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On c-normal subgroups of finite groups

By GUO XIUYUN (Hong Kong) K. P. SHUM (Hong Kong)

Abstract. A subgroup H of a finite group G is said to be c-normal in G if there
exists a normal subgroup N of G such that G = HN and H ∩ N ≤ HG = coreG(H).
In this paper, we further investigate the influence of c-normality of some subgroups in
finite groups. Some recent results are generalized.

1. Introduction

There has been much interest in the past in investigating the relation-
ship between the properties of maximal subgroups of a finit group G and
the structure of G [for example 1, 2, 3]. In this aspect, the concept of a
c-normal subgroup in a finite group was introduced by Wang in [4] and
he proved that a finite group G is solvable if and only if M is c-normal in
G for every maximal subgroup M of G. As an application of the above
result, some known theorems were generalized by using the concept “c-
normality”. Thus, c-normality provides a useful tool for the investigation
of the structure of finite groups, which is further shown in [5], [6].

In this paper, we shall continue to study the c-normality of some sub-
groups in a finite group G. Some theorems of solvable groups, p-nilpotent
groups and supersolvable groups are obtained by considering their c-normal
subgroups. Some results in [3]–[6] are extended and generalized. Through-
out this paper, all groups are finite groups. Our terminology and notation
are standard, see e.g. Robinson [7]. We write M < ·G to indicate that
M is a maximal subgroup of G.
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2. Basic definitions and preliminary results

A subgroup H of a group G is said to be c-normal in G if there exists a
normal subgroup N of G such that G = HN and H∩N ≤ HG = coreG(H).

If M < ·G and H < ·M , then H is called a 2-maximal subgroup of G.
Consider the following families of subgroups:

Fc = {M | M < ·G with |G : M | is composite}

Fp = {M | M < ·G, NG(P ) ≤ M for a P ∈ Sylp(G)}

Fs =
⋃

p∈π(G)

Fp

Fsc = Fs ∩ Fc

and define

Ss(G) =
⋂
{M | M ∈ Fsc}

if Fsc is non-empty; otherwise Ss(G) = G.
For the sake of convenience, we list here some known results which

will be useful in the sequel.

Lemma 2.1 [4, Lemma 2.1]. Let G be a group. Then the following

statements hold.

1) If H is c-normal in G such that H ≤ K ≤ G, then H is c-normal

in K.

2) Let K E G and K ≤ H, then H is c-normal in G if and only if H/K

is c-normal in G/K.

Lemma 2.2 [4, Lemma 2.4(b)]. A group G is supersolvable if and only

if G = Ss(G).

Lemma 2.3 [6,Lemma 2.4]. Let H be a subgroup of G, then H is

c-normal in G if and only if there exists a normal subgroup N of G such

that G = HN and H ∩N = HG = coreG(H).
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Lemma 2.4 [5, Lemma 2.4]. Let π be a set of primes, H a normal
π′-subgroup of G and T a π-subgroup of G. If T is c-normal in G, then
TH/H is c-normal in G/H.

A class of groups F is called a formation provided that the following
conditions are satisfed:
(1) F contains all homomorphic images of a group G in F ,
(2) if G/M and G/N are in F , then G/(M ∩N) is also in F for normal

subgroups M and N of G.
Now let P be the set of all prime numbers. By a formation function f ,

we mean a function f defined on P such that f(P ), possibly empty, is a
formation. A principal factor H/K of a group G is called f -central in G
if G/CG(H/K) ∈ f(p) for all primes p dividing |H/K|. A formation F
is said to be a local formation if there exists a formation function f such
that F is the class of all groups G for which every principal factor of G is
f -central in G. If F is a local formation defined by a formation function f ,
then we write F = LF (f) and call f a local definition of F .

Among all possible local definitions for a local formation F , there
exists exactly one of them, denoted it by F , such that F is integrated (i.e.
F (p) ⊆ F for all p ∈ P ) as well as full (i.e. SpF (p) = F (p) for all p ∈ P ).

A formation F is called saturated if G/Φ(G) ∈ F implies that G
belongs to F . It is well known that a formation F is saturated if and only
if F is a local formation.

Lemma 2.5 [8, Proposition IV. 3.11]. Let F1 = LF (F1) and F2 =
LF (F2), where Fi is both an integrated and full formation function of
Fi (i = 1, 2). Then the following statements are equivalent.

(1) F1 ⊆ F2,

(2) F1(p) ⊆ F2(p) for all p ∈ P .

3. Main results

In this section, we concentrate on the structure of a finite group under
the influence of its c-normal subgroups. Some theorems for solvable groups,
p-nilpotent groups and supersolable groups are obtained.

Our first theorem is to give a characterization theorem for solvable
groups. This result generalizes Theorem 3.5 in [4] and Theorem 3.1 in [5]
by minimizing the number of the the restricted maximal subgroups of a
finite groups.
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Theorem 3.1. A group G is solvable if and only if every non-nilpotent

maximal subgroup M in Fsc is c-normal in G.

Proof. Since the necessity part is straightforward from [4, Theo-
rem 3.5], we only need to prove the sufficient part. For this purpose, we
suppose that the theorem is not true and let G be a minimal counterex-
ample.

If Fsc = ∅, then G = Ss(G) and so G is supersolvable by Lemma 2.2.
Now assume that Fsc 6= ∅ and M ∈ Fsc. If M itself is nilpotent, then,
by the well known Tompson’s Theorem [7, Theorem 10.4.2], M must be a
group of even order. By [2, Theorem 1], M2′ (the 2′-Hall subgroup of M)
is a normal subgroup in G. Trivially, the hypotheses is quotient closed. If
M2′ 6= 1, then by the minimality of G and Lemma 2.1, we have that G/M2′

is solvable and consequently G is solvable since M2′ is nilpotent. Hence
we may assume that M2′ = 1 and therefore M is a Sylow 2-subgroup of G

if M ∈ Fsc and M is nilpotent.
Let p be the largest prime in π(G) and P ∈ Sylp(G). The choice of

G implies that NG(P ) < G. Hence there exists a maximal subgroup L

of G such that NG(P ) ≤ L. If LG 6= 1, then G is of course not simple.
Now assume that LG = 1. If [G : L] = q is a prime number, then, since
LG = 1, G = G/LG is a homomorphic image of Sq, the symmetric group
of degree q. Thus |G| | q! and q is the largest prime of π(G). It follows
that q = p. Hence p - [G : L] since P ≤ L, which is a contradiction. If
[G : L] is composite, then since L is not nilpotent by the above proof, we
have, by our hypotheses, there exists a normal subgroup K of G such that
G = LK and L ∩K ≤ LG. This implies that G is not simple. By using
induction and in virtue of the fact that if there were two minimal normal
subgroups N1 and N2 of G, then G can be embedded in G/N1 × G/N2.
We can easily see that N is the unique minimal normal subgroup of G and
G/N is solvable.

Let q be the largest prime of π(N) and Q1 ∈ Sylq(N). By our choice
of G, we have Q1 < N and Q1 is not normal in G. Hence there exists a
maximal subgroup L of G such that NG(Q1) ≤ L. By using the Frattini
argument, we have G = NNG(Q1) = NL. Now, consider Q ∈ Sylq(G)
with Q1 ≤ Q so that Q1 = Q ∩ N . Then, for any x ∈ NG(Q), we have
Qx

1 = (N ∩ Q)x = N ∩ Q = Q1. It follows that NG(Q) ≤ NG(Q1) ≤ L.
If [G : L] = r is a prime, then, since LG = 1, we have G = G/LG is a
homomorphic image of Sr, the symmetric group of degree r. This shows



On c-normal subgroups of finite groups 89

that |G| | r! and r is the largest prime of π(G), thereby we obtain r = p.
As [G : L] = [N : N ∩ L], it leads to p is a prime factor of |N |, and hence
p = q. By NG(Q) ≤ NG(Q1) ≤ L together with Q ∈ Sylq(G), we infer
that q is not a factor of [G : L], in contradiction to that [G : L] = q. On
the other hand, if [G : L] is composite, then L ∈ Fsc. If L is nilpotent,
then, by the above proof, L is a Sylow 2-subgroup of G. Hence q = 2
and thereby N must be a 2-group, contradicts to Q1 < N . This shows
that L must be a non-nilpotent group and so L ∈ Fsc. However, by our
hypotheses, there exists a normal subgroup K of G such that G = LK

and K ∩ L ≤ LG = 1. By noticing that K 6= 1, we have N ≤ K and so it
gives N ∩ L = 1 and [G : L] = |N |. As q is a factor of |N | and q does not
divide [G : L], we obtain a contradiction. Hence, after all, we have shown
that N is a q-group and therefore G is solvable. The proof is completed.

¤

The following theorem gives the conditions for a finite group to be
p-nilpotent.

Theorem 3.2. Let G be a group and p the smallest prime number

dividing the order of G. If all 2-maximal subgroups of every Sylow p-

subgroup of G are c-normal in G and G is A4 free, then G is p-nilpotent.

Proof. We use induction on the order of G. Let pα be the order of
a Sylow p-subgroup P of G. We consider the following two cases:

Case 1: α ≤ 2.

In this case, the Sylow p-subgroup P of G is abelian. If P is cyclic,
then G is p-nilpotent by [7, 10.1.9]. So we can assume that α = 2 and
P is an elementary abelian p-group. Let L be a maximal subgroup of
G. If the Sylow p-subgroups of L are all cyclic, then L is p-nilpotent and
if p2 divides |L|, then L is p-nilpotent by induction. So in this case we
may assume that G is a minimal non-p-nilpotent group (that is, G is not
p-nilpotent but every maximal subgroup of G is p-nilpotent). Then by [7,
10.3.3 and 9.1.9], we have G = PQ, where P is normal in G and Q is a
cyclic Sylow q-subgroup of G (p 6= q). In particular, we now know that
1 6= G/CG(P ), which is isomorphic to a subgroup of Aut(P ), is a q-group.
Observe that |Aut(P )| = (p2 − 1)(p2 − p), we therefore have q | p + 1 and
consequently p = 2 and q = 3. It is now clear that G/Φ(Q) is isomorphic
to A4, a contradiction. So, G is a p-nilpotent group in this case.
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Case 2: α ≥ 3.

Let P1 be a 2-maximal subgroup of P . Then P1 6= 1. By our hy-
potheses and by Lemma 2.3, we know that there exists a normal sub-
group M of G such that G = P1M and P1 ∩ M = (P1)G. It follows
that P = P1(P ∩M) and P ∩M is a Sylow p-subgroup of M . It is clear
that |P ∩M/(P1)G| = p2. By applying Case 1, we know that M/(P1)G

is p-nilpotent. Let H/(P1)G be the normal Hall p′-subgroup of M/(P1)G.
Then, we have H E M and (P1)G is a Sylow p-subgroup of H. Also by
Schure-Zassenhaus theorem there exists a Hall p′-subgroup K of H. It is
clear that K is a Hall p′-subgroup of G as well. By using Frattini argument
again, we arrive that M = HNM (K) = (P1)GNM (K) and it follows that
G = P1NG(K). Therefore, NP (K) is a Sylow p-subgroup of NG(K). If
[G : NG(K)] = |P : NP (K)| ≥ p2, then we can let P2 be a 2-maximal sub-
group of P such that NP (K) ≤ P2. By using the above proof once again we
obtain a normal subgroup M1 of G such that G = P2M1, P2∩M1 = (P2)G

and M1 = (P2)GNM1(K1), where K1 is a Hall p′-subgroup of G. Observe
that the following group series

1 ≤ (P1)G < H < M < G.

It is clear that the above series is a normal series and every factor in the
series is either a p-group or a p′-group, hence G is p-slovable. Thus, there
exists g ∈ P such that Kg

1 = K and consequently NG(K1)g = NG(K). Let
P ∗ be a maximal subgroup of P such that P2 < P ∗. Then, we have G =
P ∗NG(K1) = P ∗NG(K1)g = P ∗NG(K) since P ∗ is normal in P . It follows
that P = P ∗(P ∩ NG(K)) = P ∗NP (K). But NP (K) ≤ P2 < P ∗ and
therefore P = P ∗, a contradiction. Thus, we obtain that |G : NG(K)| =
|P : NP (K)| ≤ p. Suppose that |G : NG(K)| = p. Then, NG(K) must
be normal in G because p is the smallest prime number dividing |G|. It
follows that K E G and therefore [G : NG(K)] = 1, a contradiction. This
shows that K E G and G is p-nilpotent. The proof is complete. ¤

Corollary 3.3. Let G be a group. If G is A4-free and all 2-maximal

subgroups of every Sylow subgroup of G are c-normal in G, then G has a

Sylow tower of supersolvable type.

By using similar arguments as the proof of Theorem 3.2, we can also
prove the following theorem.
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Theorem 3.4. Let G be a group and p the smallest prime dividing

the order of G. If all the maximal subgroups of every Sylow p-subgroup

of G are c-normal in G, then G is p-nilpotent.

Finally, we consider the influence of some c-normal subgroups of the
Sylow subgroups in a finite group G. The following interesting theorem is
formulated.

Theorem 3.5. Let F be a saturated formation containing U , the class

of supersolvable groups. Let H be a normal subgroup of a group G such

that G/H ∈ F and all maximal subgroups of every Sylow subgroup of H

are c-normal in G. Then G belongs to F .

Proof. Let Fi (i = 1, 2) be the full and integrated formation function
such that U = LF (F1) and F = LF (F2). If the theorem is false, then we
can let G be a minimal counterexample. By applying Lemma 2.1 and
Theorem 3.4, we know that H has a Sylow tower of supersolvable type.
Let p be the largest prime number in π(H) and P ∈ Sylp(H). Then P must
be a normal subgroup of G. Clearly, (G/P )/(H/P ) ' G/H ∈ F and all
maximal subgroups of every Sylow subgroup of H/P are c-normal in G/P

by Lemma 2.4. Thus, by the minimality of G, we know that G/P ∈ F
and every maximal subgroup of P is c-normal in G.

Let N be a minimal normal subgroup of G and N ≤ P . It is easy to
see that the quotient group G/N satisfies the hypotheses of our theorem.
By our choice of G, we have G/N ∈ F . Since F is a saturated formation,
we know that N is the unique minimal normal subgroup of G contained
in P and also Φ(P ) = 1.

Since P is an elementary abelian p-group, there exists N1 ≤ P such
that P = N ×N1. Let P1 be a maximal subgroup of P such that N1 ≤ P1.
Then, by our hypotheses, there exists a normal subgroup M of G such
that G = MP1 and M ∩ P1 ≤ (P1)G.

If N < P , then N 6≤ (P1)G. Again, as N is the unique minimal
normal subgroup of G contained in P , we have (P1)G = 1. If N = P , then
N 6≤ P1 and so we still have (P1)G = 1. It follows that |P ∩M | = p and
P ∩M /G, and therefore N = P ∩M is a cyclic group of order p. This leads
to Aut(N) is a cyclic group of order p− 1. Since G/CG(N) ≤ Aut(N), by
Lemma 2.5, we have G/CG(N) ∈ F1(p) ⊆ F2(p) and therefore G ∈ F , a
contradiction. The proof is now completed. ¤
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Remark 1. Let F be the class of groups G with G′ nilpotent. It is
easy to see that F is a saturated formation containing the class U . Now,
by Theorem 3.5, we can see that G ∈ F if G/H ∈ F and all maximal
subgroups of the Sylow subgroups of H are c-normal in G.

Remark 2. It is noted that Theorem 3.5 is not true if the saturated
formations F does not contain U (the class of supersolvable groups). For
example, if F is the saturated formation of all niplotent groups, then the
symmetric group of degree three is a counterexample.

Remark 3. It is also noted that Theorem 3.5 is generally not true for
non-saturated formation. To see this remark, we let F be a formation
composed by all groups G such that GU , the supersolvable residual, is
elementary abelian. Clearly, F ≥ U , but F is not saturated. Let G =
SL(2, 3) and H = Z(G). Then G/H is isomorphic to the alternative
group of degree four and thereby G/H ∈ F . But G does not belong to F .
This illustrates the situation.
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