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Improving the speed of convergence
in the method of projections onto convex sets

By G. CROMBEZ (Gent)

Abstract. A serious drawback of the method of projections onto convex sets to
find a point in the intersection of a finite number of closed convex sets in an Euclidean
space, is its often very slow convergence. This bad behaviour, sometimes called the
“tunneling effect”, seems a.o. to be connected with the monotone behaviour of the
usual algorithms. We present a new algorithm that can interrupt at different steps this
monotone behaviour; this can substantially improve the speed of convergence.

1. Introduction

Finding a point in the intersection of a finite number of closed con-
vex sets {Cj}r

j=1 in an m-dimensional Euclidean space Rm (R the set of
reals), with C∗ ≡ ⋂r

j=1 Cj 6= ∅, is a problem that often arises in applied
mathematics; we refer to [7] and [9] for a short overview of some general
applications, and to [15] and [16] for specific applications in image process-
ing. The stated problem is also known as “solving the convex feasibility
problem”.

The method of projections onto convex sets (abbreviated as POCS),
seems to be very well suited to solve this problem. Originating from the
work by J. von Neumann [14] for alternating orthogonal projections onto
closed linear subspaces, it has been generalized and extended to cases
involving closed convex subsets and to parallel methods for the algorithm;
e.g., see [1], [3], [4] and the references in these papers. Acceleration schemes
for POCS-like methods for finding the shortest-distance projection of a
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given point onto the intersection of a number of closed linear varieties have
been given in [8]; in [10], an acceleration scheme for Kaczmarz’s method
is presented.

The POCS method, however, has one serious drawback: it often con-
verges very slowly. This fact, sometimes called the “tunneling effect” [11],
is in an intuitive manner explained as follows: in order to reach the in-
tersection, the constructed iteration sequence enters a narrow corridor (a
“tunnel”) formed by two of the involved sets, and at each iteration step
the progress towards the intersection set, caused by projecting the current
iteration point onto the involved sets, is very small.

This explanation, however, is only half of the truth. Indeed, the
decisive factor concerning the speed of convergence seems to be the com-
bination of the structure of the involved sets together with the starting
point of the iteration sequence (this fact makes it difficult to compare the
rate of convergence of different algorithms in practical applications on the
base of theoretical results). By way of example, we consider the problem of
finding, with the POCS method, a point in the intersection of the following
twelve disks {Cj}12j=1

(1)
(

x− cos
(

jπ

12

))2

+
(

y − sin
(

jπ

12

))2

≤ 1, for j = 1, 2, . . . , 12

in the plane (clearly, (0, 0) is a point in the intersection).
Denoting by Pj the projection onto the corresponding disk Cj , de-

noting momentarily the points in Rm by boldface letters, the iteration se-
quence as {xk}+∞k=0 with xk ≡ (xk, yk), and using the iteration xk+1 = Txk

with T ≡ P12P11 . . . P2P1, we obtain very different convergence results de-
pending on the choice of the starting point xo ≡ (x0, y0) in the plane. For
(x0, y0) ≡ (−3, 0), a point in the intersection is obtained after one itera-
tion; on the other hand, for (x0, y0) ≡ (3, 4), the sum of the distances of the
current iteration point to the sets Cj is 3.661634×10−3, 5.49556×10−4 and
1.66893 × 10−5 after 25, 50 and 100 iterations respectively. A behaviour
comparable to this one is observed when using different existing adapta-
tions of the method of pure projections, as for instance for the parallel
method

(2) xk+1 = xk + λk+1

r∑

j=1

µk+1(j)(Pjxk − xk),
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with one variable relaxation coefficient λk+1, and with nonnegative weights
µk+1(j) (j = 1, . . . , r) such that

∑r
j=1 µk+1(j) = 1.

Due to the fact that, when convex sets Cj are given, there is usually
no clear indication of how to choose the starting point of the iteration in
order to avoid the tunneling effect, it seems that, in order to circumvent
this effect, it might be favourable to interrupt at different iteration steps
during the procedure the “monotone” way of converging. By this we mean
that, contrary to the existing algorithms where it is true that for the
iteration sequence {xn}+∞n=0 in Rm we have that

(3) ‖xk+1 −w‖ ≤ ‖xk −w‖, ∀w ∈ C∗, for all k,

the speed of convergence may be improved by an algorithm that automati-
cally chooses, at some instances, the update iteration point xk+1 such that
(3) is not necessarily true. At first glance, this may seem rather awkward,
but in this way we may approach the tunnel from another direction, lead-
ing to an improvement of the convergence speed in those cases where the
tunneling effect is strong, while keeping an acceptable speed of convergence
in the other cases. With the algorithm presented in this paper, conver-
gence to a point in the intersection of the given example is obtained after
9 iterations when starting from (x0, y0) ≡ (−3, 0), and after 9 iterations
when starting from (x0, y0) ≡ (3, 4).

The method we present is an adaptation of the parallel method (2)
with fixed weights µk+1(j). As has been shown by Pierra [12], the parallel
method (2) in Rm may then be seen as a sequential method in the product
space (Rm)r (extensions of this with variable weights have been given
in [5]). According to the Pierra method, in (Rm)r there are two important
subsets: the linear subspace D, which is the canonical imbedding q(Rm)
of Rm into (Rm)r, and the closed convex set F ≡ C1 × C2 × · · · × Cr.
Denoting for the moment the points in (Rm)r by capital letters (in order
to distinguish them from the points in Rm), the ordinary parallel projection
method (2) in Rm with fixed equal weights µk+1(j) ≡ 1

r at each iteration
step is then equivalent with the following procedure in (Rm)r starting from
some point X0 ≡ q(x0) in D: whenever Xk in D has been obtained, the
next iteration point Xk+1 in D is obtained as a result of the following two
steps: put

(4) Yk+1 = Xk + λk+1(PFXk −Xk),
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where PFXk is the projection of Xk onto F ; then put

(5) Xk+1 = PD(Yk+1) = Xk + λk+1(PD(PFXk)−Xk).

Then, for suitable λk+1 the sequence {Xk}+∞k=0 in D is convergent to a point
of F ∩ D, and for each point W in F ∩ D the Fejér-monotone property
([13]) analogous to (3) is fulfilled (e.g., see [6]).

Formula (5), valid in D ⊂ (Rm)r, has the typical structure of an
iteration process: the update Xk+1 of Xk is found by starting from Xk

and choosing a direction in D (determined by PD(PFXk)) and a step-
length λk+1. This update process in (5) is derived from the update given
in (4) which, however, is a process in (Rm)r and as such gives much more
flexibility. Indeed, while in (4) the computation of Yk+1 is started from
Xk ∈ D in order to obtain (5), there is certainly no need to restrict such
starting point of (4) to D. When taking as starting point for (4) a point
Zk ∈ (Rm)r that does not necessarily belong to D but is such that PDZk =
Xk, then formulas (4) and (5) are changed into

Yk+1 = Zk + λk+1(PFZk − Zk),(4’)

Xk+1 = PD(Yk+1) = Xk + λk+1(PD(PFZk)−Xk),(5’)

and so also (5’) is a typical iteration process in D, for a suitable step-length
λk+1 and a direction determined by PD(PFZk).

The basic idea in our paper is precisely to use the freedom of choosing
Zk in (4’), which itself entails more possibilities for the value of λk+1.
Just for illustrative purposes we sketch the first two steps of our iteration
algorithm. As concerns notation, when Zk ∈ (Rm)r but Zk /∈ F , we denote
by Pk+1 the hyperplane supporting F at PFZk.

Let Z0 ≡ X0 be a starting point in D. Put

Y1 = Z0 + λ1(PFZ0 − Z0),

X1 = PDY1,

where λ1 is determined such that X1 ∈ P1 ∩ D (such λ1 always exists).
This is the first iteration point of our sequence {Xk}+∞k=0 in D. In order to
obtain X2, we construct Z1 by using a relaxed projection of Y1 onto D by
means of

(6) Z1 = Y1 + (1 + γ1)(X1 − Y1) = X1 + γ1(X1 − Y1)

for some γ1 > 0.
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For this Z1 we can verify if there is a real number λ2 such that the
projection onto D of the point Z1 + λ2(PFZ1 − Z1) belongs to P2 ∩ D. If
λ2 exists and is bigger than 1, we put

Y2 = Z1 + λ2(PFZ1 − Z1),(7)

X2 = PDY2(8)

(which is the second iteration point in this case),

(9) Z2 = Y2 + (1 + γ2)(X2 − Y2) for some γ2 > 0

(which is the starting point for the next projection onto F in this case).
On the other hand, if λ2 ≤ 1, we put

Y2 = PFZ1,(10)

Z2 ≡ X2 = PDY2(11)

(which is now at the same time the second iteration point X2 of the approx-
imation sequence, and the starting point for the next projection onto F).

Finally, if λ2 does not exist, then X1 is chosen as the starting point
to obtain X2, in the same way as X1 was constructed from X0.

So, from X1 on, each next iteration point Xk+1 of the sequence
{Xk}+∞k=0 can be obtained on the discriminating base of the value of some
parameter λk+1, and this may cause a different behaviour with respect to
Fejér-monotony; in particular, the (monotone but) slow convergence may
be interrupted at some iteration points.

The values of λk+1 involved in this procedure play the role of relax-
ation coefficients connected with projections onto F when they are bigger
than 1; as they may also be bigger than 2, the corresponding relaxed pro-
jection onto F has no longer the non-expansivity property.

The rest of the paper is organized as follows. In Section 2 we intro-
duce the results that are needed to show that the algorithm is meaningful,
and we describe the algorithm. In Section 3 we show that the sequence
{Xk}+∞k=0 in D ⊂ (Rm)r, constructed according to the algorithm, is con-
vergent to a point of F ∩ D, leading to convergence of the corresponding
sequence {xk}+∞k=0 in Rm to a point in C∗. Finally, in Section 4 we illus-
trate the new algorithm for some examples , and we compare its behaviour
for different starting points to the method of pure projections and to the
parallel method (2).
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2. Description of the algorithm

Let Rm be the m-dimensional Euclidean space with standard inner
product 〈 , 〉 and norm | | derived from 〈 , 〉; denote (Rm, 〈 , 〉, | |) for
short by H. Elements of H are denoted by boldface letters.

Suppose that in H, r closed convex subsets {Cj}r
j=1 are given, having

nonempty intersection C∗ ≡ ⋂r
j=1 Cj 6= ∅. Projection onto Cj is denoted

as Pj . We want to obtain, in an iterative manner, a point in C∗.
Consider the r-fold product (Rm)r of Rm; elements of (Rm)r are

denoted by capital letters. We introduce an inner product 〈〈 , 〉〉 and
norm ‖ ‖ as follows: when V ≡ (v1, v2, . . . vr) ∈ (Rm)r and W ≡
(w1, w2, . . . , wr) ∈ (Rm)r, put 〈〈V, W 〉〉 =

r∑
j=1

〈vj , wj〉, ‖V ‖2 =
r∑

j=1

|vj |2.
We denote ((Rm)r, 〈〈 , 〉〉, ‖ ‖) for short by H.
In H we consider the subsets D and F , defined as follows. D is the

set of all r-tuples with equal components, i.e., for v ∈ H we have that
(v,v, . . . , v) ∈ D ⊂ H. D is the image of H under the canonical imbedding
q : H → H, where for v ∈ H we put q(v) ≡ (v,v, . . . , v). D is a closed
linear subspace of H. Projection onto D is denoted as PD.

The subset F of H is defined as the Cartesian product of the convex
sets {Cj}r

j=1 in H, i.e., F = C1×C2×· · ·×Cr. It is a closed convex subset
of H. Projection onto F is denoted as PF . Clearly, as C∗ 6= ∅ we also have
that F ∩D 6= ∅, and, moreover, q(C∗) = F ∩D. Hence, obtaining a point
in C∗ ⊂ H is equivalent to obtaining a point in F ∩ D ⊂ H. So, our aim
is to construct a sequence {Xk}+∞k=0 in D ⊂ H, starting from some given
point X0 ∈ D, that converges in H to a point in F ∩D; the corresponding
sequence {xk}+∞k=0 in H with q(xk) = Xk will then be convergent to a point
in C∗.

In order to construct the sequence {Xk}+∞k=0 in H, we need some pre-
liminary results.

Lemma 1. Let V ≡ (v1,v2, . . . , vr) ∈ H. Then

(i) PFV = (P1v1, P2v2, . . . , Prvr)

(ii) PDV = q( 1
r

∑r
k=1 vk)

Proof. (i) For arbitrary S ≡ (s1, s2, . . . , sr) ∈ F we have

‖V − S‖2 =
r∑

j=1

|vj − sj |2,
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and this is minimal when sj = Pjvj .
(ii) See [12, Lemma 1.1]. ¤
For a given point Z in H with projection PFZ onto F (assume Z 6=

PFZ), consider the hyperplane P going through PFZ which is orthogonal
onto Z − PFZ, i.e.,

(12) P = {X ∈ H : 〈〈X − PFZ,PFZ − Z〉〉 = 0}.

On the straight line through Z and PFZ we consider the points Y given
by the following expression

(13) Y = Z + λ(PFZ − Z),

where λ is a real parameter.

Lemma 2. Let Z ∈ H, Z 6= PFZ, and put Y = Z + λ(PFZ − Z).
Then PDY belongs to P if and only if λ is given by

(14) λ =
〈〈PDZ − PFZ,Z − PFZ〉〉
‖PD(PFZ)− PDZ‖2 .

Proof. Assume that there exists a real number λ such that PDY
belongs to P.

As PD is linear, PDY is given by

(15) PDY = PDZ + λ(PD(PFZ)− PDZ).

In the expression (12) of P we write the first part in the inner product
sign as X − PDZ + PDZ − PFZ, and replace X by PDY as given by its
expression on the right-hand-side of (15). The condition to determine λ
then becomes

λ〈〈PD(PFZ)− PDZ, PFZ − Z〉〉+ 〈〈PDZ − PFZ, PFZ − Z〉〉 = 0.

The first inner-product term on the left-hand-side may be written as

〈〈PD(PFZ)− PDZ, PD(PFZ)− Z〉〉,

due to the fact that PD is an orthogonal projection onto D. Hence,

λ =
〈〈PDZ − PFZ,Z − PFZ〉〉

〈〈PD(PFZ)− PDZ,PD(PFZ)− Z〉〉 .
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The expression (14) is then obtained by writing in the denominator

PD(PFZ)− Z = PD(PFZ)− PDZ + PDZ − Z

and computing the inner product, using the fact that PDZ−Z is orthogonal
onto D.

Conversely, when for a given Z ∈ H, Z 6= PFZ, the number λ given
by (14) exists, it follows by a routine control that, when that value of λ is
substituted into (13), then PDY ∈ P. ¤

In the special case that the point Z belongs to D we obtain the follow-
ing interesting result about the corresponding value of λ. Denoting now
Z as X, we have PDX = X, PFX 6= X, and

(16) λ =
‖X − PFX‖2

‖PD(PFX)−X‖2 = 1 +
‖PFX − PD(PFX)‖2
‖PD(PFX)−X‖2

where the last equality is obtained by using the Pythagorean theorem
on the triangle with vertices X, PFX, PD(PFX). Hence, when X ∈ D,
X /∈ F , and the corresponding value of λ exists, then this value is never
smaller than 1.

Lemma 3. When X ∈ D, X /∈ F , then λ is well-defined.

Proof. We have to show that the denominator appearing in the
expressions of (16) can not be zero. To this end, use is made of the
following formulas concerning distances in H and H related to a point
X ≡ q(x) in D ⊂ H with x ∈ H:

‖X − PFX‖2 =
r∑

j=1

|x− Pjx|2,(17)

‖X − PD(PFX)‖2 = r

∣∣∣∣
r∑

j=1

1
r
(Pjx− x)

∣∣∣∣
2

.(18)

For c ∈ C∗ ≡
r⋂

j=1

Cj ⊂ H we have

〈
x−c,

r∑

j=1

1
r
(Pjx−x)

〉
=

r∑

j=1

1
r
〈x−Pjx, Pjx−x〉+

r∑

j=1

1
r
〈Pjx−c, Pjx−x〉,
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and each term in the last sum is non-positive due to a well-known property
of projections. Hence,

(19)
〈

x− c,

r∑

j=1

1
r
(Pjx− x)

〉
≤ −1

r

r∑

j=1

|x− Pjx|2.

Assuming now that the denominator of (16) is zero, it follows from (18)
that

∑r
j=1

1
r (Pjx − x) = 0, and from (19) it follows also that

∑r
j=1 |x −

Pjx|2 = 0; using (17) we conclude that then X = PFX, contrary to our
assumptions. ¤

The foregoing result is interesting for our algorithm in the sense that,
when an iteration point Xk in D has been obtained that not yet belongs
to F , and when that iteration point Xk is used as the starting point for
the next iteration step in H, then we are sure that the corresponding λ is
well-defined; moreover, it is not smaller than 1.

Lemma 4. Let X ∈ D, X /∈ F , and put Y = X + λ(PFX −X) with
λ as given by (16). Then λ = 1 if and only if Y ∈ D.

Proof. Suppose λ = 1. Then Y = PFX and PDY = PD(PFX).
Moreover, from the last expression in (16) we also conclude that then
PD(PFX) = PFX. Hence, Y = PDY , and so Y ∈ D.

Conversely, suppose that Y ∈ D, which means that PDY = Y . Equat-
ing the expressions of Y and PDY leads to λ(PFX − PD(PFX)) = 0. As
λ ≥ 1, there results that PFX = PD(PFX) and, again from (16), we
conclude that λ = 1. ¤

In particular, when X ∈ D, X /∈ F , and λ = 1, then PDY = PFX ∈
F ∩D. For our algorithm this means that, when taking an iteration point
Xk in D as the starting point for the next iteration step in H, and when
λ corresponding to Xk has the value 1, then Xk+1 will belong to F ∩ D
when PDY is taken as the next iteration point Xk+1.

For a point Z ∈ H with Z /∈ D and Z /∈ F , Lemma 4 can be adapted
as follows.

Lemma 5. Let Z /∈ D, Z /∈ F , and put Y = Z + λ(PFZ − Z) with λ
as given by (14). When Y ∈ D, then necessarily λ = 1.

Proof. By assumption, PDY = Y and PDY ∈ P. Hence,

0 = 〈〈Z − PFZ, Y − PFZ〉〉 = ‖Z − PFZ‖2 + λ〈〈Z − PFZ,PFZ − Z〉〉
= (1− λ)‖Z − PFZ‖2,
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which leads to the result, as Z 6= PFZ. ¤
Let Z0 be an element of H, whether or not in D, but Z0 /∈ F . Put

Y1 = Z0 +λ1(PFZ0−Z0), and suppose that the corresponding λ1-value in
order that PDY1 should belong to the supporting hyperplane P1 at PFZ0,
exists and is bigger than 1. Denote PDY1 as X1, and put, for some γ > 0

(20) Z1 = Y1 + (1 + γ)(X1 − Y1).

In view of Lemmas 4 and 5 we know that X1 6= Y1. Hence, Z1 is the result
of a relaxed projection of Y1 onto D. We also note that PDZ1 = X1.

We are interested in the fact whether or not Z1 can belong to F .

Lemma 6. When Z0 /∈ F , λ1 > 1, γ > 0, then Z1 /∈ F .

Proof. Replacing in the following inner product Z1 by its expression
given in (20) we obtain

〈〈Z0 − PFZ0, Z1 − PFZ0〉〉 = 〈〈Z0 − PFZ0, X1 − PFZ0〉〉
+ γ〈〈Z0 − PFZ0, X1 − Y1〉〉.

The first inner product on the right-hand-side is zero due to the definition
of λ1. Replacing in the second inner product Y1 by its expression in Z0

and PFZ0 we obtain

〈〈Z0−PFZ0, Z1−PFZ0〉〉 = γλ1‖Z0−PFZ0‖2 + γ〈〈Z0−PFZ0, X1−Z0〉〉.
To obtain the inner product on the right-hand-side we write

‖X1 − PFZ0‖2 = ‖X1 − Z0‖2 + ‖Z0 − PFZ0‖2 + 2〈〈X1 − Z0, Z0 − PFZ0〉〉
= ‖X1 − PFZ0‖2 + 2‖Z0 − PFZ0‖2 + 2〈〈X1 − Z0, Z0 − PFZ0〉〉,

due to the Pythagorean theorem for the right triangle with vertices Z0,
PFZ0 and X1. Hence,

〈〈X1 − Z0, Z0 − PFZ0〉〉 = −‖Z0 − PFZ0‖2.
Using this result in the former equality we obtain

〈〈Z0 − PFZ0, Z1 − PFZ0〉〉 = γ(λ1 − 1)‖Z0 − PFZ0‖2.
Hence, 〈〈Z0 − PFZ0, Z1 − PFZ0〉〉 is strictly positive, from which we con-
clude, due to a property of projections, that Z1 /∈ F . ¤

Now we are ready to describe our algorithm to construct the approx-
imating sequence {Xk}+∞k=0 in D in order to obtain a point in D ∩ F .
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Algorithm

Starting from some point Z0 ≡ X0 ∈ D, suppose that points X1, . . .
. . . , Xk in D and Z1, . . . , Zk inH (whether or not in D) have been obtained,
with PDZk = Xk, Xk /∈ F ∩ D, Zk /∈ F . Then:
(i) IF PD(PFZk) = Xk, then take Xk as new Zk and go to (ii)
(ii) ELSE, compute λk+1 by (14)(with Z replaced by Zk)

a. IF λk+1 > 1, let

Yk+1 = Zk + λk+1(PFZk − Zk),

Xk+1 = PDYk+1,

Zk+1 = Yk+1 + (1 + γk+1)(Xk+1 − Yk+1),

(where γk+1 > 0 will be determined further on)
b. ELSE, let Xk+1 = PD(PFZk),

Zk+1 = Xk+1. ¤

As has been shown in Lemma 3 and in the remark following (16),
whenever Zk ≡ Xk ∈ D but Xk /∈ F then λk+1 is well-defined and is never
smaller than 1. Hence, in that case the steps (i) and (ii)a. of the algorithm
need not be investigated; moreover, when λk+1 = 1, then Xk+1 ∈ D ∩ F
according to Lemma 4.

Concerning a suitable value for γk+1 needed in (ii)b., we remember
that taking Zk+1 instead of Xk+1 as a new starting point in H for the com-
putation of the next update Xk+2 has the purpose of possibly interrupt-
ing, at some steps, the monotone behaviour of the approximating sequence
{Xk}+∞k=0; this needs a γk+1 that is different from zero; we choose it strictly
positive. On the other hand, however, we need convergence of the sequence
{Xk}+∞k=0, and so we want an interruption that somehow takes into con-
sideration part of the approximation already obtained. These facts seem
to imply that, in any case, the distance between Xk+1 and Zk+1 should
tend to zero with growing k. To this end, for M a fixed positive number
we let γk+1 be dependent on M

k+1 . In order to take care of the fact that
{λk+1}+∞k=0 may be unbounded, and hence also {‖Xk+1−Yk+1‖}+∞k=0, let B
be a (big) fixed positive number; we then put

αk+1 = min
(

1
λk+1

,
M

k + 1

)
, βk+1 = min

(
1,

B

‖Xk+1Yk+1‖
)

,

γk+1 = αk+1βk+1.
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3. Convergence of the constructed sequence

In this section we show that the sequence {Xk}+∞k=0 in D is convergent
to a point of D ∩ F . Due to the fact that the construction of the points
Xk+1 in D is different according to the corresponding values of λk+1, we
have to consider separately the properties of elements of the sequence
corresponding to values of λk+1 that are bigger than 1, or not.

A. Properties corresponding to λk+1 > 1

Let us suppose that we obtained Xk in D, Zk in H with PD(Zk) = Xk

(it is possible that Xk = Zk), and that λk+1, given by (14) with Z replaced
by Zk, is well-defined and is bigger than 1. According to (ii)b. of the
algorithm, we have

(21) Xk+1 = PDYk+1 = Xk + λk+1(PD(PFZk)−Xk),

and Xk+1 belongs to the hyperplane Pk+1 supporting F at PFZk; its
equation is

(22) Pk+1 = {X ∈ H : 〈〈X − PFZk, PFZk − Zk〉〉 = 0}.

Lemma 7.

(23) 〈〈Xk −Xk+1, V −Xk+1〉〉 ≤ 0, ∀V ∈ D ∩ F .

Proof. Using the facts that Xk−Zk and Yk+1−Xk+1 are orthogonal
onto D, and that V −Xk+1 ∈ D, we have

〈〈Xk −Xk+1, V −Xk+1〉〉 = 〈〈Zk −Xk+1, V −Xk+1〉〉
= 〈〈Zk − Yk+1, V −Xk+1〉〉.

Replacing Yk+1 by its expression in Zk and PFZk leads to

〈〈Xk −Xk+1, V −Xk+1〉〉 = −λk+1〈〈PFZk − Zk, V −Xk+1〉〉
= λk+1〈〈Zk − PFZk, V − PFZk〉〉+ λk+1〈〈Zk − PFZk, PFZk −Xk+1〉〉.

In the right-hand-side, the last term is zero because Xk+1 ∈ Pk+1, while
the first term is nonpositive due to a well-known property of projections.

Hence the result follows. ¤
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For points V ∈ D ∩ F we further have

‖Xk − V ‖2 = ‖Xk −Xk+1‖2 + ‖Xk+1 − V ‖2 + 2〈〈Xk −Xk+1, Xk+1 − V 〉〉,

and taking (23) into account we derive that

(24) ‖Xk − V ‖2 ≥ ‖Xk −Xk+1‖2 + ‖Xk+1 − V ‖2, ∀V ∈ D ∩ F .

In particular, we conclude that, when Xk+1 is obtained using a value of
λk+1 that is bigger than 1, then

‖Xk − V ‖ ≥ ‖Xk+1 − V ‖, ∀V ∈ D ∩ F ,

which expresses the monotone approach to D ∩ F in that case.
Let us suppose now that, except at a finite number of steps, all values

of λk+1 are bigger than 1; let us restrict to such values of k. Then from
(24) we derive that

(25) ‖Xk −Xk+1‖ → 0 when k → +∞.

Making use of the Pythagorean theorem for the right triangles with vertices
Zk, Xk, Xk+1 and Zk, PFZk, Xk+1 respectively, we obtain

‖Xk+1 −Xk‖2 = ‖Zk −Xk+1‖2 − ‖Zk −Xk‖2
= ‖Zk − PFZk‖2 + ‖PFZk −Xk+1‖2 − ‖Zk −Xk‖2.

Due to our choice of γk+1 in the algorithm we know that ‖Zk −Xk‖ → 0
when k → +∞. Hence, we obtain that also ‖Zk − PFZk‖ → 0 and
‖PFZk −Xk+1‖ → 0 when k → +∞. As

‖Xk − PFXk‖ ≤ ‖Xk − PFZk‖ ≤ ‖Xk −Xk+1‖+ ‖Xk+1 − PFZk‖,

there results that also

(26) ‖Xk − PFXk‖ → 0 when k → +∞.

Combining the fact that the sequence {Xk}+∞k=0 is bounded with the re-
lations (24), (25) and (26), we have the necessary information needed to
prove that the sequence {Xk}+∞k=0 is weakly (and hence in norm) conver-
gent to a point of F ∩ D. We do not represent the proof here, but refer
instead to [6] where it has been shown (in another situation) that from the
mentioned properties convergence may be obtained.



42 G. Crombez

B. Properties corresponding to λk+1 ≤ 1

We know that, when Zk ≡ Xk ∈ D, then λk+1 ≥ 1, and when λk+1=1
then Xk+1 ≡ PFZk is a point of D ∩ F and the procedure is finished; so,
when Zk ≡ Xk and the next Xk+1 is not yet in D ∩ F , we always have
that λk+1 > 1; we also started with Z0 ≡ X0 ∈ D.

On the other hand, when Zk 6= Xk and λk+1 ≤ 1, then we know
from (ii)c. of the algorithm that Xk+1 = PD(PFZk) = Zk+1. It is at such
point Xk+1 that the monotone behaviour of the sequence {Xk}+∞k=0 may
be (but is not necessarily) interrupted, i.e., it is not necessarily true that
‖Xk+1 − V ‖ ≤ ‖Xk − V ‖, ∀V ∈ F ∩ D, but, as Zk+1 ≡ Xk+1 ∈ D, we
always have that λk+2 ≥ 1.

Hence, in the case that we are investigating now, we may suppose
that the sequence {Xk}+∞k=0 has an (infinite) subsequence {Xnj}+∞j=0 with
Xn0 ≡ Zn0 , Xn1 ≡ Zn1 , . . . , Xnj

≡ Znj
, . . . , with n0 = 0, and those points

were obtained from a corresponding λnj -value not bigger than 1 (except for
the starting point X0). The λ-values for points between two consecutive
points Xnp and Xnq of the subsequence are strictly bigger than 1; i.e., we
have that λnp ≤ 1 (except for np = 0), λnp+1 > 1, . . . , λnq−1 > 1, λnq ≤ 1.

We show that, due to our choice of γk+1, a weaker form of monotony
is still available, which will be sufficient to guarantee convergence of the
sequence. We first prove the following lemma, valid for λ-values that are
strictly bigger than 1.

Lemma 8. Suppose, with the usual notations, that for some k ∈ Z+

we have that Xk ∈ D, Zk /∈ D, λk+1 > 1, giving rise to Yk+1, Xk+1 and

Zk+1. Then

(27) ‖Zk+1 −Xk+1‖2 ≤ ‖Zk −Xk‖2 + ‖Xk −Xk+1‖2.

Proof. The straight line through PFZk that is parallel to the straight
line through Yk+1 and Zk+1, intersects the straight line ZkXk+1 in a point
Sk. From the similarity of the triangles with vertices Zk, PFZk, Sk and
Zk, Yk+1, Xk+1 we deduce that ‖Yk+1 −Xk+1‖ = λk+1‖PFZk − Sk‖. But
Zk+1 = Xk+1 + γk+1(Xk+1 − Yk+1), and so

‖Zk+1 −Xk+1‖ ≤ γk+1λk+1‖PFZk − Sk‖ ≤ ‖PFZk − Sk‖.



Improving the speed of convergence in POCS 43

Moreover, ‖PFZk − Sk‖ ≤ ‖Zk −Xk+1‖, which follows from inspection of
the triangle with vertices Zk, PFZk, Xk+1. Finally, Zk−Xk is orthogonal
onto Xk −Xk+1, and so we obtain

‖Zk+1 −Xk+1‖2 ≤ ‖Zk −Xk+1‖2 = ‖Zk −Xk‖2 + ‖Xk −Xk+1‖2. ¤

Using (27) and the Fejér-monotony property (24) a number of times
leads to the following weaker form of monotony in the case where an in-
terrupting subsequence {Xnj

}+∞j=0 may exist.

Lemma 9. Suppose that Xnp
≡ Znp

and Xnq
≡ Znq

are consecutive

points of the subsequence {Xnj}+∞j=0. Then, ∀V ∈ D ∩ F we have

(28) ‖Xnp
− V ‖2 ≥ ‖Xnq

− V ‖2 +
3
4
‖Xnp

−Xnp+1‖2.

Proof. In order not to overload the proof with cumbersome indexes,
we present a proof with concrete small numbers. So, let np = 0, nq = 4,
V ∈ F ∩ D. Then we first have

(29) ‖V −X4‖2 ≤ ‖V −PFZ3‖2 ≤ ‖V −Z3‖2 = ‖V −X3‖2 +‖X3−Z3‖2,

by using the non-expansivity property of projections and the fact that
Z3 −X3 is orthogonal onto D. Using (27) for k = 2 leads to

‖V −X4‖2 ≤ ‖V −X3‖2 + ‖Z2 −X2‖2 + ‖X2 −X3‖2.

As λ3 > 1, inequality (24) may be used for k = 2, giving

‖V −X4‖2 ≤ ‖V −X2‖2 − ‖X2 −X3‖2 + ‖Z2 −X2‖2 + ‖X2 −X3‖2
= ‖V −X2‖2 + ‖X2 − Z2‖2,

and it is instructive to compare this result with (29). Hence, again applying
(24) and (27), now for k = 1, leads to

‖V −X4‖2 ≤ ‖V −X1‖2 − ‖X1 −X2‖2 + ‖Z1 −X1‖2 + ‖X1 −X2‖2
= ‖V −X1‖2 + ‖Z1 −X1‖2.

For the final step we use two different things. First, according to (24) we
have that ‖V −X1‖2 ≤ ‖V −X0‖2−‖X0−X1‖2. For the term ‖Z1−X1‖2,
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however, we remark that now X0 ∈ D (remember that this is true for the
general index np). Hence, the triangle with vertices X0, PFX0 and X1 has
a right angle in PFX0. From some elementary geometry it follows then
easily that

‖Z1 −X1‖2 ≤ ‖PFX0 − PD(PFX0)‖2 ≤ 1
4
‖X0 −X1‖2.

So, we finally obtain

‖V −X4‖2 ≤ ‖V −X0‖2 − ‖X0 −X1‖2 +
1
4
‖X0 −X1‖2,

which is precisely formula (28) in our case. ¤

Inequality (28) gives an idea about the measure of interrupting the
monotone behaviour at the points of the subsequence: although it may be
true that ‖Xnq −W‖ > ‖Xnq−1 −W‖ for some points W in F ∩ D, the
monotony is repaired with respect to the foregoing interruption point.

Due to inequalities (28) and (24) we are able to prove that, also in
case that the sequence {Xk}+∞k=0 has an infinite interrupting subsequence
{Xnp}+∞p=0, the whole sequence {Xk}+∞k=0 is convergent to a point A ∈ D∩F .
Again, the method described in [6] may be used. So we just sketch the
main ideas. The subsequence {Xnp}+∞p=0 has a subsequence, say {X ′

q}+∞q=0,
that weakly converges to a point A ∈ D; this point also belongs to F ,
as ‖PFXnp − Xnp‖ → 0. Moreover, each subsequence of {Xnp}+∞p=0 that
weakly converges has the same point A as its weak limit; hence, {Xnp}+∞p=0

is (weakly and in) norm convergent to A ∈ D ∩ F . Convergence of the
whole sequence {Xk}+∞k=0 to A then follows from the fact that, for k > nq

we have that ‖Xk −A‖ ≤ ‖Xnq −A‖.
We summarise the results in the following theorem.

Theorem. Suppose that in Rm, r closed convex sets {Cj}r
j=1 with

nonempty intersection
⋂r

j=1 Cj are given. Let q be the natural imbedding

of Rm in (Rm)r, and put D = q(Rm), F = C1×C2×· · ·×Cr. For a given

point x0 ∈ Rm, put X0 ≡ q(x0). Then the sequence {Xk}+∞k=0, constructed

according to the algorithm mentioned in Section 2, is convergent to a point

of F ∩ D. Hence, the sequence {xk}+∞k=0 in Rm with xk = q−1(Xk) is

convergent to a point in
⋂r

j=1 Cj .
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4. Examples and concluding remarks

In this last section we illustrate the algorithm given in Section 2, and
we compare the results with the ones corresponding to two other methods.
The following algorithms have been used:

PP: The method of pure projections in a sequential manner: when xk

is the current iteration point, xk+1 is obtained by xk+1 = Txk, with
T ≡ Pr . . . P2P1, and with Pj denoting the projection operator onto Cj .

PAR: The parallel projection given in (2) with fixed equal weights (i.e.,
µk+1(j) = 1

r for each k), and with λk+1 determined as in [6], i.e.,

λk+1 =

∑r
j=1

1
r |xk − Pjxk|2

|xk −
∑r

j=1
1
r Pjxk|2

.

NEW0 and NEW3: The algorithm presented in this paper, with M = 1
and M = 103 respectively, and with B = 106 in both cases.

As a first example, we take as closed convex sets the twelve disks
{Cj}12j=1 mentioned in formula (1), Section 1; their intersection (in fact
determined by C1 and C12) contains more than one point. Starting from
some given point in the plane, we want to obtain a point in their intersec-
tion; explicit expressions for Pj may be found in [2].

In Table 1 we have mentioned, for the given eight starting points
((−3, 0), . . . ), either the number of iterations needed to obtain a point in
the intersection (this is a positive integer), or the sum of the distances of
the current iteration point to the twelve sets Cj , after 25 and 50 iterations
respectively. The results in Table 1 suggest that the convergence behaviour
of the algorithm presented in this paper is much less dependent on the
starting point than in the other cases; extremely slow convergence did not
appear, for a lot of starting points.

In our second example we considered in R3 with variables x, y, z the
intersection of the ball given by x2 + y2 + z2 ≤ R2 (with 1

6 ≤ R ≤ 1), and
the three half-spaces given by x+y+4z ≤ 1, x+y−4z ≤ 1, −x+y−8z ≤ 1.
The four algorithms mentioned in example 1 all gave rather comparable
results: a point in the intersection was obtained in at most 4 iterations,
for different starting points and for different values of the radius R of the
ball.

The third example, again in R3, investigates the case of (hyper)planes
making small angles with each other. It is known that such case leads to
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very slow convergence by using the existing POCS algorithm. We consid-
ered four planes through the z-axis and four planes through the y-axis,
having the origin as intersection point. The equations of the planes in R3

were given by y = x, y = 1.4x, y = 1.7x, y = 2x, z = 4x, z = 4.4x,
z = 4.7x, z = 5x respectively.

Starting Point (−3, 0) (10,−10) (3, 4)

PP 1 3.279208× 10−3 3.661634× 10−3

5.000838× 10−4 5.49556× 10−4

PAR 9.972098× 10−3 4 1.129448× 10−2

3.128052× 10−3 3.427267× 10−3

NEW0 9 5 9

NEW3 20 5 8

Starting Point (−17, 12) (−2, 1) (−100,−50)

PP 3.601907× 10−3 3.202676× 10−3 1

5.419265× 10−4 4.89951× 10−4

PAR 1.185358× 10−2 9.768488× 10−3 8.859039× 10−3

3.548027× 10−3 3.080129× 10−3 2.859947× 10−3

NEW0 10 10 10

NEW3 8 9 42

Starting Point (2,−4) (0, 2)

PP 3.005983× 10−3 3.694175× 10−3

4.637248× 10−4 5.537283× 10−4

PAR 5 9.757404× 10−3

3.077506× 10−3

NEW0 5 9

NEW3 5 10

Table 1.

In Table 2 we give, again for the four algorithms mentioned in the
first example, the result either of the sum of the distances of the current
iteration point to the eight planes after 1000 iterations, or the number
of iterations needed to stop the procedure (this happened when the sum
of the distances was less than 1 × 10−8). Of course, this example is not
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intended to present an alternative for existing algebraic methods in this
case, but only to compare the behaviour of the mentioned algorithms.

Starting Point (0.1, 0.2, 0.3) (−1, 2, −3) (3, −1, 2)

PP 4.846649× 10−6 3.737408× 10−5 3.23111× 10−5

PAR 7.679005× 10−3 7.220158× 10−2 4.867536× 10−3

NEW0 9.224179× 10−3 0.067403 6.159196× 10−2

NEW3 374 372 430

Table 2.

The less good behaviour of NEW0 when compared to NEW3 may
be explained by the fact that, with the relaxation used in NEW0, the
monotoneous way of iteration has never been interrupted, contrary to what
happens when using NEW3. In any case, this last example seems to suggest
that interrupting the monotony by using suitable relaxations with respect
to D can substantially improve the speed of convergence.
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