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Some Cauchy-like functional equations
on the natural numbers

By T. M. K. DAVISON (Hamilton)

Abstract. The equation f(am+ bn)+f(0) = f(am)+f(bn) is solved, where a, b
are fixed relatively prime positive integers and m, n are arbitrary natural numbers.

1. Introduction

In this paper we give necessary and sufficient conditions that a func-
tion f from the natural numbers (denoted N0) to an additive abelian group
(denoted Γ) satisfy

(1) f(am + bn) + f(0) = f(am) + f(bn); (m,n) ∈ N2
0.

Here a, b are fixed positive integers that are relatively prime. If a = 1 and
b = 1 then equation (1) becomes the affine version of Cauchy’s equation;
namely

(2) f(m + n) + f(0) = f(m) + f(n); (m, n) ∈ N2
0.

It is clear that if f satisfies equation (2) then it also satisfies equation (1).
For this reason we call solutions of equation (1) (a, b)-Cauchy functions.

We need some elementary number theory to enable us to complete the
characterization of (a, b)-Cauchy functions. References for this are Dick-

son [1: Chapter III], Hua [2: Chapters 1, 2, 11], Rosen [3: Chapter 2]
and Uspensky and Heaslet [4: Chapter III].
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The following sets of natural numbers are significant in the under-
standing of (a, b)-Cauchy functions:

S = S(a, b) := {ax + by : (x, y) ∈ N2
0},(3)

and
T = T (a, b) := N0 \ S(a, b).(4)

Since a and b are relatively prime T is finite: more precisely, for all n ∈ N0

(5) n ≥ (a− 1)(b− 1) ⇒ n ∈ S(a, b).

(See [1: p. 65], [3: p. 109].) Indeed, the largest element of T is ab− a− b

[3: p. 109] and the number of elements in T is (a−1)(b−1)
2 [3: p. 109]. We

see that T is empty if a = 1 or b = 1. Now letting p ∈ N we say a function
f : N0 → Γ is p-quasiperiodic if

(6) f(m + p) + f(0) = f(m) + f(p); m ∈ N0.

It is easy to see that equation (6) implies

(7) f(m + pn) + f(0) = f(m) + f(pn); (m, n) ∈ N2
0.

Hence a p-quasi-periodic function is none other than a (1, p)-Cauchy func-
tion. We require two more bits of terminology prior to stating our first
theorem. An (a, b)-Cauchy function g is singular if g has finite support:
that is to say

(8) supp(g) := {n ∈ N0 : g(n) 6= 0}
is a finite set. An (a, b)-Cauchy function h is regular if h is also an (1, ab)-
Cauchy function: in other words h is regular if it is an (a, b)-Cauchy func-
tion that is also ab-quasi-periodic. We observe that the sum/difference of
singular/regular functions is singular/regular.

We now state our main results: the proofs are deferred to the second
section of the paper.

Theorem 1. Let N0 → Γ be an (a, b)-Cauchy function. Then f can
be written uniquely as g + h where g is a singular (a, b)-Cauchy function,
and h is a regular (a, b)-Cauchy function.

Thus, to understand (a, b)-Cauchy functions we need only characterize
the special types: singular and regular. Singular functions are relatively
easy:
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Theorem 2. The function g : N0 → Γ is a singular (a, b)-Cauchy

function if, and only if, supp(g) ⊂ T . (Here supp(g) is defined by (8)).

To characterize regular (a, b)-Cauchy functions we require a supply of
quasi-periodic functions: indeed those defined below are purely periodic.
Let p ∈ N. For j ∈ N0 we define the characteristic function χj

p : N0 →
{0, 1} by χj

p(m) = 1 if, and only if, m ≡ j modp. It is clear that

χj
p(m + p) = χj

p(m); m ∈ N0,

so χj
p is certainly p-quasi-periodic for all j ∈ N0. Finally we define Na,b(n)

as the number of pairs (x, y) ∈ N2
0 satisfying the linear Diophantine equa-

tion

(9) ax + by = n.

Our third main result is:

Theorem 3. Let h : N0 → Γ. Then h is a regular (a, b)-Cauchy

function if, and only if, there are elements α1, . . . αa−1, β1, . . . βb−1, γ0,

γab of Γ such that, for all m ∈ N0

h(m) =
a−1∑

j=1

χjb
a (m)αj +

b−1∑

k=1

χka
b (m)βk + γ0 + Na,b(m)γab.

In the final section of the paper we show how (a, b)-Cauchy functions
over Z can easily be characterized using our results over N0.

2. Properties of (a, b)-Cauchy functions

We show first that (a, b)-Cauchy functions are ab-quasi-periodic on S.

Lemma 1. Let f be an (a, b)-Cauchy function. Then for all s ∈ S

(10) f(s + ab) + f(0) = f(s) + f(ab).

Proof. Let s∈S; so s = ax+ by for some x, y ∈N0. Then f(s + ab)+
f(0) = f(ax + b(y + a)) + f(0) = f(ax) + f(ab + by) = f(ax) + f(ab) +
f(by) − f(0) = f(ax + by) + f(ab) = f(s) + f(ab), using equation (1)
repeatedly. ¤
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Let f : N0 → Γ be arbitrary. We define functions f̌ , f̂ : N0 → Γ as
follows:

f̌(m) := f(m) + f(ab)− f(m + ab)− f(0); m ∈ N0(11)

f̂(m) := f(m + ab) + f(0)− f(ab); m ∈ N0.(12)

We see that, for all m ∈ N0

(13) f(m) = f̌(m) + f̂(m).

If f is assumed to be an (a, b)-Cauchy function then equation (13) is, as
we will show, the decomposition of f into singular and regular parts.

Lemma 2. Let f be an (a, b)-Cauchy function

(i) f̌ is a singular (a, b)-Cauchy function and supp(f̌) ⊆ T

(ii) f̂(s) = f(s) for all s ∈ S

(iii) f̂ is a regular (a, b)-Cauchy function.

Proof. (i) Let s ∈ S. Then f̌(s) = f(s)+f(ab)−f(s+ab)−f(0) = 0
by Lemma 1. Thus supp(f̌) ⊆ T . But |T | = (a−1)(b−1)

2 so supp(f̌) is finite.
Now f̌ is clearly an (a, b)-Cauchy function as, in equation (1), am + bn,
am, bn all belong to S so we require 0 + 0 = 0 + 0 which is certainly true.

(ii) Since f̂(s) = f(s)− f̌(s) by equation (13) we deduce that f̂(s) =
f(s) for all s ∈ S from part (i).

Since f̂ = f − f̌ and both f , f̌ are (a, b)-Cauchy functions we see that
f̂ is also an (a, b)-Cauchy function. We have to show that f̂ is ab-quasi-
periodic. Let m ∈ N0 Then m+ab ∈ S since m+ab ≥ (a− 1)(b− 1) using
the criterion for S-membership in equation (5). Hence

f̂(m + ab) + f̂(0) = f(m + ab) + f(0) (by part (i) above)

= f(m) + f(ab) (by equation (12))

= f̂(m) + f̂(ab) (since ab ∈ S).

This proves that f̂ is ab-quasi-periodic, and completes the proof that f̂ is
regular. ¤

One more result is useful in proving Theorem 1: only the zero function
is both singular and regular.
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Lemma 3. Suppose f is an (a, b)-Cauchy function function that is

both singular and regular. Then f = 0.

Proof. We note that f = 0 if, and only if, supp(f) is the empty
set. So suppose supp(f) 6= ∅. Since supp(f) is finite (f is singular) there
is a largest element in supp(f): call it m0. Then f(m0 + ab) + f(ab) =
f(m0+2ab)+f(0), since f is ab-quasi-periodic. Since m0+2ab > m0+ab >

m0 we have that f(m0 + 2ab) = 0 and f(m0 + ab) = 0 (else m0 is not
largest in supp(f)). We deduce that f(ab) = f(0), and so for all m ∈ N0

f(m + ab) = f(m). But this implies 0 = f(m0 + ab) = f(m0) 6= 0. This
contradiction shows that supp(f) = ∅ and hence that f = 0, as claimed.

¤

We can now prove

Theorem 1. Let f : N0 → Γ be an (a, b)-Cauchy function. Then

f can be written uniquely as g + h where g is a singular (a, b)-Cauchy

function, and h is a regular (a, b)-Cauchy function.

Proof. From equation (13) we know that f = f̌ + f̂ , and from
Lemma 2 we know that f̌ is a singular (a, b)-Cauchy function and f̂ is a
regular (a, b)-Cauchy function if f is an arbitrary (a, b)-Cauchy function.
This proves the existence of the claimed decomposition.

For the uniqueness suppose g + h = g′ + h′ where g, g′ are singular
(a, b)-Cauchy functions and h, h′ are regular (a, b)-Cauchy functions. Then
g − g′ = h′ − h. Moreover g − g′ is a singular (a, b)-Cauchy function and
h′−h is a regular (a, b)-Cauchy function. Thus the function g− g′ is both
singular and regular. By Lemma 3 it follows that g− g′ = 0. Hence g = g′

and so, h = h′. This proves the uniqueness of the decomposition. ¤

A consequence of this theorem is that we need only characterize the
special types: singular and regular. We characterize the singular functions
in

Theorem 2. A function g : N0 → Γ is a singular (a, b)-Cauchy func-

tion if, and only if supp(g) ⊆ T .

Proof. Suppose g is a singular (a, b)-Cauchy function. Then g =
ǧ + ĝ by Theorem 1. Since this decomposition is unique ĝ = 0. Thus
supp(g) = supp(ǧ) ⊆ T by Lemma 2 (i).



308 T. M. K. Davison

Conversely suppose g : N0 → Γ satisfies supp(g) ⊆ T . Then g(am +
bn) + g(0)− g(am)− g(bn) = 0 + 0− 0− 0 = 0 since am + bn /∈ T , 0 /∈ T ,
am /∈ T ; bn /∈ T and x /∈ T implies g(x) = 0. Thus g is an (a, b)-Cauchy
function. It is a singular one since supp(g) is a finite set. ¤

It remains to characterize regular (a, b)-Cauchy functions. As a first
step we show that there are many such.

Lemma 4. The functions Nab, χj
a, χk

b are regular (a, b)-Cauchy func-

tions, for all j, k ∈ N0.

Proof. We show first that Na,b is ab-quasi-periodic. Since a, b are
relatively prime ax + by = au + bv implies that x ≡ u mod b and y ≡
v mod a. Hence all the non-negative solutions of ax + by = n are in the
list

(x0, y0), (x0 + b, y0 − a), . . . , (x0 + kb, y0 − ka)

where k = Na,b(n)−1. So all the non-negative solutions of ax+by = n+ab

are in the list (x0, y0 + a), (x0 + b, y0), . . . , (x0 + kb, y0 − ka). Thus
Na,b(n + ab) = k + 2 = Na,b(n)− 1 + 2, and so

Na,b(n + ab) + Na,b(0) = Na,b(n) + Na,b(ab)

since Na,b(0) = 1 and Na,b(ab) = 2. This proves that Na,b is ab-quasi-
periodic.

Now to prove that Na,b is (a, b)-Cauchy let m,n ∈ N0. By the division
theorem we can write m = bm′ + u with 0 ≤ u ≤ b − 1, and n = an′ + v

with 0 ≤ v ≤ a− 1. Then an easy computation using the ab-periodicity of
Na,b (in particular equation (7))

Na,b(am + bn) + Na,b(0)−Na,b(am)−Na,b(bn)

= Na,b(au + bv + (m′ + n′)ab) + Na,b(0)

−Na,b(au + m′ab)−Na,b(bv + n′ab)

= Na,b(au + bv) + Na,b((m′ + n′)ab)−Na,b(au)−Na,b(m′ab)

+ Na,b(0)−Na,b(bv)−Na,b(n′ab) + Na,b(0)

= Na,b(au + bv) + Na,b(0)−Na,b(au)−Na,b(bv)

+ Na,b(m′ab + n′ab) + Na,b(0)−Na,b(m′ab)−Na,b(n′ab)

= Na,b(au + bv) + Na,b(0)−Na,b(au)−Na,b(bv).
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Thus Na,b is an (a, b)-Cauchy function if, and only if,

(14) Na,b(au + bv) + Na,b(0) = Na,b(au) + Na,b(bv)

for all u, v in N0 satisfying 0 ≤ u ≤ b− 1, 0 ≤ v ≤ a− 1. Now Na,b(0) =
Na,b(au) = Na,b(bv) = 1. It remains to prove that Na,b(au + bv) = 1 also
for (14) to be satisfied. If ax + by = au + bv with (x, y) ∈ N2

0 and x > u

then v > y; but then y < 0 – which is a contradiction [v ≡ y mod a and
y < v < a implies y < 0]. Similarly if x < u then y > v and x < 0; also a
contradiction. Hence Na,b(au+bv) = 1, and equation (14) has been shown
to be satisfied. Thus Na,b is an (a, b)-Cauchy function.

Next χj
a(am + bn) = χj

a(bn) since χj
a is purely a-periodic, as noted

in the introduction. Thus χj
a(am + bn) + χj

a(0) − χj
a(am) − χj

a(bn) =
χj

a(bn)+χj
a(0)−χj

a(0)−χj
a(bn) = 0. Hence χj

a is an (a, b)-Cauchy function.
Now χj

a is also trivially ab-quasi-periodic since χj
a(m+ab)+χj

a(0)−χj
a(m)−

χj
a(ab) = χj

a(m) + χj
a(0)− χj

a(m)− χj
a(0) = 0. Thus χj

a is a regular (a, b)-
Cauchy function. Similarly, χk

b is a regular (a, b)-Cauchy function. ¤

We can now prove

Theorem 3. The function h : N0 → Γ is a regular (a, b)-Cauchy func-

tion if, and only if, there are elements α1, . . . , αa−1, β1, . . . , βb−1, γ0, γab

in Γ such that for all m ∈ N0

(15) h(m) =
a−1∑

j=1

χjb
a (m)αj +

b−1∑

k=1

χka
b (m)βk + γ0 + Na,b(m)γab.

Proof. Let the elements α1, . . . , γab, be given. Then the functions
χjb

a αj , χka
b βk, γ0 and Na,bγab are regular (a, b)-Cauchy functions from N0

to Γ using Lemma 4. Hence so is h(m) as defined by equation (15).
Assume conversely that h is a regular (a, b)-Cauchy function. Define

elements αj := h(jb)− h(0), βk := h(ka)− h(0), γ0 := 2h(0)− h(ab) and
γab := h(ab) − h(0). Define h′ : N0 → Γ by h′(m) :=

∑a−1
j=1 χjb

a (m)αj +∑b−1
k=1 χka

b (m)βk +γ0+Na,b(m)γab. Then by the direct part of the theorem
h′ : N0 → Γ is a regular (a, b)-Cauchy function. Now define h := h − h′.
Then h is also a regular (a, b)-Cauchy function.

It suffices to show that h vanishes on S. For then supp(h) ⊆ T and h

would be a singular (a, b)-Cauchy function by Theorem 2. So h = 0, and
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thus h = h′, as described. First h(0) = h(0)− h′(0) = h(0)− γ0− γab = 0.
(For χjb

a (0) = 0 for j = 1, 2, . . . , a − 1 since a and b are relatively prime;
similarly χka

b (0) = 0.) Second

h(ab) = h(ab)− h′(ab) = h(ab)− γ0 − 2γab = 0.

Now for arbitrary n ∈ N we have

h(nab) = h((n− 1)ab + ab) + h(0) = h((n− 1)ab) + h(ab) = h((n− 1)ab),

and so h(nab) = 0 for all n ∈ N by induction.
Third, let ` ∈ N0, 1 ≤ ` ≤ a− 1. Then, for 1 ≤ j ≤ a− 1, χjb

a (`b) = 1
iff jb ≡ `b mod a, iff j ≡ ` mod a, iff j = ` since j, ` are both small. Hence∑a−1

j=1 χjb
a (`b)αj = α`. Next χka

b (`b) = 0. So h(`b) = h(`b) − h′(`b) =
h(`b)−α`−γ0−γab = 0. Similarly, h(ma) = 0 for 1 ≤ m ≤ b−1. Finally,
let s = ax + by ∈ S. Write x = bx′ + u, y = ay′ + v where 0 ≤ u ≤ b− 1,
0 ≤ v ≤ a − 1. Then h(ax + by) = h(au + bv + (x′ + y′)ab) = h(au + bv)
(since h(au) + h(bv) = 0 + 0 = 0). Thus h is zero on S, and the proof is
complete. ¤

Corollary. Let p ∈ N. Then f : N0 → Γ is p-quasi-periodic if, and

only if, there are elements β1, . . . , βp−1, γ0, γp in Γ such that

(16) f(n) =
p−1∑

k=1

χk
p(m)βk + γ0 + N1,p(n)γp.

Proof. This is merely the case a = 1, b = p of the theorem. ¤

It is easy to evaluate N1,p(n) with the help of a well known p-quasi-
periodic function. Let p ∈ N. There are p-quasi-periodic functions qp :
N0 → N0 and rp : N0 → {0, 1, 2, . . . , p− 1} for all n ∈ N0,

(17) n = pqp(n) + rp(n).

Of course the notation is self-explanatory: qp is the quotient after division
by p, and rp is the remainder. We can now state
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Lemma 5. Let p ∈ N. Then

(18) N1,p(n) = qp(n) + 1; n ∈ N0.

Proof. N1,p(n) = card
{
(x, y) ∈ N2

0 : x + py = n
}
. Now write n =

pqp(n)+rp(n) as in equation (17). Then (rp(n), qp(n)), (rp(n)+p, qp(n)−1),
. . . , (n, 0) is the complete list of non-negative solutions (x, y) to x+py = n.
There are qp(n) + 1 distinct entries on the list. So N1,p(n) = qp(n) + 1.

¤

In turn we can use the corollary above to determine another expression
for Na,b(n).

Proposition. Let χS be the characteristic function of S: that is
χS(n) ∈ {0, 1} and χS(n) = 1 if, and only if, n ∈ S. Then

(19) Na,b(n) = qab(n) + χS(rab(n)); n ∈ N0.

Proof. Nab is a regular (a, b)-Cauchy function by Lemma 4. So,
using the corollary to Theorem 3 we have

Nab(n) =
ab−1∑

k=1

χk
ab(n)βk + γ0 + N1,ab(n)γab

=
ab−1∑

k=1

χk
ab(n)βk + γ0 + γab + qab(n)γab

using Lemma 5. We know that γ0 = 2Na,b(0) −Na,b(ab) = 0, and γa,b =
Na,b−Na,b(0) = 2− 1 = 1, βk = Na,b(k)−Na,b(0). So Na,b(n) = qab(n) +
χ =S (rab(n)) if, and only if χS(rab(n)) = 1 +

∑ab−1
k=1 χk

ab(n)[Na,b(k)− 1].
We see that both sides remain invariant under the transformation n 7→
n+ab. So it suffices to prove the result for 0 ≤ n < ab. Now Na,b(k)−1 =
−χT (k) since 1 ≤ k < ab. So

∑ab−1
k=1 χk

ab(n)(−χT (k)) = −χT (n) (n < ab

used here). Finally 1 − χT (n) = χS(n) for 0 ≤ n < ab. Thus the result
follows. ¤

Equation (19) is well-known. (See [4, p. 65].) However the above
proof uses our analysis of the solutions of a functional equation and not
elementary number theory directly.
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3. Concluding remarks

We mention briefly how to use our results to solve, for f : Z → Γ,
a, b ∈ N relatively prime

(20) f(am + bn) + f(0) = f(am) + f(bn); (m,n) ∈ Z2.

If f is an (a, b)-Cauchy function over Z then f is ab-quasi-periodic over Z.
(For now S(a, b) = Z and Lemma 1 still gives the result.) Hence f re-
stricted to N0 is a regular (a, b)-Cauchy function. We can therefore state

Theorem. f : Z → Γ satisfies equation (20) if, and only if, there are

elements α1, . . . , αa−1, β1, . . . , βb−1, δ0, δab in Γ such that

f(n) =
a−1∑

j=1

χjb
a (n)αj +

b−1∑

k=1

χka
b (n)βk + δ0 +

[
qab(n) + χS(rab(n))

]
δab

for all n ∈ Z.

Here, of course qp : Z→ Z is the quotient function extended to Z:

qp(n) := qp(n + |n|p)− |n|; n ∈ Z.
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