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Conformally Berwald and
conformally flat Finsler spaces

By MAKOTO MATSUMOTO (Kyoto)

Abstract. A condition for a Finsler space to be conformal to a Berwald space or
a locally Minkowski space is given in terms of a conformally invariant Finsler connection
independently of the dimension number.

1. Introduction

We have had many publications on the theory of conformal changes of
Finsler spaces, following M. Hashiguchi’s theory [2] based on the modern
treatment of Finsler spaces. H. Izumi [7], [8] considered some special
conformal changes, M. Hashiguchi and Y. Ichijyo [3] dealt with the
conformal flatness from the standpoint of the theory of Wagner spaces,
and the present author [10] showed that the existence of special Finsler
connections is closely related to conformal flatness. Next the problem
of conformal flatness was solved for Finsler spaces with some remarkable
metrics: Y. Ichijyo and M. Hashiguchi [4] considered a Randers space,
the present author [11] a Kropina space. Further the present author [12]
treated of a Finsler space with 1-form metric. It is worthy of note that they
considered the conformal flatness based on conformally invariant Finsler
connections.

Recently we had S. Kikuchi’s epoch-making paper [9] on the confor-
mal flatness. He found a conformally invariant Finsler connection for all
Finsler spaces satisfying a certain condition by excellent idea and an con-
formal flatness was stated in terms of this connection. Though F. Ikeda’s
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papers [5], [6] seem to be written as explanatory notes to Kikuchi’s paper,
it rather brought a week point of Kikuchi’s into the open.

The present paper deals with conformal flatness based on an idea
similar to Kikuchi’s. We introduce a conformally invariant Finsler connec-
tion for Finsler spaces having a tensor which satisfies conditions weaker
than Kikuchi’s, and the condition for a Finsler space to be conformal to
a Berwald space or a locally Minkowski space is stated in terms of this
connection. These statments are quite similar to those for a Finsler space
to be a Bewald space or a locally Minkowski space stated in terms of the
Berwald connection. It cannot be too much emphasized that our theory
and theorems are independent of the dimension number.

2. B-contracting tensor

We consider a Finsler space Fn = (M, L) of dimension n on an un-
derlying manifold M and a conformal change of metric L → ∗L = ec(x)L.
Then we have the conformally changed space ∗Fn = (M, ∗L) on the same
manifold M . We have

∗gij = e2cgij ,
∗`i = ec`i,

∗`i = e−c`i.

Hence we get conformally invariant tensors [2]:

Bij = (2/L2)(gij − 2`i`j), Bij = (L2/2)(gij − 2`i`j).

The matrix (Bij) is the inverse of (Bij). Then we get a series of conformally
invariant tensors as follows:

Bij
k = ∂̇kBij , Bij

k` = ∂̇`B
ij

k, . . . .

Now we treat of the well-known quantities

2Gi = γj
i
k(x, y)yjyk = gij{yr∂r∂̇j(L2/2)− ∂j(L2/2)},

where γj
i
k(x, y) are Christoffel symbols constructed from gij(x, y) with

respect to xi. By the conformal change above we obtain

∗γj
i
k = γj

i
k + δj

ick + δk
icj − gjkci,
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where ck = ∂kc(x) and ci = gikck. Hence we have ∗Gi of ∗Fn as

∗Gh = Gh −Bhrcr.

We shall be concerned with the Berwald connection BΓ = (Gi
h

j , G
h

i).
Then the above gives rise to

(2.1) ∗Gh
i = Gh

i −Bhr
icr,

∗Gi
h

j = Gi
h

j −Bhr
ijcr,

and the relation of the hv-curvature tensor G = (Gi
h

jk) as

(2.2) ∗Gi
h

jk = Gi
h

jk −Bhr
ijkcr.

We have the well-known relations

∗Cijk = e2cCijk, ∗Ci
j
k = Ci

j
k,

∗Cijk = e−4cCijk, ∗Ci = Ci,
∗Ci = e−2cCi.

As a consequence we get conformally invariant tensors as follows:

(2.3) L4Cijk, L4gijCk, L4gij`k.

It is noted that the third tensor of (2.3) satisfies Bhr
ijk(L4gij`k) = 0 from

Bhr
ijkyk = 0, because Bhr(x, y) are positively homogeneous in (yi) of

degree two.

Definition 2.1. A tensor field S of (3, 0)-type of a Finsler space is
called a B-contracting tensor , if

(a) S is conformally invariant,

(b) Bhr
ijkSijk = βhr is non-singular, that is, det(βhr) 6= 0. Let (Φhr) be

the inverse of (βhr).

S. Kikuchi’s idea [9] is to write ci(x) as the difference between a
tensor of Fn and the tensor of ∗Fn which corresponds to it by conformal
change. Here we shall solve ci(x) from (2.2) to realize his idea. Multiplying
a B-contracting tensor S, (2.2) yields

(2.4) ci = φi − ∗φi, φi = ΦirGj
r
hkSjhk.
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As M. Hashiguchi gave in the paper [2], we have

Bir
j = yjg

ir − δj
iyr − δj

ryi − L2Cir
j ,

Bir
jk = girgjk −S(jk){δj

iδk
r + 2Cir

jyk}+ L2Cir
j.k ,

where S(jk) denotes the interchange of j, k and summation, and (.k) =
∂̇k = ∂/∂yk. Further we have

Bir
jkh = 2girCjkh − 2S(jkh){gjkCir

h + yjC
ir

k.h} − L2Cir
j.k.h ,

where S(jkh) denotes the cyclic interchange of j, k, h and summation.
Let us consider the two-dimensional case in detail. Then we can refer

to the Berwald orthonormal frame field (1,m) [1]. First we have

L`i
.j = εmimj , L`i.j = εmimj ,

Lmi
.j = −(`i + εImi)mj , Lmi.j = −(`i − εImi)mj ,

where I is the main scalar defined by LCijk = Imimjmk. By long but
direct calculations we obtain

(a) LBir
jkh = Dirmjmkmh,(2.5)

(b) Dir = 2J(`imr + `rmi)− (J;2 − 2εIJ)mimr,

where K;2 = εLK.im
i for a scalar K and J = I;2. It is easy to show

det(Dir) = −4J2. Consequently, if we take a conformally invariant tensor
S of (3, 0)-type having the mjmkmh-component s, then Bir

jhkSjhk =
βir = εsDir/L. Therefore we have

Proposition 2.1. In a two-dimensional Finsler space with non-zero
I;2, a conformally invariant tensor S of (3, 0)-type is B-contracting if and
only if S has a surviving mjmkmh-component.

We have I;2 = 0 if and only if I is a function of position alone and
the fundamental function L of such a space is well-known ([1], Theo-
rem 3.5.3.2). Both L4Cijk and L4gijCk of (2.3) are B-contracting, pro-
vided that the space is not a Riemannian space.

Substituting from (2.4) into (2.1) we obtain the conformally invariant
connection cBΓ = (cGi

h
j ,

cGh
i), where

(2.6) cGh
i = Gh

i −Bhr
iφr,

cGi
h

j = Gi
h

j −Bhr
ijφr.



Conformally Berwald and conformally flat Finsler spaces 279

Definition 2.2. The conformally invariant connection cBΓ defined by
(2.6) is called the HMO-connection with respect to the B-contracting ten-
sor S.

Remark. The name HMO results from the initals of Prof. S. Hojo,
Prof. K. Okubo and the present author who are members of the study
group on Finsler geometry at Doshisha University.

From (2.2) we obtain a conformally invariant tensor

(2.7) cGi
h

jk = Gi
h

jk −Bhr
ijkφr.

Since the hv-curvature tensor of the HMO-connection cBΓ is given by
∂̇k

cGi
h

j , (2.6) shows that if φi depends on position alone, then cGi
h

jk is
nothing but the hv-curvature tensor of cBΓ.

We shall return to the discussion of the two-dimensional case. From
βir = εsDir/L and (2.5) it follows that the inverse Φir is given by

Φir = (εL/4sJ2)(J;2 − 2εIJ)`i`r + (L/2sJ)(`imr + `rmi).

On the other hand we have the formula ([1], (3.5.2.7))

(2.8) LGj
r
hk = {−2I,1`

r + (I,1;2 + I,2)mr}mjmhmk,

where we put
K;i = K,1`i + K,2mi,

for the h-covariant derivative K;i of a scalar K with respect to BΓ. We
have the Ricci identities

(2.9)
K,1;2 −K;2,1 = K,2,

K,2;2 −K;2,2 = −ε(K,1 + IK,2 + I,1K;2).

Hence we have I,1;2 + I,2 = J,1 + 2I,2 and consequently

LGj
r
hk = {−2I,1`

r + (J,1 + 2I,2)mr}mjmhmk.

Therefore we obtain φi = ΦirGj
r
hkSjhk in the form

(2.10)
φi = (1/2J2){K1 + 2J(I,2 + εII,1)}`i − (εI,1/J)mi,

K1 = JJ,1 − J;2I,1.

We have to pay attention to (2.8). The scalar s does not appear in it.
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Therefore we have

Proposition 2.2. In a two-dimensional Finsler space with non-zero

I;2(= J), φi defined by (2.4) is uniquely determined by (2.7), independent

of the choice of a B-contracting tensor S.

3. Conformal flatness

We have had a conformally invariant Finsler connection cBΓ, called
the HMO-connection. Now we are concerned with the conformal flatness
based on this connection.

Definition 3.1. A Finsler space Fn = (M,L) is called conformally
Berwald , if for any point p of M there exist a local coordinate neighbour-
hood (U, x) containing p and a function c(x) on U such that ∗L = ecL is
a metric of a Berwald space.

Assume that the conformally changed space ∗Fn = (M, ∗L) of the last
section is a Berwald space, namely, ∗Gi

h
jk = 0. Then (2.4) gives ∗φi = 0

and ci = φi. Thus φi = φi(x) must be a gradient vector. Since (2.7) leads
to cGi

h
jk = 0 in ∗Fn, we have cGi

h
jk = 0 in Fn. In this case cGi

h
jk is

the hv-curvature tensor of cBΓ.
Conversely, we consider Fn such that φi = φi(x) is a gradient vec-

tor and the hv-curvature tensor cGi
h

jk of BΓ vanishes. Since we have a
function c(x) satisfying ∂ic = φi, we apply to Fn the conformal change
L → ∗L = ecL and get the conformally changed space ∗Fn = (M, ∗L).
Then we have (2.4) which gives ∗φi = 0 and (2.7) leads to ∗Gi

h
jk = 0,

that is, ∗Fn is a Berwald space.
Consequently we have

Theorem 3.1. Suppose that a Finsler space Fn = (M,L) has a B-

contracting tensor S and let cBΓ be the HMO-connection with respect to

S. Then Fn is conformally Berwald, if and only if

(1) φi, defined by (2.4), is a gradient vector φi(x),

(2) the hv-curvature tensor cG of cBΓ vanishes, that is, the hv-curvature

tensor G of the Berwald connection BΓ is of the form

Gi
h

jk = Bhr
ijkφr.

Next we are concerned with the conformal flatness. Similarly to the
“conformally Berwald” case, we can state as follows:
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Definition 3.2. A Finsler space Fn = (M,L) is called conformally
flat , if for any point p of M there exist a local coordinate neighbourhood
(U, x) containing p and a function c(x) on U such that ∗L = ecL is a locally
Minkowski metric.

Let the conformally changed space ∗Fn = (M, ∗L) be locally Minkow-
ski. Since ∗Fn is a Berwald space with the vanishing h-curvature tensor
H of BΓ [1], all the facts mentioned in Theorem 3.1 and its proof hold.
Further we can refer to an adapted coordinate system (xi) of ∗Fn in which
∗Gi

h
j = 0 [1]. Hence (2.6) and ∗φi = 0 give cGi

h
j = 0. Therefore the

h-curvature tensor cH of cBΓ vanishes.
Conversely, we consider Fn such that there exists a gradient vector

φi(x) = ∂ic(x) and cG = cH = 0. Then cGi
h

j are functions of position
alone and hence cH is of the form

cHi
h

jk = Ã[jk]{∂k(cGi
h

j) + (cGi
r
j)(cGr

h
k)} = 0,

where Ã[jk] denotes the interchange of j, k and subtraction. Therefore we
have a coordinate system (xi) in which cGi

h
j = 0 identically. Then (2.6)

with ∗φi = 0 yields ∗Gi
h

j = 0 and hence ∗H = 0. Thus ∗Fn becomes a
locally Minkowski space.

Consequently we can state

Theorem 3.2. Let a Finsler space Fn = (M, L) have a B-contracting

tensor S and let cBΓ be the HMO-connection with respect to S. Then Fn

is conformally flat, if and only if

(1) φi defined by (2.4) is a gradient vector φi(x),

(2) the h and hv-curvature tensors cH, cG of cBΓ vanish.

4. The two-dimensional case

In the two-dimensional case we have had a detailed discussion of con-
formal flatness by the present author [13]. At that time he expected
some special situations of conformal flatness of Finsler spaces in the two-
dimensional case, because any Riemannian space of dimension two is lo-
cally conformal to a flat space.

But we had two theorems independent of the dimension number. Now
we apply these theorems to the two-dimensional case and compare them
with the results given in the paper [13].
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First we deal with the condition (1) of these theorems: φi is a gradient
vector φi(x). Putting

φi = φ1`i + φ2mi,

in the Berwald frame (`,m), with respect to the Cartan connection CΓ we
have

φi|j = `i(φ1,1`j + φ1,2mj) + mi(φ2,1`j + φ2,2mj).

Here we use the symbols

φ1|j = ∂jφ1 − (∂̇rφ1)Gr
j = φ1,1`j + φ1,2mj .

Thus φ1,1, . . . , φ2,2 depend on the nonlinear connection Gi
j only.

Next we have

Lφi.j = φ1;2mj`i + φ1εmimj + φ2;2mjmi − φ2(`i − εImi)mj

= (φ1;2 − φ2)`imj + {φ2;2 + ε(φ1 + Iφ2)}mimj .

Consequently the condition (1) can be written as

(4.1)
(a) φ1,2 − φ2,1 = 0,

(b) φ1;2 = φ2, (c) φ2;2 = −ε(φ1 + Iφ2).

We have (2.10):

φ1 = (1/2J2){K1 + 2J(I,2 + εII,1)}, φ2 = −εI,1/J.

First we deal with (c) of (4.1):

φ2;2 = −ε(I,1;2/J − I,1J;2/J2), φ1 + Iφ2 = K1/2J2 + I,2/J.

We use I,1;2 = J,1 + I,2 from the first part of (2.9). Then (c) is equivalent
to K1 = 0.

Secondly we consider (b). We use I,2;2 = J,2 − ε(I,1 + II,2 + I,1J)
from the second part of (2.9). Then (b) is written as

JJ,2 + εIJJ,1 − (I,2 + εII,1)J;2 = 0.

Substituting J,1 = I,1J;2/J from K1 = 0, this is reduced to K2 = JJ,2 −
J;2I,2 = 0.
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Finally we consider (a): This written as

J2(εI,1,1 + I,2,2 + εII,1,2 + εI,1I,2) = εJJ,1I.1 + JJ,2(I,2 + εII,1).

Substituting JJ,a = J;2I,a, a = 1, 2, from Ka = 0, this is rewritten in the
form

(4.2) J;2{(I,1)2 + ε(I,2)2 + II,1I,2} = J2(I,1,1 + εI,2,2 + II,1,2 + I,1I,2).

Next we deal with cGi
h

jk = Gi
h

jk − Bhr
ijkφr = 0. Now we have φi

of the form

(4.3) φ1 = (I,2 + εII,1)/J, φ2 = −εI,1/J.

Since we have (2.8) and (2.5), the above can be written as

−2I,1`
h + (J,1 + 2I,2)mh = 2εJφ2`

h + {2Jφ1 − εφ2(J;2 − 2εIJ)}mh.

It is easy to show that this is equivalent to K1 = 0.
Consequently we have

Theorem 4.1. A two-dimensional Finsler space F 2 with non-zero J

(= I;2) is conformally Berwald, if and only if

Ka = JJ,a − J;2I,a = 0, a = 1, 2,

and (4.2). Then the conformally changed space ∗F 2 with ∗L = ec(x)L is a

Berwald space, where c(x) is given as ∂ic(x) = φi from φi of (4.3).

Further we consider conformal flatness. It is well-known that all
Berwald spaces of dimension two are classified as

B1 = {I = const., and R 6= 0}, B2 = {I = const., and R = 0},

B3 = {I 6= const., and R = 0}.

A space F 2 ∈ B1 + B2 has I;2 = 0 and I is a conformal invariant. There-
fore we are not concerned with B1 + B2 in the present paper. Thus the
∗F 2 occurring in Theorem 4.1 belongs to B3, which is locally Minkowski.
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Therefore we obtain

Theorem 4.2. A Finsler space of dimension two with non-zero J

(= I;2) is conformally flat, if and only if the conditions stated in The-

orem 4.1 are satisfied.

Thus it can be concluded that Theorem 3 of the paper [13] is again
established, because it just coincides with Theorem 4.2.

It is remarked that the conformal flatness of two-dimensional Finsler
spaces is uniquely treated independent of the choice of a B-contracting ten-
sor. But we may have some complicated situations in higher dimensions.
It may be possible that a Finsler space Fn, n ≥ 3, has plural B-contracting
tensors and, as a consequence, we have plural Berwald spaces or locally
Minkowski spaces which are conformal to Fn. Therefore we have

Problem I. Are there two Berwald spaces which are conformal to each
other?

and

Problem II. Are there two locally Minkowski spaces which are con-
formal to each other?
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