑

i=1

niu
′
i + nr+1

∣∣∣∣ ≤ k5 exp{−λN2 + k2}

with k5 = 2g/ (3ω1).

We note that the above upper bound for N in general is too large for
computing all integral points on a concrete elliptic curve. Thus in practice
some reduction method is also needed.

Proof of Theorem 2. We detail the proof of Theorem 2 only for
the equation 2

(
x
3

)
=

(
y
2

)
. The other equations can be solved in a similar

manner. In this case, according to Table 1, we have to examine the elliptic
curve

E :=
{
(u, v) | u2 = v3 − 36v + 81

} ∪ {O}.
In the sequel we determine some parameters of E(Q) using Simath [16].
The rank of E(Q) is r = 1, the discriminant ∆0 = −9477. E(Q) has two
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torsion points: O and P2 = (3, 0). Hence g = 2. We obtain

P1 = (6, 9), ĥ(P1) = 0.1801176633 . . . .

The single positive eigenvalue of ĥ is

λ = 0.1801176633 . . . .

The real period is
ω1 = 1.6179172250 . . . .

The elliptic logarithm of the point P1 is u1 = 0.2793301565 . . . . Hence we
have

k2 ≤ 2.14, k3 ≤ 2.6× 107, k4 ≤ 2.37× 1012

and so
k1 ≤ 4.44× 1073.

Thus applying Lemma 4, we obtain

N ≤ 1.1× 1037.

Now using a result of de Weger (see [20], Lemma 3.2), this initial bound
can be reduced. After the first reduction we obtain the new upper bound
N ≤ 80. After repeating the reduction, we get N ≤ 45. A third reduction
step leads to the same upper bound for N . Thus we have to test for
integrality all the points

P = n1P1 + n2P2, |n1| ≤ 45, n2 ∈ {0, 1}.
After the above computations we obtain all the integral points on E:

(v,±u) = (3, 0), (6, 9), (0, 9), (4, 1), (−6, 9), (15, 54), (28, 145).

Hence from Table 1 we get that the equation 2
(
x
3

)
=

(
y
2

)
has no solution

with x ≥ 3, y ≥ 2. ¤
Acknowledgements. The author thanksProfessors K. Győry, L. Haj-

du, A. Pethő and the referees for their useful and valuable advice.
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