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Differentiable solutions of a polynomial-like iterative
equation with variable coefficients

By JIAN-GUO SI (Binzhou) and XIN-PING WANG (Binzhou)

Abstract. This paper is concerned with a polynomial-like iterative equation with
variable coefficients

Pn
i=1 λi(x)ϕ[i](x) = F (x), where ϕ[i](x) is the ith iterate of the

function ϕ(x). Using the fixed point theorems of Schauder and Banach we discuss the
existence, uniqueness and stability of Lip C1-solutions of the equation.

1. Introduction

Let ϕ[k] denote the k-th iterate of a function ϕ, and ϕ[0] the identify
function. To find a function ϕ such that its k-th iterate ϕ[k] is equal
to a give function F plays an important role in the theory of dynamical
systems [1], [2]. As a natural generalization, the polynomial-like iterative
functional equations in the following form

(∗) λ1ϕ(x) + λ2ϕ
[2](x) + · · ·+ λnϕ[n](x) = F (x)

for x ∈ R, λi ∈ R, i = 1, 2, . . . , n, or some special cases were consid-
ered recently [3–10]. In particular, W. Zhang [6] considered the exis-
tence, uniqueness and stability of differentiable solutions of equation (∗).
However, conditions for the existence of differentiable solutions are not
known in the case of variable coefficients. In this paper, we will consider
a polynomial-like iterative equation with variable coefficients:

(1) λ1(x)ϕ(x) + λ2(x)ϕ[2](x) + · · ·+ λn(x)ϕ[n](x) = F (x),
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where n is a positive integer greater than or equal to 2. By means of the
fixed point theorems of Banach and Schauder, we discuss the existence,
uniqueness and stability of Lip C1-solutions of equation (1).

We write ϕ ∈ C1 if ϕ,ϕ′ are continuous. The set of all C1 function
each of which maps a closed interval I into I will be denoted by C1(I, I).
It is well known that when endowed with the norm ‖ · ‖C1 , where

‖ϕ‖C1 = ‖ϕ‖C0 + ‖ϕ′‖C0 , ‖ϕ‖C0 = max
x∈I

{|ϕ(x)|},

C1(I, I) is a Banach space (see also [6]).
We write ϕ ∈ Lip C1 if ϕ ∈ C1(I, I) and ϕ′ is Lipschitzian. Let

I = [a, b] ⊂ R, for given constants M > 0, M∗ > 0, we will denote by
Ω(M,M∗; I) the subset of all ϕ ∈ LipC1 each of which satisfies

ϕ(a) = a, ϕ(b) = b, 0 ≤ ϕ′(x) ≤ M,

|ϕ′(x1)− ϕ′(x2)| ≤ M∗|x1 − x2|, ∀x, x1, x2 ∈ I.

2. Preparatory lemmas

Our discussion depends on the following several preparatory lemmas
the proof of which can be found in [6].

Lemma 1. Suppose that ϕ ∈ Ω(M, M∗; I). Then

(2) |(ϕ[i])′(x1)− (ϕ[i])′(x2)| ≤ M∗
( 2i−2∑

j=i−1

M j

)
|x1 − x2|.

Lemma 2. Suppose that ϕ1, ϕ2 ∈ Ω(M, M∗; I). Then

(3)
∥∥ϕ

[i]
1 − ϕ

[i]
2

∥∥
C0 ≤

( i∑

j=1

M j−1

)
‖ϕ1 − ϕ2‖C0 .

Lemma 3. Suppose that ϕ1, ϕ2 ∈ Ω(M, M∗; I). Then

∥∥(
ϕ

[k+1]
1

)′ − (
ϕ

[k+1]
2

)′∥∥
C0 ≤ (k + 1)Mk‖ϕ′1 − ϕ′2‖C0(4)

+ Q(k + 1)M∗
( k∑

i=1

(k − i + 1)Mk+i−1

)
‖ϕ1 − ϕ2‖C0 ,
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for k = 0, 1, 2, . . . , where Q(s) = 0 when s = 1 and Q(s) = 1 when
s = 2, 3, . . . .

Lemma 4. If ϕ1, ϕ2 are homeomorphisms from I onto itself and

|ϕi(x1)− ϕi(x2)| ≤ L|x1 − x2|, ∀x1, x2 ∈ I,

where L is a positive constant and i = 1, 2, then

(5) ‖ϕ1 − ϕ2‖C0 ≤ L‖ϕ−1
1 − ϕ−1

2 ‖C0 .

3. The existence and uniqueness
of Lip C1-solutions for equation (1)

In this section we give the existence and uniqueness theorems of
LipC1-solutions for equation (1).

Theorem 1. Let I = [a, b], λ1, λ2, . . . , λn : I → [0, 1] be continuous,
λ1(x) ≥ α,

∑n
i=1 λi(x) = 1 for all x ∈ I, and

|λk(x1)− λk(x2)| ≤ βk|x1 − x2|, ∀x1, x2 ∈ I, k = 1, 2, . . . , n,

where α > (1 − α)(M + κ
α

∑n
i=1 βi)

∑2n−4
j=0 M j+1, βk (k = 1, 2, . . . , n)

are positive constants. Suppose that F ∈ Ω(αM, M ′; I). Then (1) has a
soluton in Ω(M, M∗; I). Here

M∗ ≥ M ′ +
∑n

i=1 βiM
i

α− (1− α)
(
M + κ

α

∑n
i=1 βi

) ∑2n−4
j=0 M j+1

, κ = max{|a|, |b|}.

Proof. We will seek of a solution (1) in Ω(M, M∗; I). To this end,
for each ϕ ∈ Ω(M, M∗; I), let us define

(6) ϕx(t) =
n∑

i=1

λi(x)ϕ[i−1](t), ∀t ∈ I.

It is easy to see that ϕx(a) = a, ϕx(b) = b, and ϕx ∈ C1(I, I). Since

ϕ′x(t) =
n∑

i=1

λi(x)(ϕ[i−1])′(t),(7)

0 < α ≤ λ1(x) ≤ ϕ′x(t) ≤
n∑

i=1

M i−1 := K1.(8)
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So

(9) 0 <
1

K1
≤ (ϕ−1

x )′(t) =
1

ϕ′x(ϕ−1
x (t))

≤ 1
α

.

Thus ϕx : I → I is a self-diffeomorphism. ¤
First, we prove the following lemma.

Lemma 5. Let ϕ, g, h ∈ Ω(M, M∗; I), and x1, x2, t1, t2, t ∈ I. Then

(10) |ϕ′x(t1)− ϕ′x(t2)| ≤ K2|t1 − t2|,

where K2 = (1− α)M∗∑2n−4
j=0 M j .

|(ϕ−1
x )′(t1)− (ϕ−1

x )′(t2)| ≤ K2

α3
|t1 − t2|.(11)

|ϕ′x1
(t)− ϕ′x2

(t)| ≤
( n∑

i=1

βiM
i−1

)
|x1 − x2|.(12)

|ϕx1(t)− ϕx2(t)| ≤
(

κ

n∑

i=1

βi

)
|x1 − x2|.(13)

|ϕ−1
x1

(t)− ϕ−1
x2

(t)| ≤ κ

α

( n∑

i=1

βi

)
|x1 − x2|.(14)

|ϕ−1
x1

(t1)− ϕ−1
x2

(t2)| ≤ 1
α
|t1 − t2|+ κ

α

( n∑

i=1

βi

)
|x1 − x2|.(15)

|(ϕ−1
x1

)′(t1)− (ϕ−1
x2

)′(t2)|(16)

≤ 1
α2

(
K2κ

α

n∑

i=1

βi+
n∑

i=1

βiM
i−1

)
|x1 − x2|+K2

α3
|t1 − t2|.

|(ϕ−1
x1

)′(t)− (ϕ−1
x2

)′(t)|(17)

≤ 1
α2

(
K2κ

α

n∑

i=1

βi +
n∑

i=1

βiM
i−1

)
|x1 − x2|.

‖gx − hx‖C0 ≤
( n∑

i=2

i−1∑

j=1

M j−1

)
‖g − h‖C0 .(18)
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‖g′x − h′x‖C0 ≤
n∑

i=2

(i− 1)M i−2‖g′ − h′‖C0(19)

+ M∗
n∑

i=2

i−2∑

j=1

Q(i− 1)(i− j − 1)M i+j−3‖g − h‖C0 .

‖g−1
x − h−1

x ‖C0 ≤ 1
α

( n∑

i=2

i−1∑

j=1

M j−1

)
‖g − h‖C0 .(20)

‖(g−1
x )′ − (h−1

x )′‖C0(21)

≤
[
K2

α3

n∑

i=2

i−1∑

j=1

M j−1+
M∗

α2

n∑

i=2

i−2∑

j=1

Q(i−1)(i−j−1)M i+j−3

]

× ‖g − h‖C0 +
1
α2

n∑

i=2

(i− 1)M i−2‖g′ − h′‖C0 .

Proof of Lemma 5. By Lemma 1 we see that

|ϕ′x(t1)− ϕ′x(t2)| =
∣∣∣∣

n∑

i=1

λi(x)
[(

ϕ[i−1]
)′(t1)−

(
ϕ[i−1]

)′(t2)
] ∣∣∣∣

≤
n∑

i=2

λi(x)
(
M∗

2i−4∑

j=i−2

M j

)
|t1 − t2| ≤

n∑

i=2

λi(x)
(
M∗

2n−4∑

j=0

M j

)
|t1 − t2|

= (1− λ1(x))M∗
2n−4∑

j=0

M j |t1−t2| ≤ (1−α)M∗
2n−4∑

j=0

M j |t1−t2| = K2|t1−t2|.

This proves (10).
From (8)–(10) we have

|(ϕ−1
x )′(t1)− (ϕ−1

x )′(t2)| =
∣∣∣∣

1
ϕ′x(ϕ−1

x (t1))
− 1

ϕ′x(ϕ−1
x (t2))

∣∣∣∣

=
∣∣∣∣
ϕ′x(ϕ−1

x (t1))− ϕ′x(ϕ−1
x (t2))

ϕ′x(ϕ−1
x (t1))ϕ′x(ϕ−1

x (t2))

∣∣∣∣ ≤
K2

α2
|ϕ−1

x (t1)− ϕ−1
x (t2)| ≤ K2

α3
|t1 − t2|.

This proves (11).
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From (7) it follows that

|ϕ′x1
(t)− ϕ′x2

(t)| =
∣∣∣∣

n∑

i=1

(λi(x1)− λi(x2))
(
ϕ[i−1]

)′(t)
∣∣∣∣

≤
n∑

i=1

|λi(x1)− λi(x2)|
∣∣∣
(
ϕ[i−1]

)′(t)
∣∣∣ ≤

( n∑

i=1

βiM
i−1

)
|x1 − x2|.

This proves (12).
By (6) we have

|ϕx1(t)− ϕx2(t)| =
∣∣∣∣

n∑

i=1

(λi(x1)− λi(x2)) ϕ[i−1](t)
∣∣∣∣

≤
n∑

i=1

|λi(x1)− λi(x2)|
∣∣ϕ[i−1](t)

∣∣ ≤ κ

n∑

i=1

βi|x1 − x2|.

This proves (13).
(14) follows from

∣∣ϕ−1
x1

(t)− ϕ−1
x2

(t)
∣∣ =

∣∣ϕ−1
x1

(
ϕx2(ϕ

−1
x2

(t))
)− ϕ−1

x1

(
ϕx1(ϕ

−1
x2

(t))
)∣∣

(9)

≤ 1
α

∣∣ϕx2(ϕ
−1
x2

(t))− ϕx1(ϕ
−1
x2

(t))
∣∣ (13)

≤
(

κ

α

n∑

i=1

βi

)
|x1 − x2|.

From (9) and (14) we have

|ϕ−1
x1

(t1)− ϕ−1
x2

(t2)| ≤ |ϕ−1
x1

(t1)− ϕ−1
x1

(t2)|+ |ϕ−1
x1

(t2)− ϕ−1
x2

(t2)|

≤ 1
α
|t1 − t2|+

(
κ

α

n∑

i=1

βi

)
|x1 − x2|.

This proves (15).
In view of (9), (10), (12) and (14), (16) follows from

|(ϕ−1
x1

)′(t1)− (ϕ−1
x2

)′(t2)| =
∣∣∣∣

1
ϕ′x1

(ϕ−1
x1 (t1))

− 1
ϕ′x2

(ϕ−1
x2 (t2))

∣∣∣∣

≤ 1
α2
|ϕ′x1

(ϕ−1
x1

(t1))− ϕ′x2
(ϕ−1

x2
(t2))|
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≤ 1
α2

[|ϕ′x1
(ϕ−1

x1
(t1))− ϕ′x1

(ϕ−1
x2

(t1))|+ |ϕ′x1
(ϕ−1

x2
(t1))− ϕ′x1

(ϕ−1
x2

(t2))|

+ |ϕ′x1
(ϕ−1

x2
(t2))− ϕ′x2

(ϕ−1
x2

(t2))|
] ≤ 1

α2

×
[
K2|ϕ−1

x1
(t1)−ϕ−1

x2
(t1)|+K2|ϕ−1

x2
(t1)−ϕ−1

x2
(t2)|+

( n∑

i=1

βiM
i−1

)
|x1−x2|

]

≤ 1
α2

[
K2κ

α

n∑

i=1

βi|x1 − x2|+ K2

α
|t1 − t2|+

( n∑

i=1

βiM
i−1

)
|x1 − x2|

]

=
1
α2

(
K2κ

α

n∑

i=1

βi +
n∑

i=1

βiM
i−1

)
|x1 − x2|+ K2

α3
|t1 − t2|.

(17) follows from

|(ϕ−1
x1

)′(t)− (ϕ−1
x2

)′(t)| =
∣∣∣∣

1
ϕ′x1

(ϕ−1
x1 (t))

− 1
ϕ′x2

(ϕ−1
x2 (t))

∣∣∣∣

≤ 1
α2
|ϕ′x1

(ϕ−1
x1

(t))− ϕ′x2
(ϕ−1

x2
(t))|

≤ 1
α2

[|ϕ′x1
(ϕ−1

x1
(t))− ϕ′x1

(ϕ−1
x2

(t))|+ |ϕ′x1
(ϕ−1

x2
(t))− ϕ′x2

(ϕ−1
x2

(t))|]

(10),(12)

≤ 1
α2

[
K2|ϕ−1

x1
(t)− ϕ−1

x2
(t)|+

( n∑

i=1

βiM
i−1

)
|x1 − x2|

]

(14)

≤ 1
α2

[
K2κ

α

n∑

i=1

βi|x1 − x2|+
n∑

i=1

βiM
i−1|x1 − x2|

]

=
1
α2

(
K2κ

α

n∑

i=1

βi +
n∑

i=1

βiM
i−1

)
|x1 − x2|.

(18) follows from

‖gx − hx‖C0 = max
t∈I

|gx(t)− hx(t)|

= max
t∈I

∣∣∣∣
n∑

i=1

λi(x)(g[i−1](t)− h[i−1](t))
∣∣∣∣ ≤

n∑

i=1

‖g[i−1] − h[i−1]‖C0
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(3)

≤
( n∑

i=2

i−1∑

j=1

M j−1

)
‖g − h‖C0 .

(19) follows from

‖g′x − h′x‖C0 = max
t∈I

∣∣∣∣
n∑

i=1

λi(x)
((

g[i−1])′(t)− (h[i−1]
)′(t))

∣∣∣∣

≤
n∑

i=1

λi(x)
∥∥(

g[i−1]
)′ − (

h[i−1]
)′∥∥

C0

(4)

≤
n∑

i=1

[
(i− 1)M i−2‖g′x − h′x‖C0

+ Q(i− 1)M∗
( i−2∑

j=1

(i− j − 1)M i+j−3

)
‖gx − hx‖C0

]

≤
n∑

i=2

(i− 1)M i−2‖g′x − h′x‖C0

+ M∗
n∑

i=2

i−2∑

j=1

Q(i− 1)(i− j − 1)M i+j−3‖g − h‖C0 .

(20) follows from

‖g−1
x − h−1

x ‖C0

(5)

≤ 1
α
‖gx − hx‖C0

(18)

≤
(

1
α

n∑

i=2

i−1∑

j=1

M j−1

)
‖g − h‖C0 .

Finally, by (9), (10), (19) and (20), we have

‖(g−1
x )′ − (h−1

x )′‖C0 = max
t∈I

∣∣∣∣
1

g′x(g−1
x (t))

− 1
h′x(h−1

x (t))

∣∣∣∣

≤ 1
α2

max
t∈I

|g′x(g−1
x (t))− h′x(h−1

x (t))|

≤ 1
α2

max
t∈I

[|g′x(g−1
x (t))− g′x(h−1

x (t))|+ |g′x(h−1
x (t))− h′x(h−1

x (t))|]

≤ 1
α2

[K2‖g−1
x − h−1

x ‖C0 + ‖g′x − h′x‖C0 ]

≤
(

K2

α3

n∑

i=2

i−1∑

j=1

M j−1

)
‖g − h‖C0 +

1
α2

n∑

i=2

(i− 1)M i−2‖g′ − h′‖C0
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+
M∗

α2

n∑

i=2

i−2∑

j=1

Q(i− 1)(i− j − 1)M i+j−3‖g − h‖C0

=
[
K2

α3

n∑

i=2

i−1∑

j=1

M j−1+
M∗

α2

n∑

i=2

i−2∑

j=1

Q(i−1)(i−j−1)M i+j−3

]
‖g − h‖C0

+
1
α2

n∑

i=2

(i− 1)M i−2‖g′ − h′‖C0 .

This proves (21).
Now we continue to prove Theorem 1. Define an operator T from

Ω(M,M∗; I) into C1(I, I) by

(22) (Tϕ)(x) = ϕ−1
x (F (x)), ϕ ∈ Ω(M, M∗; I).

Clearly (Tϕ)(a) = a, T (ϕ)(b) = b, Tϕ ∈ C1(I, I), and (9) yields that

0 ≤ F ′(x)
K1

≤ (Tϕ)′(x) = (ϕ−1
x )′(F (x))F ′(x) ≤ 1

α
· αM = M.

Furthermore, by (11), (17), we have

|(Tϕ)′(x1)− (Tϕ)′(x2)| = |(ϕ−1
x1

)′(F (x1))F ′(x1)− (ϕ−1
x2

)′(F (x2))F ′(x2)|
≤|(ϕ−1

x1
)′(F (x1))−(ϕ−1

x1
)′(F (x2))|F ′(x1)+(ϕ−1

x1
)′(F (x2))|F ′(x1)−F ′(x2)|

+ |(ϕ−1
x1

)′(F (x2))− (ϕ−1
x2

)′(F (x2))|F ′(x2)

≤ K2

α3
|F (x1)− F (x2)| · αM +

1
α

M ′|x1 − x2|

+
1
α2

(
K2κ

α

n∑

i=1

βi +
n∑

i=1

βiM
i−1

)
|x1 − x2| · αM

≤
[
K2M

2

α
+

M ′

α
+

M

α

(
K2κ

α

n∑

i=1

βi +
n∑

i=1

βiM
i−1

)]
|x1 − x2|

≤ M∗|x1 − x2|,

so (Tϕ)(x) ∈ Ω(M, M∗; I), that is, T is a operator from Ω(M, M∗; I) into
itself.



66 Jian-guo Si and Xin-ping Wang

Now we will show that T is continuous. Let g, h ∈ Ω(M, M∗; I),
(Tg)(x) = g−1

x (F (x)), (Th)(x) = h−1
x (F (x)), then

‖Tg − Th‖C1 = ‖Tg − Th‖C0 + ‖(Tg)′ − (Th)′‖C0(23)

= max
x∈I

{|g−1
x (F (x))− h−1

x (F (x))|}

+ max
x∈I

{|(g−1
x )′(F (x))F ′(x)− (h−1

x )′(F (x))F ′(x)|}

≤ ‖g−1
x − h−1

x ‖C0 + αM‖(g−1
x )′ − (h−1

x )′‖C0

≤
(

1
α

n∑

i=2

i−1∑

j=1

M j−1

)
‖g − h‖C0 + αM

×
{[

K2

α3

n∑

i=2

i−1∑

j=1

M j−1+
M∗

α2

n∑

i=2

i−2∑

j=1

Q(i−1)(i−j−1)M i+j−3

]

× ‖g − h‖C0 +
1
α2

n∑

i=2

(i− 1)M i−2‖g′ − h′‖C0

}

=
[

1
α

n∑

i=2

i−1∑

j=1

M j−1 +
K2M

α2

n∑

i=2

i−1∑

j=1

M j−1

+
MM∗

α

n∑

i=2

i−2∑

j=1

Q(i− 1)(i− j − 1)M i+j−3

]
‖g − h‖C0

+
M

α

n∑

i=2

(i− 1)M i−2‖g′ − h′‖C0 ≤ Θ‖g − h‖C1 ,

where

(24) Θ = max
{(

1
α

+
K2M

α2

) n∑

i=2

i−1∑

j=1

M j−1

+
MM∗

α

n∑

i=2

i−2∑

j=1

Q(i− 1)(i− j − 1)M i+j−3;
M

α

n∑

i=2

(i− 1)M i−2

}
.

This shows that T is continuous.
It is easy to see that Ω(M, M∗; I) is closed and convex. We now

show that Ω(M,M∗; I) is a relatively compact subset of C1(I, I). For any
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ϕ = ϕ(x) in Ω(M,M∗; I),

‖ϕ‖C1 = ‖ϕ‖C0 + ‖ϕ′‖C0 ≤ κ + M.

Hence Ω(M,M∗; I) is bounded in C1(I, I). Next, for any ϕ = ϕ(x) in
Ω(M,M∗; I) and any x1, x2 ∈ I, we have

|ϕ(x1)− ϕ(x2)| ≤ M |x1 − x2|.

This shows that Ω(M, M∗; I) is equicontinuous on I. By means of the
Arzela–Ascoli theorem, we see that Ω(M,M∗; I) is relatively compact in
C1(I, I). By Schauder’s fixed point theorem we assert that there is a
function ϕ ∈ Ω(M, M∗; I) such that

ϕ(x) = (Tϕ)(x) = ϕ−1
x (F (x))

or
ϕx(ϕ(x)) = F (x),

that is, ϕ is a solution of equation (1) in Ω(M, M∗; I). This completes the
proof. ¤

Theorem 2. Under the hypothses of Theorem 1, (1) has a unique

solution in Ω(M,M∗; I) if Θ < 1 in (24).

Proof. Since Θ < 1, we see that T defined by (22) is contraction
mapping on the closed subset Ω(M, M∗; I) of C1(I, I). Thus the fixed
point ϕ in the proof of Theorem 1 must be unique. This completes the
proof. ¤

Remark 1. A referee of this paper proposes the following interesting
question: Whether it is possible that (under the weaker assumptions) of
Theorem 1 there exist indeed more than one differential solution of (1) in
the sense that T has at least two fixed points. We do not know how to
solve this question.

4. The stability of LipC1-solutions for equation (1)

In this section we consider the problem of the continuous dependence
of Lip C1-solutions of equation (1) on the given functions. We have the
following
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Theorem 3. The unique solution obtained in Theorem 2 depends

continuously on the given functions F and λi (i = 1, 2, . . . , n).

Proof. Under the assumptions of Theorem 2, if G = G(x) and H =
H(x) are any two functions in Ω(αM,M ′; I); αj(x) and µj(x)
(j = 1, 2, . . . , n) are any functions which satisfy the same conditions as
λj(x) (j = 1, 2, . . . , n) in Theorem 1. Then there correspond two unique
functions g = g(x) and h = h(x) in Ω(M, M∗; I) such that

g(x) = g−1
x (G(x))

and

h(x) = h−1
x (H(x)),

where

gx(t) =
n∑

i=1

αi(x)g[i−1](t),

hx(t) =
n∑

i=1

µi(x)h[i−1](t).

First of all, it is easy to see that

|gx(t)− hx(t)| ≤
n∑

i=1

|αi(x)− µi(x)|
∣∣g[i−1](t)

∣∣

+
n∑

i=1

|µi(x)|
∣∣g[i−1](t)− h[i−1](t)

∣∣

≤ κ

n∑

i=1

‖αi − µi‖C0 +
( n∑

i=2

i−1∑

j=1

M j−1

)
‖g − h‖C0 ,

|g′x(t)− h′x(t)| =
∣∣∣∣

n∑

i=1

(
αi(x)

(
g[i−1]

)′(t)− µi(x)(h[i−1])′(t)
) ∣∣∣∣

≤
n∑

i=1

[
|αi(x)− µi(x)|(g[i−1]

)′(t) + µi(x)
∣∣∣
(
g[i−1]

)′(t)− (
h[i−1]

)′(t)
∣∣∣
]

≤
n∑

i=1

M i−1‖αi − µi‖C0 +
n∑

i=2

∥∥∥
(
g[i−1]

)′ − (
h[i−1]

)′∥∥∥
C0
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≤
n∑

i=1

M i−1‖αi − µi‖C0 +
n∑

i=2

(i− 1)M i−2‖g′ − h′‖C0

+ M∗
n∑

i=2

i−2∑

j=1

Q(i− 1)(i− j − 1)M i+j−3‖g − h‖C0 .

‖(g−1
x )′ − (h−1

x )′‖C0 = max
t∈I

∣∣∣∣
1

g′x(g−1
x (t))

− 1
h′x(h−1

x (t))

∣∣∣∣

≤ 1
α2

max
t∈I

∣∣g′x(g−1
x (t))− h′x(h−1

x (t))
∣∣

≤ 1
α2

max
t∈I

[|g′x(g−1
x (t))− g′x(h−1

x (t))|+ |g′x(h−1
x (t))− h′x(h−1

x (t))|]

≤ 1
α2

[K2‖g−1
x − h−1

x ‖C0 + ‖g′x − h′x‖C0 ]

≤ 1
α2

[
K2

α
‖gx − hx‖C0 + ‖g′x − h′x‖C0

]

≤ K2κ

α3

n∑

i=1

‖αi − µi‖C0 +
1
α2

n∑

i=1

M i−1‖αi − µi‖C0

+
[
K2

α3

n∑

i=2

i−1∑

j=1

M j−1+
M∗

α2

n∑

i=2

i−2∑

j=1

Q(i−1)(i−j−1)M i+j−3

]
‖g−h‖C0

+
1
α2

n∑

i=2

(i− 1)M i−2‖g′ − h′‖C0 .

Thus

‖g − h‖C1 = ‖g − h‖C0 + ‖g′ − h′‖C0 = max
x∈I

{
|g−1

x (G(x))− h−1
x (H(x))|

}

+ max
x∈I

{
|(g−1

x )′(G(x))G′(x)− (h−1
x )′(H(x))H ′(x)|

}

≤ max
x∈I

{
|g−1

x (G(x))− h−1
x (G(x))|+ |h−1

x (G(x))− h−1
x (H(x))|

}

+ max
x∈I

{
|(g−1

x )′(G(x))− (h−1
x )′(G(x))|G′(x)

+ |(h−1
x )′(G(x))− (h−1

x )′(H(x))|G′(x)+(h−1
x )′(H(x))|G′(x)−H ′(x)|

}
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≤ ∥∥g−1
x − h−1

x

∥∥
C0 +

1
α
‖G−H‖C0 + αM

∥∥(g−1
x )′ − (h−1

x )′
∥∥

C0

+ αM · K2

α3
‖G−H‖C0 +

1
α
‖G′ −H ′‖C0

≤ 1
α
‖gx − hx‖C0+αM

{
K2κ

α3

n∑

i=1

‖αi − µi‖C0+
1
α2

n∑

i=1

M i−1‖αi − µi‖C0

+
[
K2

α3

n∑

i=2

i−1∑

j=1

M j−1+
M∗

α2

n∑

i=2

i−2∑

j=1

Q(i−1)(i−j−1)M i+j−3

]
‖g−h‖C0

+
1
α2

n∑

i=1

(i− 1)M i−2‖g′ − h′‖C0

}
+

α + K2M

α2
‖G−H‖C1

≤
(

κ

α
+

K2κM

α2

) n∑

i=1

‖αi − µi‖C0 +
M

α

n∑

i=1

M i−1‖αi − µi‖C0

+ Θ‖g − h‖C1 +
α + K2M

α2
‖G−H‖C1 .

Thus we have

‖g − h‖C1 ≤ κα + K2κM

α2(1−Θ)

n∑

i=1

‖αi − µi‖C0 +
1

α(1−Θ)

n∑

i=1

M i‖αi − µi‖C0

+
α + K2M

α2(1−Θ)
‖G−H‖C1 .

We now may conclude that the solution of (1) depends continuously on
the function F and λj(j = 1, 2, . . . , n). This completes the proof. ¤

Remark 2. During the proof of Theorem 1–Theorem 3, the differen-
tiability of λi(x)(i = 1, 2, . . . , n) are not required.

5. Example

In this section we show the conditions in Theorem 1 do not self-
contradict by means of an example. Consider the following equation

(25) λ1(x)ϕ(x) + λ2(x)ϕ(ϕ(x)) = F (x), x ∈ I = [0, 1],
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where

λ1(x) =
2− (2− α)x

2− x
, λ2(x) =

(1− α)x
2− x

,

0 < α < 1, F (x) = ln(1 + x)− x ln
2
e
.

Obviously, λ1(x) + λ2(x) = 1. Since

0 ≤ λ2(x) =
(1− α)x

2− x
≤ 1− α < 1,

α ≤ λ1(x) = 1− λ2(x) ≤ 1.

Moreover, we also have

F (0) = 0, F (1) = 1,

and

0 < F ′(x) =
1

x + 1
− ln

2
e

≤ 2− ln 2 = αM

(
M =

1
α

(2− ln 2)
)

,

|F ′(x1)− F ′(x2)| =
∣∣∣∣

1
x1 + 1

− 1
x2 + 1

∣∣∣∣ ≤ |x1 − x2|,

|(λ1(x))′| = |(1− λ2(x))′| = |λ2(x))′| = 2(1− α)
(2− x)2

≤ 2(1− α).

Choose M ′ = 1, β1 = 2(1− α), β2 = 2(1− α).
On the other hand, since

lim
α→1

[
(1−α)

(
M +

κ

α

2∑

i=1

βi

)
M

]
= lim

α→1

[
(1−α)

(
M +

4(1− α)
α

)
M

]
= 0,

there is a positive constant Λ < 1 such that

α > (1− α)
(

M +
κ

α

2∑

i=1

βi

)
M
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for any α ∈ (Λ, 1). Namely, the conditions of Theorem 1 are satisfied for
any α ∈ (Λ, 1).

We have thus shown that there will be a solution of (25) in Ω(M,M∗; I)(
M∗ ≥ 1+2(1−α)M(1+M)

α−(1−α)M[M+ 4
α (1−α)]

)
.
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