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On a certain application of Patterson’s curvature identity

By RYSZARD DESZCZ (WrocÃlaw), MARIAN HOTLOŚ (WrocÃlaw)

and ZERRIN S.ENTÜRK (Istanbul)

Abstract. We present curvature properties of four-dimensional semi-Riemannian
manifolds satisfying some condition of pseudosymmetry type. We prove that every such
manifold with non-zero associated function L is pseudosymmetric, its scalar curvature
does not vanish and L must be equal to 1

3
. We also describe non-trivial example of a

manifold realizing all these coditions.

1. Introduction

Let (M, g) be a connected n-dimensional, n ≥ 3, semi-Riemannian
manifold of class C∞. We denote by ∇, R, C, S and κ the Levi–Civita
connection, the Riemann–Christoffel curvature tensor, the Weyl confor-
mal curvature tensor, the Ricci tensor and the scalar curvature of (M, g),
respectively.

E. M. Patterson [13] has given (among others algebraic identities
satisfied by the curvature tensor) the following result

Proposition 1.1. The Weyl conformal curvature tensor C of every

4-dimensional Riemannian manifold satisfies the identity

ghmClijk + glmCihjk + gimChljk + ghjClikm + gljCihkm

+ gijChlkm + ghkClimj + glkCihmj + gikChlmj = 0.

The above identity plays an important role in investigations of the
curvature properties of 4-dimensional semi-Riemannian manifolds. Among
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others, the authors of the present paper have used the Patterson’s identity
during the study of 4-dimensional manifolds of pseudosymmetry type ([3],
[8]).

A semi-Riemannian manifold (M, g) is said to be semisymmetric [14]
if R · R = 0 holds on M . As a proper generalization of locally symmetric
spaces (∇R = 0) semisymmetric manifolds were studied by many auth-
ors. In the Riemannian case, Z. I. Szabó obtained in the early eighties
a full intrinsic classification of semisymmetric Riemannian manifolds [14].
Very recently a theory of Riemannian semisymmetric manifolds has been
presented in the monograph [1].

The profound investigation of several properties of semisymmetric
manifolds, gave rise to their next generalization: the pseudosymmetric
manifolds.

A semi-Riemannian manifold (M, g) is said to be pseudosymmetric
([6], Section 3.1) if at every point of M the following condition is satisfied:

(∗)1 the tensors R ·R and Q(g, R) are linearly dependent.

This condition is equivalent to the relation R · R = LRQ(g, R) on the
set UR = {x ∈ M | R − κ

n(n−1) G 6= 0at x}, where LR is some function
on UR. The definitions of the tensors used will be given in Section 2.
There exist various examples of pseudosymmetric manifolds which are non-
semisymmetric and a review of results on pseudosymmetric manifolds is
given in [6] (see also [15]).

It is easy to see that if (∗)1 holds on a semi-Riemannian manifold
(M, g), then at every point of M the following condition is satisfied:

(∗)2 the tensors R · S and Q(g, S) are linearly dependent.

The converse statement is not true ([6], Section 8.1). A semi-Riemann-
ian manifold (M, g) is called Ricci-pseudosymmetric ([6], Section 4.1) if at
every point of M the condition (∗)2 is fulfilled. If a manifold (M, g) is
Ricci-pseudosymmetric then the relation R · S = LS Q(g, S) holds on the
set US = {x ∈ M | S 6= κ

ng atx}, where LS is a certain function on US .
It is easy to verify that if (∗)1 holds on a semi-Riemannian manifold

(M, g), n ≥ 4, then at every point of M the following condition is satisfied:

(∗)3 the tensors R · C and Q(g, C) are linearly dependent.
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The converse statement is not true (cf. Example 4.1; see also [6],
Section 9.3).

A semi-Riemannian manifold (M, g), n ≥ 4, is called Weyl-pseudo-
symmetric if at every point of M the condition (∗)3 is fulfilled. If a manifold
(M, g) is Weyl-pseudosymmetric then the relation R·C = LC Q(g, C) holds
on the set UC = {x ∈ M | C 6= 0 atx}, where LC is some function on UC .

Evidently, every semi-Riemannian semisymmetric manifold realizes
trivially at every point the following condition ([9])

(∗) the tensors R · C and Q(S, C) are linearly dependent.

This condition is equivalent to the relation

(1) R · C = LQ(S, C)

on the set U = {x ∈ M | Q(S, C) 6= 0 atx}, for a certain function L on U .
There exist non-semisymmetric manifolds realizing (∗) ([9], [10]).

Semi-Riemannian manifolds realizing (∗)1, (∗)2, (∗)3 and (∗) or other
conditions of this kind, are called manifolds of pseudosymmetry type.

Recently 4-dimensional warped product manifolds M×F N , dim M=1,
satisfying the condition (∗) have been considered in [10]. In the present pa-
per we investigate arbitrary 4-dimensional semi-Riemannian manifolds ful-
filling (∗). In Section 2 we fix the notations and present auxiliary lemmas.
In Section 3 we consider 4-dimensional manifolds satisfying the equality
Q(S, C) = 0 and we prove that such manifolds are semisymmetric and their
scalar curvature is equal to zero. In Section 4 we investigate 4-dimensional
manifolds satisfying (1) with L 6= 0. We prove, among others, that every
such manifold is pseudosymmetric with LR = κ

12 , its scalar curvature does
not vanish and the associated function L must be equal to 1

3 . Finally, we
describe an example of a manifold having all these properties.

2. Preliminaries

Let (M, g) be an n-dimensional, n ≥ 3, semi-Riemannian manifold.
The Ricci operator S is defined by g(SX, Y ) = S(X,Y ), where X, Y ∈
Ξ(M), Ξ(M) being the Lie algebra of vector fields on M . Next, we define
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the endomorphisms R(X,Y ), C(X,Y ) and X ∧ Y of Ξ(M) by

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

C(X,Y )Z = R(X, Y )Z − 1
n− 2

(
X ∧ SY + SX ∧ Y − κ

n− 1
X ∧ Y

)
Z,

(X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y,

respectively, where X,Y, Z ∈ Ξ(M). Now the Riemann–Christoffel curva-
ture tensor R, the Weyl conformal curvature tensor C and the (0,4)-tensor
G of (M, g) are defined by

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4),

respectively. A tensor B of type (1, 3) on M is said to be a generalized
curvature tensor if

S
X1,X2,X3

B(X1, X2)X3 = 0, B(X1, X2) + B(X2, X1) = 0,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2),

where B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4).
For an (0, 2)-tensor field A on (M, g) we define the endomorphism

X ∧A Y of Ξ(M) by (X ∧A Y )Z = A(Y, Z)X−A(X, Z)Y , where X, Y, Z ∈
Ξ(M). In particular we have X ∧g Y = X ∧ Y .

For an (0, k)-tensor field T , k ≥ 1, an (0, 2)-tensor field A and a
generalized curvature tensor B on (M, g) we define the tensors B · T and
Q(A, T ) by

(B · T )(X1, . . . , Xk;X,Y ) = −T (B(X, Y )X1, X2, . . . , Xk)

− · · · − T (X1, . . . , Xk−1,B(X, Y )Xk),

Q(A, T )(X1, . . . , Xk;X,Y ) = −T ((X ∧A Y )X1, X2, . . . , Xk)

− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk),

where X, Y, Z, X1, X2, . . . ∈ Ξ(M). Putting in the above formulas B = R
or B = C, T = R or T = C or T = S, A = g or A = S, we obtain the tensors
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R·R, R·C, R·S, C ·S, Q(g, R), Q(g, C), Q(g, S) and Q(S, C), respectively.
Let (M, g) be a semi-Riemannian manifold covered by a system of charts
{W ; xk}.
We denote by gij , Rhijk, Sij , Ghijk = ghkgij − ghjgik and

Chijk = Rhijk − 1
n− 2

(ghkSij − ghjSik + gijShk − gikShj)(2)

+
κ

(n− 1)(n− 2)
Ghijk

the local components of the metric tensor g, the Riemann–Christoffel cur-
vature tensor R, the Ricci tensor S, the tensor G and the Weyl tensor C,
respectively. Further, we denote by S2

ij = SirS
r

j and S j
i = gjrSir the

local components of the tensor S2 defined by S2(X, Y ) = S(SX,Y ), and
of the Ricci operator S, respectively.

At the end of this section we present some results which will be used
in the next sections.

Lemma 2.1 ([5], Lemma 1). Let a tensor Almhs1...sN
of type (0, N +3)

be symmetric in (l, m) and skew-symmetric in (m, h). Then Almhs1...sN
=0.

Lemma 2.2 ([11], Lemma 2). Let A and D be two symmetric (0, 2)-
tensors at a point x of a semi-Riemannian manifold (M, g). If the condition

Q(A,D) = 0 is fulfilled at x, then the tensors A and D are linearly depen-

dent at x.

Lemma 2.3 ([7], Theorem 1). Let B be a generalized curvature tensor

at x ∈ M such that the condition

S
X,Y,Z

ω(X)B(Y, Z) = 0

is satisfied for B and a covector ω at x, where X, Y, Z ∈ Tx(M) and S

denotes the cyclic sum. If ω 6= 0 then the following relation holds at

x : B ·B = Q(Ric(B), B).

Lemma 2.4 ([2], Proposition 4.1). Let (M, g), dim M ≥ 3, be a semi-

Riemannian manifold. Let A be a non-zero symmetric (0, 2)-tensor and B
a generalized curvature tensor at a point x of M satisfying the condition

Q(A,B) = 0.

Moreover, let V be a vector at x such that the scalar ρ = a(V ) is non-

zero, where a is the covector defined by a(X) = A(X, V ), X ∈ Tx(M).
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(i) If the tensor A− 1
ρa⊗ a vanishes then the relation

S
X,Y,Z

a(X)B(Y, Z) = 0

holds at x, where X, Y, Z ∈ Tx(M).

(ii) If the tensor A− 1
ρa⊗ a is non-zero then the relation

ρB(X, Y, Z, W ) = λ(A(X, W )A(Y, Z)−A(X, Z)A(Y, W ))

holds at x, where λ ∈ R and X, Y, Z, W ∈ Tx(M).
Moreover, in both cases the following condition B ·B = Q(Ric(B), B) holds

at x.

Lemma 2.5 ([12], Theorems 1 and 2). Let (M, g) be a Weyl-pseudo-

symmetric semi-Riemannian manifold satisfying the following condition

S
X,Y,Z

a(X)C(Y, Z) = 0,

where a is a 1-form on M .

If a 6= 0 and C 6= 0 at a point x ∈ M , then the following relations are

satisfied at x:

LC =
κ

n(n− 1)
, S(W, C(X,Y )Z) =

κ

n
C(X, Y, Z,W ),

Q
(
S − κ

n
g,C

)
= 0, R ·R = LCQ(g, R).

3. Manifolds with vanishing tensor field Q(S,C)

Theorem 3.1. Let (M, g), dim M = 4, be a semi-Riemannian mani-

fold satisfying at a point x of M the equality Q(S, C) = 0. If S 6= 0 and

C 6= 0 at x, then the following relations

κ = 0, R ·R = 0

hold at x. Moreover, there exists a non-zero covector a at x such that

S
X,Y,Z

a(X)C(Y, Z) = 0.
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Proof. It is easy to verify that the following identity is satisfied
on M

(C · C)hijklm = (R · C)hijklm(3)

+
1

n− 2

( κ

n− 1
Q(g, C)hijklm −Q(S, C)hijklm

)

− 1
n− 2

(
ghlSmrC

r
ijk − ghmSlrC

r
ijk − gilSmrC

r
hjk

+ gimSlrC
r
hjk + gjlSmrC

r
khi − gjmSlrC

r
khi

−gklSmrC
r
jhi + gkmSlrC

r
jhi

)
.

According to Lemma 2.4, we may consider two cases (we will use the
notations of the mentioned lemma):

(i) S = 1
ρa⊗ a. In this case we have

(4) alChijk + ahCiljk + aiClhjk = 0,

which implies arC
r
ijk = 0 and consequently SirC

r
hjk = 0. Thus the

equation C · C = 0, which follows from Lemma 2.3, and our assumption
turn (3) into R · C = − κ

(n−1)(n−2)Q(g, C). Applying now Lemma 2.5 we
obtain κ = 0 and R ·R = 0.

Now we consider the case:
(ii) S − 1

ρa⊗ a 6= 0. In this case we have

(5) ρChijk = λ(ShkSij − ShjSik).

Contracting (5) with gij we get S2
hk = κShk. On the other hand transvect-

ing (5) with S h
p and using the last equality we obtain

(6) S r
p Crijk = κCpijk.

Transvecting now the Patterson’s identity with Shm, in virtue of (6), we
immediately have κClijk = 0. Thus we have κ = 0, which turns (6)
into S r

p Crijk = 0. Transvecting the Patterson’s identity with S h
p , in view

of the last equality we get SpmClijk + SpjClikm + SpkClimj = 0, which
immediately implies (4). Semisymmetry of M follows in the same manner
as in the case (i). This completes the proof. ¤
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4. Manifolds satisfying the condition (1)

First we observe that if L = 0 at x then the relation (1) reduces to
R · C = 0. This shows that (M, g) is a so called Weyl-semisymmetric
manifold. Such a manifold need not be semisymmetric, as is shown by the
example below.

Example 4.1. Let (M, g) be the 4-dimensional manifold defined in [4]
(Lemme 1.1). As was shown in [4] (see Lemme 1.1 and Remarqué 1.5),
(M, g) is a non-conformally flat and non-semisymmetric, Weyl-semisym-
metric manifold, i.e. the tensors C and R·R are non-zero and the condition
R · C = 0 holds on M .

Thus we restrict our considerations in this section to the open subset
UL ⊂ U on which the associated function L does not vanish.

Lemma 4.1. Let (M, g) be a 4-dimensional semi-Riemannian mani-

fold satisfying the condition (1). If L 6= 0 at x, then the following relations

are fulfilled at x:

S r
mCrijk + S r

j Crikm + S r
k Crimj = 0,(7)

C · S = 0,(8)

S r
p Crikj = S r

k Crjpi.(9)

Proof. Applying to the Patterson’s identity the operation R· and
using (1), in view of L 6= 0, we get

(10)

ghmQ(S,C)lijkpt + glmQ(S, C)ihjkpt + gimQ(S,C)hljkpt

+ ghjQ(S, C)likmpt + gljQ(S, C)ihkmpt + gijQ(S, C)hlkmpt

+ ghkQ(S, C)limjpt+glkQ(S, C)ihmjpt+gikQ(S, C)hlmjpt =0.

Using the definition of the tensor Q(S,C), by a standard calculation, we
obtain

Q(S, C)lijkpm + Q(S,C)likmpj + Q(S,C)limjpk

= 2(SpmClikj + SpjClimk + SpkClijm)

− (SmlCpijk+SimClpjk+SjlCpikm+SijClpkm + SklCpimj + SikClpmj),
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grsQ(S, C)rljkps = −κCpljk + S r
p Crljk − S r

l Crpjk − S r
j Crlpk − S r

k Crljp.

Contracting (10) with ght and using the above relations, we have

(11)

2(SpmClikj + SpjClimk + SpkClijm)− (Slm − κglm)Cpijk

− (Slj − κglj)Cpikm − (Slk − κglk)Cpimj − (Sim − κgim)Clpjk

− (Sij − κgij)Clpkm − (Sik − κgik)Clpmj

+ S r
i (glmCrpjk + gljCrpkm + glkCrpmj)

+ S r
l (gimCrpkj + gijCrpmk + gikCrpjm)

+ gim(S r
p Crljk − S r

j Crlpk − S r
k Crljp)

+ gij(S r
p Crlkm − S r

k Crlpm − S r
mCrlkp)

+ gik(S r
p Crlmj − S r

mCrlpj − S r
j Crlmp)

+ glm(S r
j Cripk + S r

k Crijp − S r
p Crijk)

+ glj(S r
k Cripm + S r

mCrikp − S r
p Crikm)

+ glk(S r
mCripj + S r

j Crimp − S r
p Crimj) = 0.

Hence, by contraction with glp, we obtain (7). In local coordinates the
relation (1) takes the form

CrijkRr
hlm + ChrjkRr

ilm + ChirkRr
jlm + ChijrR

r
klm

= L(ShlCmijk − ShmClijk + SilChmjk − SimChljk + SjlChimk

− SjmChilk + SklChijm − SkmChijl).

Contracting this equality with ghk, in virtue of (7) and the assumption
L 6= 0, we get S r

i Crjlm + S r
j Crilm = 0, i.e., (8). Applying (7) to (11) we

find

(12)

2(SmpClikj + SjpClimk + SkpClijm)− (Slm − κglm)Cpijk

− (Slj − κglj)Cpikm − (Slk − κglk)Cpimj − (Sim − κgim)Clpjk

− (Sij − κgij)Clpkm − (Sik − κgik)Clpmj

+ S r
i (glmCrpjk + gljCrpkm + glkCrpmj)

+ S r
l (gimCrpkj + gijCrpmk + gikCrpjm) = 0.

Contracting (12) with glm, we obtain 2S r
p Crikj = S r

j Crkip +S r
k Crjpi and

next, in view of (8), we get (9). This completes the proof. ¤
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Proposition 4.1. Let (M, g), dim M = 4, be a semi-Riemannian man-
ifold satisfying the condition (1). If L 6= 0 at x, then the following relations
are fulfilled at x:

(13) S(W, C(X, Y )Z) =
κ

4
C(X,Y, Z,W ),

T (U,X)C(W,V, Y, Z) + T (U, Y )C(W,V, Z,X)(14)
+ T (U,Z)C(W,V,X, Y )− T (V, X)C(W,U, Y, Z)
− T (V, Y )C(W,U,Z,X)− T (V, Z)C(W,U,X, Y ) = 0,

where T = S − κ
4 g and X, Y, Z, W,U, V ∈ Tx(M),

(15) S2 =
κ

2
S − κ2

16
g.

Moreover, (M, g) is Ricci-pseudosymmetric at x and

(16) R · S =
κ

12
Q(g, S).

Proof. Transvecting the Patterson’s identity with Shm and using
the equality SrsCrijs = 0, which is an obvious consequence of (8), we get

κClijk = S r
l Crijk − S r

i Crljk − S r
j Crkil − S r

k Crjli.

This relation, in virtue of (9) takes the form κClijk = 2S r
l Crijk−2S r

i Crljk

whence, in view of (8), we obtain (13). Using (13) we have

S r
i (glmCrpjk+gljCrpkm+glkCrpmj)+S r

l (gimCrpkj+gijCrpmk+gikCrpjm)

=
κ

4
(glmCipjk + gljCipkm + glkCipmj + gimClpkj + gijClpmk + gikClpjm).

Substituting this equality into (12) we obtain

2(SmpClikj + SjpClimk + SkpClijm) =
(
Slm − 3

4
κglm

)
Cpijk(17)

+
(
Slj − 3

4
κglj

)
Cpikm +

(
Slk − 3

4
κglk

)
Cpimj

+
(
Sim − 3

4
κgim

)
Clpjk +

(
Sij − 3

4
κgij

)
Clpkm

+
(
Sik − 3

4
κgik

)
Clpmj .
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On the other hand, transvecting the Patterson’s identity with S h
p and

using (13) we get

SpmClijk + SpjClikm + SpkClimj +
κ

4
(gimCpljk + gijCplkm + gikCplmj

− glmCpijk − gljCpikm − glkCpimj) = 0.

Substituting this equality into (17) we have (14).
Transvecting now (14) with T m

h and using (13) we obtain T 2
hlCpijk =

T 2
hiCpljk.

Applying now Lemma 2.1 for Alpis1s2s3 = T 2
s1lCpis2s3 , in virtue of

C 6= 0, we get T 2 = 0. Thus we have (15). Finally, taking into account
the equality (2), we have

S r
l Crijk = S r

l Rrijk − 1
2
(SlkSij − SljSik)

− 1
2

(
gijS

2
lk − gikS2

lj

)
+

κ

6
(Slkgij − Sljgik).

This equality, in virtue of (15) takes the form

S r
l Crijk = S r

l Rrijk − 1
2
(SlkSij − SljSik)

− κ

12
(gijSlk − gikSlj) +

κ2

32
(gijglk − gikglj).

Symmetrizing this relation in i, l and using (8) we have

S r
l Rrijk + S r

i Rrljk =
κ

12
(gljSik − glkSij + gijSlk − gikSlj),

i.e., equality (16). This completes the proof. ¤

Theorem 4.1. Let (M, g), dim M = 4, be a semi-Riemannian man-

ifold satisfying the condition (1). If L 6= 0 and S 6= κ
4 g at x, then the

following relations hold at x:

(i) κ 6= 0,

(ii) SX,Y,Z a(X)C(Y,Z) = 0 for a certain non-zero covector a at x,

(iii) L = 1
3 ,

(iv) Q(T,C) = 0.
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Consequently, (M, g) is pseudosymmetric at x and LR = κ
12 .

Proof. Since T 6= 0 at x, we may choose a vector V at x (with local
components V r), such that the scalar ρ = a(V ) is non-zero, where a is
the covector defined by a(X) = T (V, X). We also put Fij = V rV sCrijs,
Eijk = V rCrijk. Transvecting (14) with V lV m we get

(18) ρCpijk + ajEkip + akEjpi + aiEpjk + TijFpk − TikFpj = 0,

which by transvection with V p, leads to

(19) Eijk =
1
ρ
(akFij − ajFik).

Symmetrizing (18) with respect to p, i we obtain

aiEpjk + apEijk + TijFpk − TikFpj + TpjFik − TpkFij = 0,

which, in view of (19), leads to Q(F, T − 1
ρa ⊗ a) = 0. Applying now

Lemma 2.2, in view of F 6= 0, we have T − 1
ρa⊗ a = ωF , ω ∈ R.

We consider two cases: (I) ω = 0 and (II) ω 6= 0.
(I) ω = 0. Then we have Tij = 1

ρaiaj and substituting this into (18)
and using (19) we have

(20) ρ2Cpijk = apakFij − apajFik + aiajFpk − aiakFpj .

This implies

(21) alCpijk + apCiljk + aiClpjk = 0

and, in view of Lemma 2.3 also C ·C = 0. Taking into account the relation
(3) and using (13) and (1) we have (n = 4)

(22) (1− 2L)Q(S, C) =
κ

12
Q(g, C).

This implies κ = 0 if and only if L = 1
2 . We assert that κ 6= 0 at x. Suppose

that κ = 0 at x. Then T = S = 1
ρa ⊗ a and using (20) we easily obtain

Q(S, C) = 0, a contradiction. Now (22) implies Q(S, C) = κ
12(1−2L)Q(g, C)

whence, in virtue of (1), we have R · C = κL
12(1−2L)Q(g, C). But (M, g) is

Ricci-pseudosymmetric with LS = κ
12 . So we get κL

12(1−2L) = κ
12 and we
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have (iii). It is easy to see that for L = 1
3 the equality (22) takes the

form (iv).
Now we consider the second case:
(II) ω 6= 0. Then

(23)

Fij =
1
ω

(
Tij − 1

ρ
aiaj

)
,

Eijk =
1

ρω
(akTij − ajTik).

Substituting these relations into (18) we get

ρ2ωClijk = ρ(TikTlj − TijTlk)(24)

+ 2(alakTij − alajTik + aiajTlk − aiakTlj).

Contracting (23) with gij we have ara
r = 0. Using this equality and (15),

after contraction of (24) with gij , we get aia
rTrj + aja

rTri = 0 which
immediately implies arTrj = 0. Transvecting now (24) with al and using
the above equality we obtain arCrijk = 0. This implies, by transvection of
the Patterson’s identity with ah, amClijk + ajClikm + akClimj = 0. Sub-
stituting (24) to this equality we have

(25) am(TlkTij−TljTik)+aj(TlmTik−TlkTim)+ak(TljTim−TlmTij) = 0.

We assert that κ 6= 0 at x. Suppose that κ = 0 at x. Then T = S and

ρωClijk = (SikSlj − SijSlk) +
2
ρ
(alakSij − alajSik + aiajSlk − aiakSlj).

Using this relation and (25), after standard but somewhat lenghty calcu-
lations we obtain Q(S, C) = 0, a contradiction. The proof of (iii) and (iv)
is the same as in the case (I). This completes the proof. ¤

The existence of manifolds satisfying all relations of the above theorem
can be established (see [10], Example 5.1) as follows

Example 4.2. Let (N, g̃), dim N = 3, be a semi-Riemannian manifold
such that its Ricci tensor S̃ is of rank one and its scalar curvature κ̃

vanishes identically on N . An example of such manifold is presented in [10]
(Example 5.1 (ii)). Furthermore, let F , defined by F (x1) = a exp(bx1),
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a = const. 6= 0, b = const. 6= 0, be a function on a 1-dimensional manifold
(M, g1). It is shown in [10] that warped product M ×F N satisfies (1)
with L = 1

3 and is a pseudosymmetric manifold with LR = κ
12 , where

κ is the scalar curvature of M×F N . Moreover, it is easy to verify that
κ = −3b2 6= 0 and one can see that the condition (ii) of the last theorem
is satisfied at every point x of M×F N by arbitrary covector a at x such
that the only non-zero component of a is a2.
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