Differentiable solutions of a polynomial-like iterative equation with variable coefficients

By JIAN-GUO SI (Binzhou) and XIN-PING WANG (Binzhou)

Abstract

This paper is concerned with a polynomial-like iterative equation with variable coefficients $\sum_{i=1}^{n} \lambda_{i}(x) \varphi^{[i]}(x)=F(x)$, where $\varphi^{[i]}(x)$ is the $i^{\text {th }}$ iterate of the function $\varphi(x)$. Using the fixed point theorems of Schauder and Banach we discuss the existence, uniqueness and stability of $\operatorname{Lip} C^{1}$-solutions of the equation.

1. Introduction

Let $\varphi^{[k]}$ denote the k-th iterate of a function φ, and $\varphi^{[0]}$ the identify function. To find a function φ such that its k-th iterate $\varphi^{[k]}$ is equal to a give function F plays an important role in the theory of dynamical systems [1], [2]. As a natural generalization, the polynomial-like iterative functional equations in the following form

$$
\begin{equation*}
\lambda_{1} \varphi(x)+\lambda_{2} \varphi^{[2]}(x)+\cdots+\lambda_{n} \varphi^{[n]}(x)=F(x) \tag{*}
\end{equation*}
$$

for $x \in R, \lambda_{i} \in R, i=1,2, \ldots, n$, or some special cases were considered recently [3-10]. In particular, W. Zhang [6] considered the existence, uniqueness and stability of differentiable solutions of equation $(*)$. However, conditions for the existence of differentiable solutions are not known in the case of variable coefficients. In this paper, we will consider a polynomial-like iterative equation with variable coefficients:

$$
\begin{equation*}
\lambda_{1}(x) \varphi(x)+\lambda_{2}(x) \varphi^{[2]}(x)+\cdots+\lambda_{n}(x) \varphi^{[n]}(x)=F(x), \tag{1}
\end{equation*}
$$

Mathematics Subject Classification: 39B12, 58F08.
Key words and phrases: iterative functional equation, $\operatorname{Lip} C^{1}$-solution, fixed point theorem.
where n is a positive integer greater than or equal to 2 . By means of the fixed point theorems of Banach and Schauder, we discuss the existence, uniqueness and stability of $\operatorname{Lip} C^{1}$-solutions of equation (1).

We write $\varphi \in C^{1}$ if $\varphi, \varphi^{\prime}$ are continuous. The set of all C^{1} function each of which maps a closed interval I into I will be denoted by $C^{1}(I, I)$. It is well known that when endowed with the norm $\|\cdot\|_{C^{1}}$, where

$$
\|\varphi\|_{C^{1}}=\|\varphi\|_{C^{0}}+\left\|\varphi^{\prime}\right\|_{C^{0}}, \quad\|\varphi\|_{C^{0}}=\max _{x \in I}\{|\varphi(x)|\}
$$

$C^{1}(I, I)$ is a Banach space (see also [6]).
We write $\varphi \in \operatorname{Lip} C^{1}$ if $\varphi \in C^{1}(I, I)$ and φ^{\prime} is Lipschitzian. Let $I=[a, b] \subset R$, for given constants $M>0, M^{*}>0$, we will denote by $\Omega\left(M, M^{*} ; I\right)$ the subset of all $\varphi \in \operatorname{Lip} C^{1}$ each of which satisfies

$$
\begin{gathered}
\varphi(a)=a, \quad \varphi(b)=b, \quad 0 \leq \varphi^{\prime}(x) \leq M \\
\left|\varphi^{\prime}\left(x_{1}\right)-\varphi^{\prime}\left(x_{2}\right)\right| \leq M^{*}\left|x_{1}-x_{2}\right|, \quad \forall x, x_{1}, x_{2} \in I
\end{gathered}
$$

2. Preparatory lemmas

Our discussion depends on the following several preparatory lemmas the proof of which can be found in [6].

Lemma 1. Suppose that $\varphi \in \Omega\left(M, M^{*} ; I\right)$. Then

$$
\begin{equation*}
\left|\left(\varphi^{[i]}\right)^{\prime}\left(x_{1}\right)-\left(\varphi^{[i]}\right)^{\prime}\left(x_{2}\right)\right| \leq M^{*}\left(\sum_{j=i-1}^{2 i-2} M^{j}\right)\left|x_{1}-x_{2}\right| . \tag{2}
\end{equation*}
$$

Lemma 2. Suppose that $\varphi_{1}, \varphi_{2} \in \Omega\left(M, M^{*} ; I\right)$. Then

$$
\begin{equation*}
\left\|\varphi_{1}^{[i]}-\varphi_{2}^{[i]}\right\|_{C^{0}} \leq\left(\sum_{j=1}^{i} M^{j-1}\right)\left\|\varphi_{1}-\varphi_{2}\right\|_{C^{0}} \tag{3}
\end{equation*}
$$

Lemma 3. Suppose that $\varphi_{1}, \varphi_{2} \in \Omega\left(M, M^{*} ; I\right)$. Then

$$
\begin{align*}
& \left\|\left(\varphi_{1}^{[k+1]}\right)^{\prime}-\left(\varphi_{2}^{[k+1]}\right)^{\prime}\right\|_{C^{0}} \leq(k+1) M^{k}\left\|\varphi_{1}^{\prime}-\varphi_{2}^{\prime}\right\|_{C^{0}} \tag{4}\\
& \quad+Q(k+1) M^{*}\left(\sum_{i=1}^{k}(k-i+1) M^{k+i-1}\right)\left\|\varphi_{1}-\varphi_{2}\right\|_{C^{0}}
\end{align*}
$$

for $k=0,1,2, \ldots$, where $Q(s)=0$ when $s=1$ and $Q(s)=1$ when $s=2,3, \ldots$.

Lemma 4. If φ_{1}, φ_{2} are homeomorphisms from I onto itself and

$$
\left|\varphi_{i}\left(x_{1}\right)-\varphi_{i}\left(x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|, \quad \forall x_{1}, x_{2} \in I,
$$

where L is a positive constant and $i=1,2$, then

$$
\begin{equation*}
\left\|\varphi_{1}-\varphi_{2}\right\|_{C^{0}} \leq L\left\|\varphi_{1}^{-1}-\varphi_{2}^{-1}\right\|_{C^{0}} . \tag{5}
\end{equation*}
$$

3. The existence and uniqueness

 of $\operatorname{Lip} C^{1}$-solutions for equation (1)In this section we give the existence and uniqueness theorems of $\operatorname{Lip} C^{1}$-solutions for equation (1).

Theorem 1. Let $I=[a, b], \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}: I \rightarrow[0,1]$ be continuous, $\lambda_{1}(x) \geq \alpha, \sum_{i=1}^{n} \lambda_{i}(x)=1$ for all $x \in I$, and

$$
\left|\lambda_{k}\left(x_{1}\right)-\lambda_{k}\left(x_{2}\right)\right| \leq \beta_{k}\left|x_{1}-x_{2}\right|, \quad \forall x_{1}, x_{2} \in I, \quad k=1,2, \ldots, n,
$$

where $\alpha>(1-\alpha)\left(M+\frac{\kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}\right) \sum_{j=0}^{2 n-4} M^{j+1}, \beta_{k}(k=1,2, \ldots, n)$ are positive constants. Suppose that $F \in \Omega\left(\alpha M, M^{\prime} ; I\right)$. Then (1) has a soluton in $\Omega\left(M, M^{*} ; I\right)$. Here

$$
M^{*} \geq \frac{M^{\prime}+\sum_{i=1}^{n} \beta_{i} M^{i}}{\alpha-(1-\alpha)\left(M+\frac{\kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}\right) \sum_{j=0}^{2 n-4} M^{j+1}}, \quad \kappa=\max \{|a|,|b|\} .
$$

Proof. We will seek of a solution (1) in $\Omega\left(M, M^{*} ; I\right)$. To this end, for each $\varphi \in \Omega\left(M, M^{*} ; I\right)$, let us define

$$
\begin{equation*}
\varphi_{x}(t)=\sum_{i=1}^{n} \lambda_{i}(x) \varphi^{[i-1]}(t), \quad \forall t \in I . \tag{6}
\end{equation*}
$$

It is easy to see that $\varphi_{x}(a)=a, \varphi_{x}(b)=b$, and $\varphi_{x} \in C^{1}(I, I)$. Since

$$
\begin{gather*}
\varphi_{x}^{\prime}(t)=\sum_{i=1}^{n} \lambda_{i}(x)\left(\varphi^{[i-1]}\right)^{\prime}(t), \tag{7}\\
0<\alpha \leq \lambda_{1}(x) \leq \varphi_{x}^{\prime}(t) \leq \sum_{i=1}^{n} M^{i-1}:=K_{1} . \tag{8}
\end{gather*}
$$

So

$$
\begin{equation*}
0<\frac{1}{K_{1}} \leq\left(\varphi_{x}^{-1}\right)^{\prime}(t)=\frac{1}{\varphi_{x}^{\prime}\left(\varphi_{x}^{-1}(t)\right)} \leq \frac{1}{\alpha} \tag{9}
\end{equation*}
$$

Thus $\varphi_{x}: I \rightarrow I$ is a self-diffeomorphism.
First, we prove the following lemma.
Lemma 5. Let $\varphi, g, h \in \Omega\left(M, M^{*} ; I\right)$, and $x_{1}, x_{2}, t_{1}, t_{2}, t \in I$. Then

$$
\begin{equation*}
\left|\varphi_{x}^{\prime}\left(t_{1}\right)-\varphi_{x}^{\prime}\left(t_{2}\right)\right| \leq K_{2}\left|t_{1}-t_{2}\right|, \tag{10}
\end{equation*}
$$

where $K_{2}=(1-\alpha) M^{*} \sum_{j=0}^{2 n-4} M^{j}$.
(11) $\left|\left(\varphi_{x}^{-1}\right)^{\prime}\left(t_{1}\right)-\left(\varphi_{x}^{-1}\right)^{\prime}\left(t_{2}\right)\right| \leq \frac{K_{2}}{\alpha^{3}}\left|t_{1}-t_{2}\right|$.
(12) $\quad\left|\varphi_{x_{1}}^{\prime}(t)-\varphi_{x_{2}}^{\prime}(t)\right| \leq\left(\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\left|x_{1}-x_{2}\right|$.

$$
\begin{align*}
& \left|\varphi_{x_{1}}(t)-\varphi_{x_{2}}(t)\right| \leq\left(\kappa \sum_{i=1}^{n} \beta_{i}\right)\left|x_{1}-x_{2}\right| . \tag{13}\\
& \left|\varphi_{x_{1}}^{-1}(t)-\varphi_{x_{2}}^{-1}(t)\right| \leq \frac{\kappa}{\alpha}\left(\sum_{i=1}^{n} \beta_{i}\right)\left|x_{1}-x_{2}\right| . \tag{14}\\
& \left|\varphi_{x_{1}}^{-1}\left(t_{1}\right)-\varphi_{x_{2}}^{-1}\left(t_{2}\right)\right| \leq \frac{1}{\alpha}\left|t_{1}-t_{2}\right|+\frac{\kappa}{\alpha}\left(\sum_{i=1}^{n} \beta_{i}\right)\left|x_{1}-x_{2}\right| . \tag{15}
\end{align*}
$$

$$
\begin{equation*}
\left|\left(\varphi_{x_{1}}^{-1}\right)^{\prime}\left(t_{1}\right)-\left(\varphi_{x_{2}}^{-1}\right)^{\prime}\left(t_{2}\right)\right| \tag{16}
\end{equation*}
$$

$$
\leq \frac{1}{\alpha^{2}}\left(\frac{K_{2} \kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}+\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\left|x_{1}-x_{2}\right|+\frac{K_{2}}{\alpha^{3}}\left|t_{1}-t_{2}\right| .
$$

$$
\begin{equation*}
\left|\left(\varphi_{x_{1}}^{-1}\right)^{\prime}(t)-\left(\varphi_{x_{2}}^{-1}\right)^{\prime}(t)\right| \tag{17}
\end{equation*}
$$

$$
\leq \frac{1}{\alpha^{2}}\left(\frac{K_{2} \kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}+\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\left|x_{1}-x_{2}\right|
$$

(18) $\left\|g_{x}-h_{x}\right\|_{C^{0}} \leq\left(\sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}\right)\|g-h\|_{C^{0}}$.

$$
\begin{align*}
& \left\|g_{x}^{\prime}-h_{x}^{\prime}\right\|_{C^{0}} \leq \sum_{i=2}^{n}(i-1) M^{i-2}\left\|g^{\prime}-h^{\prime}\right\|_{C^{0}} \tag{19}\\
& \quad+M^{*} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3}\|g-h\|_{C^{0}}
\end{align*}
$$

$$
\begin{equation*}
\left\|g_{x}^{-1}-h_{x}^{-1}\right\|_{C^{0}} \leq \frac{1}{\alpha}\left(\sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}\right)\|g-h\|_{C^{0}} \tag{20}
\end{equation*}
$$

(21) $\left\|\left(g_{x}^{-1}\right)^{\prime}-\left(h_{x}^{-1}\right)^{\prime}\right\|_{C^{0}}$

$$
\begin{aligned}
\leq & {\left[\frac{K_{2}}{\alpha^{3}} \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}+\frac{M^{*}}{\alpha^{2}} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3}\right] } \\
& \times\|g-h\|_{C^{0}}+\frac{1}{\alpha^{2}} \sum_{i=2}^{n}(i-1) M^{i-2}\left\|g^{\prime}-h^{\prime}\right\|_{C^{0}} .
\end{aligned}
$$

Proof of Lemma 5. By Lemma 1 we see that

$$
\begin{aligned}
& \left|\varphi_{x}^{\prime}\left(t_{1}\right)-\varphi_{x}^{\prime}\left(t_{2}\right)\right|=\left|\sum_{i=1}^{n} \lambda_{i}(x)\left[\left(\varphi^{[i-1]}\right)^{\prime}\left(t_{1}\right)-\left(\varphi^{[i-1]}\right)^{\prime}\left(t_{2}\right)\right]\right| \\
\leq & \sum_{i=2}^{n} \lambda_{i}(x)\left(M^{*} \sum_{j=i-2}^{2 i-4} M^{j}\right)\left|t_{1}-t_{2}\right| \leq \sum_{i=2}^{n} \lambda_{i}(x)\left(M^{*} \sum_{j=0}^{2 n-4} M^{j}\right)\left|t_{1}-t_{2}\right| \\
= & \left(1-\lambda_{1}(x)\right) M^{*} \sum_{j=0}^{2 n-4} M^{j}\left|t_{1}-t_{2}\right| \leq(1-\alpha) M^{*} \sum_{j=0}^{2 n-4} M^{j}\left|t_{1}-t_{2}\right|=K_{2}\left|t_{1}-t_{2}\right| .
\end{aligned}
$$

This proves (10).
From (8)-(10) we have

$$
\begin{aligned}
&\left|\left(\varphi_{x}^{-1}\right)^{\prime}\left(t_{1}\right)-\left(\varphi_{x}^{-1}\right)^{\prime}\left(t_{2}\right)\right|=\left|\frac{1}{\varphi_{x}^{\prime}\left(\varphi_{x}^{-1}\left(t_{1}\right)\right)}-\frac{1}{\varphi_{x}^{\prime}\left(\varphi_{x}^{-1}\left(t_{2}\right)\right)}\right| \\
&=\left|\frac{\varphi_{x}^{\prime}\left(\varphi_{x}^{-1}\left(t_{1}\right)\right)-\varphi_{x}^{\prime}\left(\varphi_{x}^{-1}\left(t_{2}\right)\right)}{\varphi_{x}^{\prime}\left(\varphi_{x}^{-1}\left(t_{1}\right)\right) \varphi_{x}^{\prime}\left(\varphi_{x}^{-1}\left(t_{2}\right)\right)}\right| \leq \frac{K_{2}}{\alpha^{2}}\left|\varphi_{x}^{-1}\left(t_{1}\right)-\varphi_{x}^{-1}\left(t_{2}\right)\right| \leq \frac{K_{2}}{\alpha^{3}}\left|t_{1}-t_{2}\right| .
\end{aligned}
$$

This proves (11).

From (7) it follows that

$$
\begin{aligned}
& \left|\varphi_{x_{1}}^{\prime}(t)-\varphi_{x_{2}}^{\prime}(t)\right|=\left|\sum_{i=1}^{n}\left(\lambda_{i}\left(x_{1}\right)-\lambda_{i}\left(x_{2}\right)\right)\left(\varphi^{[i-1]}\right)^{\prime}(t)\right| \\
& \quad \leq \sum_{i=1}^{n}\left|\lambda_{i}\left(x_{1}\right)-\lambda_{i}\left(x_{2}\right)\right|\left|\left(\varphi^{[i-1]}\right)^{\prime}(t)\right| \leq\left(\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\left|x_{1}-x_{2}\right| .
\end{aligned}
$$

This proves (12).
By (6) we have

$$
\begin{aligned}
& \left|\varphi_{x_{1}}(t)-\varphi_{x_{2}}(t)\right|=\left|\sum_{i=1}^{n}\left(\lambda_{i}\left(x_{1}\right)-\lambda_{i}\left(x_{2}\right)\right) \varphi^{[i-1]}(t)\right| \\
& \quad \leq \sum_{i=1}^{n}\left|\lambda_{i}\left(x_{1}\right)-\lambda_{i}\left(x_{2}\right)\right|\left|\varphi^{[i-1]}(t)\right| \leq \kappa \sum_{i=1}^{n} \beta_{i}\left|x_{1}-x_{2}\right| .
\end{aligned}
$$

This proves (13).
(14) follows from

$$
\begin{aligned}
& \left|\varphi_{x_{1}}^{-1}(t)-\varphi_{x_{2}}^{-1}(t)\right|=\left|\varphi_{x_{1}}^{-1}\left(\varphi_{x_{2}}\left(\varphi_{x_{2}}^{-1}(t)\right)\right)-\varphi_{x_{1}}^{-1}\left(\varphi_{x_{1}}\left(\varphi_{x_{2}}^{-1}(t)\right)\right)\right| \\
& \quad \stackrel{(9)}{\leq} \frac{1}{\alpha}\left|\varphi_{x_{2}}\left(\varphi_{x_{2}}^{-1}(t)\right)-\varphi_{x_{1}}\left(\varphi_{x_{2}}^{-1}(t)\right)\right| \stackrel{(13)}{\leq}\left(\frac{\kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}\right)\left|x_{1}-x_{2}\right| .
\end{aligned}
$$

From (9) and (14) we have

$$
\begin{aligned}
& \left|\varphi_{x_{1}}^{-1}\left(t_{1}\right)-\varphi_{x_{2}}^{-1}\left(t_{2}\right)\right| \leq\left|\varphi_{x_{1}}^{-1}\left(t_{1}\right)-\varphi_{x_{1}}^{-1}\left(t_{2}\right)\right|+\left|\varphi_{x_{1}}^{-1}\left(t_{2}\right)-\varphi_{x_{2}}^{-1}\left(t_{2}\right)\right| \\
& \quad \leq \frac{1}{\alpha}\left|t_{1}-t_{2}\right|+\left(\frac{\kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}\right)\left|x_{1}-x_{2}\right| .
\end{aligned}
$$

This proves (15).
In view of (9), (10), (12) and (14), (16) follows from

$$
\begin{aligned}
& \left|\left(\varphi_{x_{1}}^{-1}\right)^{\prime}\left(t_{1}\right)-\left(\varphi_{x_{2}}^{-1}\right)^{\prime}\left(t_{2}\right)\right|=\left|\frac{1}{\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{1}}^{-1}\left(t_{1}\right)\right)}-\frac{1}{\varphi_{x_{2}}^{\prime}\left(\varphi_{x_{2}}^{-1}\left(t_{2}\right)\right)}\right| \\
& \quad \leq \frac{1}{\alpha^{2}}\left|\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{1}}^{-1}\left(t_{1}\right)\right)-\varphi_{x_{2}}^{\prime}\left(\varphi_{x_{2}}^{-1}\left(t_{2}\right)\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{\alpha^{2}}\left[\left|\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{1}}^{-1}\left(t_{1}\right)\right)-\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{2}}^{-1}\left(t_{1}\right)\right)\right|+\left|\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{2}}^{-1}\left(t_{1}\right)\right)-\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{2}}^{-1}\left(t_{2}\right)\right)\right|\right. \\
& \left.+\left|\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{2}}^{-1}\left(t_{2}\right)\right)-\varphi_{x_{2}}^{\prime}\left(\varphi_{x_{2}}^{-1}\left(t_{2}\right)\right)\right|\right] \leq \frac{1}{\alpha^{2}} \\
& \times\left[K_{2}\left|\varphi_{x_{1}}^{-1}\left(t_{1}\right)-\varphi_{x_{2}}^{-1}\left(t_{1}\right)\right|+K_{2}\left|\varphi_{x_{2}}^{-1}\left(t_{1}\right)-\varphi_{x_{2}}^{-1}\left(t_{2}\right)\right|+\left(\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\left|x_{1}-x_{2}\right|\right] \\
& \leq \frac{1}{\alpha^{2}}\left[\frac{K_{2} \kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}\left|x_{1}-x_{2}\right|+\frac{K_{2}}{\alpha}\left|t_{1}-t_{2}\right|+\left(\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\left|x_{1}-x_{2}\right|\right] \\
& =\frac{1}{\alpha^{2}}\left(\frac{K_{2} \kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}+\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\left|x_{1}-x_{2}\right|+\frac{K_{2}}{\alpha^{3}}\left|t_{1}-t_{2}\right| .
\end{aligned}
$$

(17) follows from

$$
\begin{aligned}
& \left|\left(\varphi_{x_{1}}^{-1}\right)^{\prime}(t)-\left(\varphi_{x_{2}}^{-1}\right)^{\prime}(t)\right|=\left|\frac{1}{\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{1}}^{-1}(t)\right)}-\frac{1}{\varphi_{x_{2}}^{\prime}\left(\varphi_{x_{2}}^{-1}(t)\right)}\right| \\
& \quad \leq \frac{1}{\alpha^{2}}\left|\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{1}}^{-1}(t)\right)-\varphi_{x_{2}}^{\prime}\left(\varphi_{x_{2}}^{-1}(t)\right)\right| \\
& \quad \leq \frac{1}{\alpha^{2}}\left[\left|\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{1}}^{-1}(t)\right)-\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{2}}^{-1}(t)\right)\right|+\left|\varphi_{x_{1}}^{\prime}\left(\varphi_{x_{2}}^{-1}(t)\right)-\varphi_{x_{2}}^{\prime}\left(\varphi_{x_{2}}^{-1}(t)\right)\right|\right] \\
& \quad(10),(12) \\
& \leq \\
& \quad \frac{1}{\alpha^{2}}\left[K_{2}\left|\varphi_{x_{1}}^{-1}(t)-\varphi_{x_{2}}^{-1}(t)\right|+\left(\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\left|x_{1}-x_{2}\right|\right] \\
& \quad=\frac{1}{\leq} \frac{1}{\alpha^{2}}\left[\frac{K_{2} \kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}\left|x_{1}-x_{2}\right|+\sum_{i=1}^{n} \beta_{i} M^{i-1}\left|x_{1}-x_{2}\right|\right] \\
& \quad=\frac{1}{\alpha^{2}}\left(\frac{K_{2} \kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}+\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\left|x_{1}-x_{2}\right| .
\end{aligned}
$$

(18) follows from

$$
\begin{aligned}
& \left\|g_{x}-h_{x}\right\|_{C^{0}}=\max _{t \in I}\left|g_{x}(t)-h_{x}(t)\right| \\
& \quad=\max _{t \in I}\left|\sum_{i=1}^{n} \lambda_{i}(x)\left(g^{[i-1]}(t)-h^{[i-1]}(t)\right)\right| \leq \sum_{i=1}^{n}\left\|g^{[i-1]}-h^{[i-1]}\right\|_{C^{0}}
\end{aligned}
$$

$$
\stackrel{(3)}{\leq}\left(\sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}\right)\|g-h\|_{C^{0}} .
$$

(19) follows from

$$
\begin{aligned}
\| g_{x}^{\prime} & -h_{x}^{\prime} \|_{C^{0}}=\max _{t \in I}\left|\sum_{i=1}^{n} \lambda_{i}(x)\left(\left(g^{[i-1]}\right)^{\prime}(t)-\left(h^{[i-1]}\right)^{\prime}(t)\right)\right| \\
\leq & \sum_{i=1}^{n} \lambda_{i}(x)\left\|\left(g^{[i-1]}\right)^{\prime}-\left(h^{[i-1]}\right)^{\prime}\right\|_{C^{0}} \stackrel{(4)}{\leq} \sum_{i=1}^{n}\left[(i-1) M^{i-2}\left\|g_{x}^{\prime}-h_{x}^{\prime}\right\|_{C^{0}}\right. \\
& \left.+Q(i-1) M^{*}\left(\sum_{j=1}^{i-2}(i-j-1) M^{i+j-3}\right)\left\|g_{x}-h_{x}\right\|_{C^{0}}\right] \\
\leq & \sum_{i=2}^{n}(i-1) M^{i-2}\left\|g_{x}^{\prime}-h_{x}^{\prime}\right\|_{C^{0}} \\
& +M^{*} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3}\|g-h\|_{C^{0}} .
\end{aligned}
$$

(20) follows from

$$
\left\|g_{x}^{-1}-h_{x}^{-1}\right\|_{C^{0}} \stackrel{(5)}{\leq} \frac{1}{\alpha}\left\|g_{x}-h_{x}\right\|_{C^{0}} \stackrel{(18)}{\leq}\left(\frac{1}{\alpha} \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}\right)\|g-h\|_{C^{0}} .
$$

Finally, by (9), (10), (19) and (20), we have

$$
\begin{aligned}
& \left\|\left(g_{x}^{-1}\right)^{\prime}-\left(h_{x}^{-1}\right)^{\prime}\right\|_{C^{0}}=\max _{t \in I}\left|\frac{1}{g_{x}^{\prime}\left(g_{x}^{-1}(t)\right)}-\frac{1}{h_{x}^{\prime}\left(h_{x}^{-1}(t)\right)}\right| \\
& \quad \leq \frac{1}{\alpha^{2}} \max _{t \in I}\left|g_{x}^{\prime}\left(g_{x}^{-1}(t)\right)-h_{x}^{\prime}\left(h_{x}^{-1}(t)\right)\right| \\
& \quad \leq \frac{1}{\alpha^{2}} \max _{t \in I}\left[\left|g_{x}^{\prime}\left(g_{x}^{-1}(t)\right)-g_{x}^{\prime}\left(h_{x}^{-1}(t)\right)\right|+\left|g_{x}^{\prime}\left(h_{x}^{-1}(t)\right)-h_{x}^{\prime}\left(h_{x}^{-1}(t)\right)\right|\right] \\
& \quad \leq \frac{1}{\alpha^{2}}\left[K_{2}\left\|g_{x}^{-1}-h_{x}^{-1}\right\|_{C^{0}}+\left\|g_{x}^{\prime}-h_{x}^{\prime}\right\|_{C^{0}}\right] \\
& \quad \leq\left(\frac{K_{2}}{\alpha^{3}} \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}\right)\|g-h\|_{C^{0}}+\frac{1}{\alpha^{2}} \sum_{i=2}^{n}(i-1) M^{i-2}\left\|g^{\prime}-h^{\prime}\right\|_{C^{0}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{M^{*}}{\alpha^{2}} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3}\|g-h\|_{C^{0}} \\
= & {\left[\frac{K_{2}}{\alpha^{3}} \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}+\frac{M^{*}}{\alpha^{2}} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3}\right]\|g-h\|_{C^{0}} } \\
& +\frac{1}{\alpha^{2}} \sum_{i=2}^{n}(i-1) M^{i-2}\left\|g^{\prime}-h^{\prime}\right\|_{C^{0}} .
\end{aligned}
$$

This proves (21).
Now we continue to prove Theorem 1. Define an operator T from $\Omega\left(M, M^{*} ; I\right)$ into $C^{1}(I, I)$ by

$$
\begin{equation*}
(T \varphi)(x)=\varphi_{x}^{-1}(F(x)), \quad \varphi \in \Omega\left(M, M^{*} ; I\right) . \tag{22}
\end{equation*}
$$

Clearly $(T \varphi)(a)=a, T(\varphi)(b)=b, T \varphi \in C^{1}(I, I)$, and (9) yields that

$$
0 \leq \frac{F^{\prime}(x)}{K_{1}} \leq(T \varphi)^{\prime}(x)=\left(\varphi_{x}^{-1}\right)^{\prime}(F(x)) F^{\prime}(x) \leq \frac{1}{\alpha} \cdot \alpha M=M .
$$

Furthermore, by (11), (17), we have

$$
\begin{aligned}
&\left|(T \varphi)^{\prime}\left(x_{1}\right)-(T \varphi)^{\prime}\left(x_{2}\right)\right|=\left|\left(\varphi_{x_{1}}^{-1}\right)^{\prime}\left(F\left(x_{1}\right)\right) F^{\prime}\left(x_{1}\right)-\left(\varphi_{x_{2}}^{-1}\right)^{\prime}\left(F\left(x_{2}\right)\right) F^{\prime}\left(x_{2}\right)\right| \\
& \leq\left|\left(\varphi_{x_{1}}^{-1}\right)^{\prime}\left(F\left(x_{1}\right)\right)-\left(\varphi_{x_{1}}^{-1}\right)^{\prime}\left(F\left(x_{2}\right)\right)\right| F^{\prime}\left(x_{1}\right)+\left(\varphi_{x_{1}}^{-1}\right)^{\prime}\left(F\left(x_{2}\right)\right)\left|F^{\prime}\left(x_{1}\right)-F^{\prime}\left(x_{2}\right)\right| \\
& \quad+\left|\left(\varphi_{x_{1}}^{-1}\right)^{\prime}\left(F\left(x_{2}\right)\right)-\left(\varphi_{x_{2}}^{-1}\right)^{\prime}\left(F\left(x_{2}\right)\right)\right| F^{\prime}\left(x_{2}\right) \\
& \leq \frac{K_{2}}{\alpha^{3}}\left|F\left(x_{1}\right)-F\left(x_{2}\right)\right| \cdot \alpha M+\frac{1}{\alpha} M^{\prime}\left|x_{1}-x_{2}\right| \\
&+\frac{1}{\alpha^{2}}\left(\frac{K_{2} \kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}+\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\left|x_{1}-x_{2}\right| \cdot \alpha M \\
& \leq {\left[\frac{K_{2} M^{2}}{\alpha}+\frac{M^{\prime}}{\alpha}+\frac{M}{\alpha}\left(\frac{K_{2} \kappa}{\alpha} \sum_{i=1}^{n} \beta_{i}+\sum_{i=1}^{n} \beta_{i} M^{i-1}\right)\right]\left|x_{1}-x_{2}\right| } \\
& \leq M^{*}\left|x_{1}-x_{2}\right|,
\end{aligned}
$$

so $(T \varphi)(x) \in \Omega\left(M, M^{*} ; I\right)$, that is, T is a operator from $\Omega\left(M, M^{*} ; I\right)$ into itself.

Now we will show that T is continuous. Let $g, h \in \Omega\left(M, M^{*} ; I\right)$, $(T g)(x)=g_{x}^{-1}(F(x)),(T h)(x)=h_{x}^{-1}(F(x))$, then

$$
\begin{align*}
&\|T g-T h\|_{C^{1}}=\|T g-T h\|_{C^{0}}+\left\|(T g)^{\prime}-(T h)^{\prime}\right\|_{C^{0}} \tag{23}\\
&= \max _{x \in I}\left\{\left|g_{x}^{-1}(F(x))-h_{x}^{-1}(F(x))\right|\right\} \\
&+\max _{x \in I}\left\{\left|\left(g_{x}^{-1}\right)^{\prime}(F(x)) F^{\prime}(x)-\left(h_{x}^{-1}\right)^{\prime}(F(x)) F^{\prime}(x)\right|\right\} \\
& \leq\left\|g_{x}^{-1}-h_{x}^{-1}\right\|_{C^{0}}+\alpha M\left\|\left(g_{x}^{-1}\right)^{\prime}-\left(h_{x}^{-1}\right)^{\prime}\right\|_{C^{0}} \\
& \leq\left(\frac{1}{\alpha} \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}\right)\|g-h\|_{C^{0}}+\alpha M \\
& \times\left\{\left[\frac{K_{2}}{\alpha^{3}} \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}+\frac{M^{*}}{\alpha^{2}} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3}\right]\right. \\
&\left.\quad \times\|g-h\|_{C^{0}}+\frac{1}{\alpha^{2}} \sum_{i=2}^{n}(i-1) M^{i-2}\left\|g^{\prime}-h^{\prime}\right\|_{C^{0}}\right\} \\
&= {\left[\frac{1}{\alpha} \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}+\frac{K_{2} M}{\alpha^{2}} \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}\right.} \\
&\left.\quad+\frac{M M^{*}}{\alpha} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3}\right]\|g-h\|_{C^{0}} \\
& \quad+\frac{M}{\alpha} \sum_{i=2}^{n}(i-1) M^{i-2}\left\|g^{\prime}-h^{\prime}\right\|_{C^{0}} \leq \Theta\|g-h\|_{C^{1}},
\end{align*}
$$

where

$$
\begin{align*}
& \Theta=\max \left\{\left(\frac{1}{\alpha}+\frac{K_{2} M}{\alpha^{2}}\right) \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}\right. \tag{24}\\
& \left.+\frac{M M^{*}}{\alpha} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3} ; \frac{M}{\alpha} \sum_{i=2}^{n}(i-1) M^{i-2}\right\} .
\end{align*}
$$

This shows that T is continuous.
It is easy to see that $\Omega\left(M, M^{*} ; I\right)$ is closed and convex. We now show that $\Omega\left(M, M^{*} ; I\right)$ is a relatively compact subset of $C^{1}(I, I)$. For any

$$
\begin{aligned}
& \varphi=\varphi(x) \text { in } \Omega\left(M, M^{*} ; I\right) \\
& \qquad\|\varphi\|_{C^{1}}=\|\varphi\|_{C^{0}}+\left\|\varphi^{\prime}\right\|_{C^{0}} \leq \kappa+M
\end{aligned}
$$

Hence $\Omega\left(M, M^{*} ; I\right)$ is bounded in $C^{1}(I, I)$. Next, for any $\varphi=\varphi(x)$ in $\Omega\left(M, M^{*} ; I\right)$ and any $x_{1}, x_{2} \in I$, we have

$$
\left|\varphi\left(x_{1}\right)-\varphi\left(x_{2}\right)\right| \leq M\left|x_{1}-x_{2}\right| .
$$

This shows that $\Omega\left(M, M^{*} ; I\right)$ is equicontinuous on I. By means of the Arzela-Ascoli theorem, we see that $\Omega\left(M, M^{*} ; I\right)$ is relatively compact in $C^{1}(I, I)$. By Schauder's fixed point theorem we assert that there is a function $\varphi \in \Omega\left(M, M^{*} ; I\right)$ such that

$$
\varphi(x)=(T \varphi)(x)=\varphi_{x}^{-1}(F(x))
$$

or

$$
\varphi_{x}(\varphi(x))=F(x),
$$

that is, φ is a solution of equation (1) in $\Omega\left(M, M^{*} ; I\right)$. This completes the proof.

Theorem 2. Under the hypothses of Theorem 1, (1) has a unique solution in $\Omega\left(M, M^{*} ; I\right)$ if $\Theta<1$ in (24).

Proof. Since $\Theta<1$, we see that T defined by (22) is contraction mapping on the closed subset $\Omega\left(M, M^{*} ; I\right)$ of $C^{1}(I, I)$. Thus the fixed point φ in the proof of Theorem 1 must be unique. This completes the proof.

Remark 1. A referee of this paper proposes the following interesting question: Whether it is possible that (under the weaker assumptions) of Theorem 1 there exist indeed more than one differential solution of (1) in the sense that T has at least two fixed points. We do not know how to solve this question.

4. The stability of $\operatorname{Lip} C^{1}$-solutions for equation (1)

In this section we consider the problem of the continuous dependence of $\operatorname{Lip} C^{1}$-solutions of equation (1) on the given functions. We have the following

Theorem 3. The unique solution obtained in Theorem 2 depends continuously on the given functions F and $\lambda_{i}(i=1,2, \ldots, n)$.

Proof. Under the assumptions of Theorem 2, if $G=G(x)$ and $H=$ $H(x)$ are any two functions in $\Omega\left(\alpha M, M^{\prime} ; I\right) ; \alpha_{j}(x)$ and $\mu_{j}(x)$ $(j=1,2, \ldots, n)$ are any functions which satisfy the same conditions as $\lambda_{j}(x)(j=1,2, \ldots, n)$ in Theorem 1. Then there correspond two unique functions $g=g(x)$ and $h=h(x)$ in $\Omega\left(M, M^{*} ; I\right)$ such that

$$
g(x)=g_{x}^{-1}(G(x))
$$

and

$$
h(x)=h_{x}^{-1}(H(x))
$$

where

$$
\begin{aligned}
& g_{x}(t)=\sum_{i=1}^{n} \alpha_{i}(x) g^{[i-1]}(t) \\
& h_{x}(t)=\sum_{i=1}^{n} \mu_{i}(x) h^{[i-1]}(t)
\end{aligned}
$$

First of all, it is easy to see that

$$
\begin{aligned}
& \left|g_{x}(t)-h_{x}(t)\right| \leq \sum_{i=1}^{n}\left|\alpha_{i}(x)-\mu_{i}(x)\right|\left|g^{[i-1]}(t)\right| \\
& \quad+\sum_{i=1}^{n}\left|\mu_{i}(x)\right|\left|g^{[i-1]}(t)-h^{[i-1]}(t)\right| \\
& \quad \leq \kappa \sum_{i=1}^{n}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}}+\left(\sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}\right)\|g-h\|_{C^{0}}, \\
& \left|g_{x}^{\prime}(t)-h_{x}^{\prime}(t)\right|=\left|\sum_{i=1}^{n}\left(\alpha_{i}(x)\left(g^{[i-1]}\right)^{\prime}(t)-\mu_{i}(x)\left(h^{[i-1]}\right)^{\prime}(t)\right)\right| \\
& \quad \leq \sum_{i=1}^{n}\left[\left|\alpha_{i}(x)-\mu_{i}(x)\right|\left(g^{[i-1]}\right)^{\prime}(t)+\mu_{i}(x)\left|\left(g^{[i-1]}\right)^{\prime}(t)-\left(h^{[i-1]}\right)^{\prime}(t)\right|\right] \\
& \quad \leq \sum_{i=1}^{n} M^{i-1}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}}+\sum_{i=2}^{n}\left\|\left(g^{[i-1]}\right)^{\prime}-\left(h^{[i-1]}\right)^{\prime}\right\|_{C^{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{n} M^{i-1}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}}+\sum_{i=2}^{n}(i-1) M^{i-2}\left\|g^{\prime}-h^{\prime}\right\|_{C^{0}} \\
&+M^{*} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3}\|g-h\|_{C^{0}} . \\
&\left\|\left(g_{x}^{-1}\right)^{\prime}-\left(h_{x}^{-1}\right)^{\prime}\right\|_{C^{0}}=\max _{t \in I}\left|\frac{1}{g_{x}^{\prime}\left(g_{x}^{-1}(t)\right)}-\frac{1}{h_{x}^{\prime}\left(h_{x}^{-1}(t)\right)}\right| \\
& \leq \frac{1}{\alpha^{2}} \max _{t \in I}\left|g_{x}^{\prime}\left(g_{x}^{-1}(t)\right)-h_{x}^{\prime}\left(h_{x}^{-1}(t)\right)\right| \\
& \leq \frac{1}{\alpha^{2}} \max _{t \in I}\left[\left|g_{x}^{\prime}\left(g_{x}^{-1}(t)\right)-g_{x}^{\prime}\left(h_{x}^{-1}(t)\right)\right|+\left|g_{x}^{\prime}\left(h_{x}^{-1}(t)\right)-h_{x}^{\prime}\left(h_{x}^{-1}(t)\right)\right|\right] \\
& \leq \frac{1}{\alpha^{2}}\left[K_{2}\left\|g_{x}^{-1}-h_{x}^{-1}\right\|_{C^{0}}+\left\|g_{x}^{\prime}-h_{x}^{\prime}\right\|_{C^{0}}\right] \\
& \leq \frac{1}{\alpha^{2}}\left[\frac{K_{2}}{\alpha}\left\|g_{x}-h_{x}\right\|_{C^{0}}+\left\|g_{x}^{\prime}-h_{x}^{\prime}\right\|_{C^{0}}\right] \\
& \leq \frac{K_{2} \kappa}{\alpha^{3}} \sum_{i=1}^{n}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}}+\frac{1}{\alpha^{2}} \sum_{i=1}^{n} M^{i-1}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}} \\
&+ {\left[\frac{K_{2}}{\alpha^{3}} \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}+\frac{M^{*}}{\alpha^{2}} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3}\right]\|g-h\|_{C^{0}} } \\
&+ \frac{1}{\alpha^{2}} \sum_{i=2}^{n}(i-1) M^{i-2}\left\|g^{\prime}-h^{\prime}\right\|_{C^{0}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\| g & -h\left\|_{C^{1}}=\right\| g-h\left\|_{C^{0}}+\right\| g^{\prime}-h^{\prime} \|_{C^{0}}=\max _{x \in I}\left\{\left|g_{x}^{-1}(G(x))-h_{x}^{-1}(H(x))\right|\right\} \\
& +\max _{x \in I}\left\{\left|\left(g_{x}^{-1}\right)^{\prime}(G(x)) G^{\prime}(x)-\left(h_{x}^{-1}\right)^{\prime}(H(x)) H^{\prime}(x)\right|\right\} \\
\leq & \max _{x \in I}\left\{\left|g_{x}^{-1}(G(x))-h_{x}^{-1}(G(x))\right|+\left|h_{x}^{-1}(G(x))-h_{x}^{-1}(H(x))\right|\right\} \\
& +\max _{x \in I}\left\{\left|\left(g_{x}^{-1}\right)^{\prime}(G(x))-\left(h_{x}^{-1}\right)^{\prime}(G(x))\right| G^{\prime}(x)\right. \\
& \left.+\left|\left(h_{x}^{-1}\right)^{\prime}(G(x))-\left(h_{x}^{-1}\right)^{\prime}(H(x))\right| G^{\prime}(x)+\left(h_{x}^{-1}\right)^{\prime}(H(x))\left|G^{\prime}(x)-H^{\prime}(x)\right|\right\}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left\|g_{x}^{-1}-h_{x}^{-1}\right\|_{C^{0}}+\frac{1}{\alpha}\|G-H\|_{C^{0}}+\alpha M\left\|\left(g_{x}^{-1}\right)^{\prime}-\left(h_{x}^{-1}\right)^{\prime}\right\|_{C^{0}} \\
& +\alpha M \cdot \frac{K_{2}}{\alpha^{3}}\|G-H\|_{C^{0}}+\frac{1}{\alpha}\left\|G^{\prime}-H^{\prime}\right\|_{C^{0}} \\
\leq & \frac{1}{\alpha}\left\|g_{x}-h_{x}\right\|_{C^{0}}+\alpha M\left\{\frac{K_{2} \kappa}{\alpha^{3}} \sum_{i=1}^{n}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}}+\frac{1}{\alpha^{2}} \sum_{i=1}^{n} M^{i-1}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}}\right. \\
& +\left[\frac{K_{2}}{\alpha^{3}} \sum_{i=2}^{n} \sum_{j=1}^{i-1} M^{j-1}+\frac{M^{*}}{\alpha^{2}} \sum_{i=2}^{n} \sum_{j=1}^{i-2} Q(i-1)(i-j-1) M^{i+j-3}\right]\|g-h\|_{C^{0}} \\
& \left.+\frac{1}{\alpha^{2}} \sum_{i=1}^{n}(i-1) M^{i-2}\left\|g^{\prime}-h^{\prime}\right\|_{C^{0}}\right\}+\frac{\alpha+K_{2} M}{\alpha^{2}}\|G-H\|_{C^{1}} \\
\leq & \left(\frac{\kappa}{\alpha}+\frac{K_{2} \kappa M}{\alpha^{2}}\right) \sum_{i=1}^{n}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}}+\frac{M}{\alpha} \sum_{i=1}^{n} M^{i-1}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}} \\
& +\Theta\|g-h\|_{C^{1}}+\frac{\alpha+K_{2} M}{\alpha^{2}}\|G-H\|_{C^{1}} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\|g-h\|_{C^{1}} \leq & \frac{\kappa \alpha+K_{2} \kappa M}{\alpha^{2}(1-\Theta)} \sum_{i=1}^{n}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}}+\frac{1}{\alpha(1-\Theta)} \sum_{i=1}^{n} M^{i}\left\|\alpha_{i}-\mu_{i}\right\|_{C^{0}} \\
& +\frac{\alpha+K_{2} M}{\alpha^{2}(1-\Theta)}\|G-H\|_{C^{1}}
\end{aligned}
$$

We now may conclude that the solution of (1) depends continuously on the function F and $\lambda_{j}(j=1,2, \ldots, n)$. This completes the proof.

Remark 2. During the proof of Theorem 1-Theorem 3, the differentiability of $\lambda_{i}(x)(i=1,2, \ldots, n)$ are not required.

5. Example

In this section we show the conditions in Theorem 1 do not selfcontradict by means of an example. Consider the following equation

$$
\begin{equation*}
\lambda_{1}(x) \varphi(x)+\lambda_{2}(x) \varphi(\varphi(x))=F(x), \quad x \in I=[0,1], \tag{25}
\end{equation*}
$$

where

$$
\begin{gathered}
\lambda_{1}(x)=\frac{2-(2-\alpha) x}{2-x}, \quad \lambda_{2}(x)=\frac{(1-\alpha) x}{2-x}, \\
0<\alpha<1, \quad F(x)=\ln (1+x)-x \ln \frac{2}{e} .
\end{gathered}
$$

Obviously, $\lambda_{1}(x)+\lambda_{2}(x)=1$. Since

$$
\begin{aligned}
& 0 \leq \lambda_{2}(x)=\frac{(1-\alpha) x}{2-x} \leq 1-\alpha<1, \\
& \alpha \leq \lambda_{1}(x)=1-\lambda_{2}(x) \leq 1 .
\end{aligned}
$$

Moreover, we also have

$$
F(0)=0, F(1)=1,
$$

and

$$
\begin{gathered}
0<F^{\prime}(x)=\frac{1}{x+1}-\ln \frac{2}{e} \\
\leq 2-\ln 2=\alpha M\left(M=\frac{1}{\alpha}(2-\ln 2)\right), \\
\left|F^{\prime}\left(x_{1}\right)-F^{\prime}\left(x_{2}\right)\right|=\left|\frac{1}{x_{1}+1}-\frac{1}{x_{2}+1}\right| \leq\left|x_{1}-x_{2}\right|, \\
\left.\left|\left(\lambda_{1}(x)\right)^{\prime}\right|=\left|\left(1-\lambda_{2}(x)\right)^{\prime}\right|=\mid \lambda_{2}(x)\right)^{\prime} \left\lvert\,=\frac{2(1-\alpha)}{(2-x)^{2}} \leq 2(1-\alpha) .\right.
\end{gathered}
$$

Choose $M^{\prime}=1, \beta_{1}=2(1-\alpha), \beta_{2}=2(1-\alpha)$.
On the other hand, since
$\lim _{\alpha \rightarrow 1}\left[(1-\alpha)\left(M+\frac{\kappa}{\alpha} \sum_{i=1}^{2} \beta_{i}\right) M\right]=\lim _{\alpha \rightarrow 1}\left[(1-\alpha)\left(M+\frac{4(1-\alpha)}{\alpha}\right) M\right]=0$,
there is a positive constant $\Lambda<1$ such that

$$
\alpha>(1-\alpha)\left(M+\frac{\kappa}{\alpha} \sum_{i=1}^{2} \beta_{i}\right) M
$$

for any $\alpha \in(\Lambda, 1)$. Namely, the conditions of Theorem 1 are satisfied for any $\alpha \in(\Lambda, 1)$.

We have thus shown that there will be a solution of (25) in $\Omega\left(M, M^{*} ; I\right)$
$\left(M^{*} \geq \frac{1+2(1-\alpha) M(1+M)}{\alpha-(1-\alpha) M\left[M+\frac{4}{\alpha}(1-\alpha)\right]}\right)$.

References

[1] M. Kuczma, Functional equations in a single variable, Polish Scientific Publishers, Warszawa, 1968.
[2] R. E. Rice, B. Schweizer and A. Sklar, When is $f(f(x))=a z^{2}+b z+c$?, Amer. Math. Monthly 87 (1980), 252-263.
[3] A. Mukherjea and J. S. Ratti, On a functional equation involving iterates of a bijection on the unit interval, Nonlinear Anal. 7 (1983), 899-908.
[4] J. G. Dhombres, Itération linéaire d'order deux, Publ. Math. Debrecen 24 (1977), 277-287.
[5] W. Zhang, Discussion on the iterated equation $\sum_{i=1}^{n} \lambda_{i} f^{i}(x)=F(x)$, Chin. Sci. Bul. 32 (1987), 1444-1451.
[6] W. Zhang, Discussion on the differentiable solutions of the iterated equation $\sum_{i=1}^{n} \lambda_{i} f^{i}(x)=F(x)$, Nonlinear Anal. 15 (1990), 387-398.
[7] Si. Jian-Guo, On the monotonic continuous solutions of some iterated equation, Demonstratio Math. 29 (1996), 543-547.
[8] Si. Jian-Guo, On analytic solutions of the equation of invariant curves, $C . R$. Math. Rep. Acad. Sci. Canada, Vol. XVII, No.1, 1995, 49-52.
[9] J. Matkowski and W. Zhang, Method of characteristic for functional equation in polynomial form, Acta Math. Sin. New Series 13 (1997), 421-432.
[10] W. Zhang and J. A. Baker, Continuous solutions of a polynomial-like iterative equation with variable coefficients, preprint, Faculty of Math., Univ. of Waterloo, Canada, 1994.

JIAN-GUO SI
DEPARTMENT OF MATHEMATICS
BINZHOU NORMAL COLLEGE
BINZHOU, SHANDONG, 256604
P.R. CHINA

XIN-PING WANG
DEPARTMENT OF MATHEMATICS
BINZHOU NORMAL COLLEGE
BINZHOU, SHANDONG, 256604
P.R. CHINA
(Received February 17, 1999; revised August 30, 1999;
accepted December 7, 1999)

