Publ. Math. Debrecen 58 / 3 (2001), 303–312

Some Cauchy-like functional equations on the natural numbers

By T. M. K. DAVISON (Hamilton)

Abstract. The equation f(am+bn)+f(0) = f(am)+f(bn) is solved, where a, b are fixed relatively prime positive integers and m, n are arbitrary natural numbers.

1. Introduction

In this paper we give necessary and sufficient conditions that a function f from the natural numbers (denoted \mathbb{N}_0) to an additive abelian group (denoted Γ) satisfy

(1)
$$f(am + bn) + f(0) = f(am) + f(bn); \quad (m, n) \in \mathbb{N}_0^2.$$

Here a, b are fixed positive integers that are relatively prime. If a = 1 and b = 1 then equation (1) becomes the affine version of Cauchy's equation; namely

(2)
$$f(m+n) + f(0) = f(m) + f(n); \quad (m,n) \in \mathbb{N}_0^2.$$

It is clear that if f satisfies equation (2) then it also satisfies equation (1). For this reason we call solutions of equation (1) (a,b)-Cauchy functions.

We need some elementary number theory to enable us to complete the characterization of (a, b)-Cauchy functions. References for this are DICK-SON [1: Chapter III], HUA [2: Chapters 1, 2, 11], ROSEN [3: Chapter 2] and USPENSKY and HEASLET [4: Chapter III].

Mathematics Subject Classification: Primary: 39B22; Secondary: 11A05, 11D04. Key words and phrases: Cauchy's functional equation.

T. M. K. Davison

The following sets of natural numbers are significant in the understanding of (a, b)-Cauchy functions:

(3)
$$S = S(a,b) := \{ax + by : (x,y) \in \mathbb{N}_0^2\},\$$

and

(4)
$$T = T(a,b) := \mathbb{N}_0 \setminus S(a,b).$$

Since a and b are relatively prime T is finite: more precisely, for all $n \in \mathbb{N}_0$

(5)
$$n \ge (a-1)(b-1) \Rightarrow n \in S(a,b).$$

(See [1: p. 65], [3: p. 109].) Indeed, the largest element of T is ab - a - b[3: p. 109] and the number of elements in T is $\frac{(a-1)(b-1)}{2}$ [3: p. 109]. We see that T is empty if a = 1 or b = 1. Now letting $p \in \mathbb{N}$ we say a function $f : \mathbb{N}_0 \to \Gamma$ is *p*-quasiperiodic if

(6)
$$f(m+p) + f(0) = f(m) + f(p); m \in \mathbb{N}_0.$$

It is easy to see that equation (6) implies

(7)
$$f(m+pn) + f(0) = f(m) + f(pn); \quad (m,n) \in \mathbb{N}_0^2.$$

Hence a *p*-quasi-periodic function is none other than a (1, p)-Cauchy function. We require two more bits of terminology prior to stating our first theorem. An (a, b)-Cauchy function *g* is *singular* if *g* has finite support: that is to say

(8)
$$\operatorname{supp}(g) := \{ n \in \mathbb{N}_0 : g(n) \neq 0 \}$$

is a finite set. An (a, b)-Cauchy function h is regular if h is also an (1, ab)-Cauchy function: in other words h is regular if it is an (a, b)-Cauchy function that is also ab-quasi-periodic. We observe that the sum/difference of singular/regular functions is singular/regular.

We now state our main results: the proofs are deferred to the second section of the paper.

Theorem 1. Let $\mathbb{N}_0 \to \Gamma$ be an (a, b)-Cauchy function. Then f can be written uniquely as g + h where g is a singular (a, b)-Cauchy function, and h is a regular (a, b)-Cauchy function.

Thus, to understand (a, b)-Cauchy functions we need only characterize the special types: singular and regular. Singular functions are relatively easy:

304

Theorem 2. The function $g : \mathbb{N}_0 \to \Gamma$ is a singular (a, b)-Cauchy function if, and only if, $\operatorname{supp}(g) \subset T$. (Here $\operatorname{supp}(g)$ is defined by (8)).

To characterize regular (a, b)-Cauchy functions we require a supply of quasi-periodic functions: indeed those defined below are purely periodic. Let $p \in \mathbb{N}$. For $j \in \mathbb{N}_0$ we define the characteristic function $\chi_p^j : \mathbb{N}_0 \to \{0, 1\}$ by $\chi_p^j(m) = 1$ if, and only if, $m \equiv j \mod p$. It is clear that

$$\chi_p^j(m+p) = \chi_p^j(m); \qquad m \in \mathbb{N}_0,$$

so χ_p^j is certainly *p*-quasi-periodic for all $j \in \mathbb{N}_0$. Finally we define $N_{a,b}(n)$ as the number of pairs $(x, y) \in \mathbb{N}_0^2$ satisfying the linear Diophantine equation

$$(9) ax + by = n.$$

Our third main result is:

Theorem 3. Let $h : \mathbb{N}_0 \to \Gamma$. Then h is a regular (a, b)-Cauchy function if, and only if, there are elements $\alpha_1, \ldots, \alpha_{a-1}, \beta_1, \ldots, \beta_{b-1}, \gamma_0, \gamma_{ab}$ of Γ such that, for all $m \in \mathbb{N}_0$

$$h(m) = \sum_{j=1}^{a-1} \chi_a^{jb}(m) \alpha_j + \sum_{k=1}^{b-1} \chi_b^{ka}(m) \beta_k + \gamma_0 + N_{a,b}(m) \gamma_{ab}.$$

In the final section of the paper we show how (a, b)-Cauchy functions over \mathbb{Z} can easily be characterized using our results over \mathbb{N}_0 .

2. Properties of (a, b)-Cauchy functions

We show first that (a, b)-Cauchy functions are *ab*-quasi-periodic on S.

Lemma 1. Let f be an (a, b)-Cauchy function. Then for all $s \in S$

(10)
$$f(s+ab) + f(0) = f(s) + f(ab).$$

PROOF. Let $s \in S$; so s = ax + by for some $x, y \in \mathbb{N}_0$. Then f(s + ab) + f(0) = f(ax + b(y + a)) + f(0) = f(ax) + f(ab + by) = f(ax) + f(ab) + f(by) - f(0) = f(ax + by) + f(ab) = f(s) + f(ab), using equation (1) repeatedly.

T. M. K. Davison

Let $f : \mathbb{N}_0 \to \Gamma$ be arbitrary. We define functions $\check{f}, \hat{f} : \mathbb{N}_0 \to \Gamma$ as follows:

(11)
$$\check{f}(m) := f(m) + f(ab) - f(m + ab) - f(0); \qquad m \in \mathbb{N}_0$$

(12)
$$\hat{f}(m) := f(m+ab) + f(0) - f(ab); \qquad m \in \mathbb{N}_0.$$

We see that, for all $m \in \mathbb{N}_0$

(13)
$$f(m) = \dot{f}(m) + \dot{f}(m).$$

If f is assumed to be an (a, b)-Cauchy function then equation (13) is, as we will show, the decomposition of f into singular and regular parts.

Lemma 2. Let f be an (a, b)-Cauchy function

- (i) \check{f} is a singular (a, b)-Cauchy function and $\operatorname{supp}(\check{f}) \subseteq T$
- (ii) $\hat{f}(s) = f(s)$ for all $s \in S$
- (iii) \hat{f} is a regular (a, b)-Cauchy function.

PROOF. (i) Let $s \in S$. Then $\check{f}(s) = f(s) + f(ab) - f(s+ab) - f(0) = 0$ by Lemma 1. Thus $\operatorname{supp}(\check{f}) \subseteq T$. But $|T| = \frac{(a-1)(b-1)}{2}$ so $\operatorname{supp}(\check{f})$ is finite. Now \check{f} is clearly an (a, b)-Cauchy function as, in equation (1), am + bn, am, bn all belong to S so we require 0 + 0 = 0 + 0 which is certainly true.

(ii) Since $\hat{f}(s) = f(s) - \check{f}(s)$ by equation (13) we deduce that $\hat{f}(s) = f(s)$ for all $s \in S$ from part (i).

Since $\hat{f} = f - \tilde{f}$ and both f, \tilde{f} are (a, b)-Cauchy functions we see that \hat{f} is also an (a, b)-Cauchy function. We have to show that \hat{f} is ab-quasiperiodic. Let $m \in \mathbb{N}_0$ Then $m + ab \in S$ since $m + ab \ge (a - 1)(b - 1)$ using the criterion for S-membership in equation (5). Hence

$$\dot{f}(m+ab) + \dot{f}(0) = f(m+ab) + f(0) \qquad \text{(by part (i) above)}$$
$$= f(m) + f(ab) \qquad \text{(by equation (12))}$$
$$= \hat{f}(m) + \hat{f}(ab) \qquad \text{(since } ab \in S\text{)}.$$

This proves that \hat{f} is *ab*-quasi-periodic, and completes the proof that \hat{f} is regular.

One more result is useful in proving Theorem 1: only the zero function is both singular and regular.

306

Lemma 3. Suppose f is an (a,b)-Cauchy function function that is both singular and regular. Then f = 0.

PROOF. We note that f = 0 if, and only if, $\operatorname{supp}(f)$ is the empty set. So $\operatorname{suppose} \operatorname{supp}(f) \neq \emptyset$. Since $\operatorname{supp}(f)$ is finite (f is singular) there is a largest element in $\operatorname{supp}(f)$: call it m_0 . Then $f(m_0 + ab) + f(ab) =$ $f(m_0+2ab)+f(0)$, since f is ab-quasi-periodic. Since $m_0+2ab > m_0+ab >$ m_0 we have that $f(m_0 + 2ab) = 0$ and $f(m_0 + ab) = 0$ (else m_0 is not largest in $\operatorname{supp}(f)$). We deduce that f(ab) = f(0), and so for all $m \in \mathbb{N}_0$ f(m + ab) = f(m). But this implies $0 = f(m_0 + ab) = f(m_0) \neq 0$. This contradiction shows that $\operatorname{supp}(f) = \emptyset$ and hence that f = 0, as claimed.

We can now prove

Theorem 1. Let $f : \mathbb{N}_0 \to \Gamma$ be an (a, b)-Cauchy function. Then f can be written uniquely as g + h where g is a singular (a, b)-Cauchy function, and h is a regular (a, b)-Cauchy function.

PROOF. From equation (13) we know that $f = \check{f} + \hat{f}$, and from Lemma 2 we know that \check{f} is a singular (a, b)-Cauchy function and \hat{f} is a regular (a, b)-Cauchy function if f is an arbitrary (a, b)-Cauchy function. This proves the existence of the claimed decomposition.

For the uniqueness suppose g + h = g' + h' where g, g' are singular (a, b)-Cauchy functions and h, h' are regular (a, b)-Cauchy functions. Then g - g' = h' - h. Moreover g - g' is a singular (a, b)-Cauchy function and h' - h is a regular (a, b)-Cauchy function. Thus the function g - g' is both singular and regular. By Lemma 3 it follows that g - g' = 0. Hence g = g' and so, h = h'. This proves the uniqueness of the decomposition.

A consequence of this theorem is that we need only characterize the special types: singular and regular. We characterize the singular functions in

Theorem 2. A function $g : \mathbb{N}_0 \to \Gamma$ is a singular (a, b)-Cauchy function if, and only if $\operatorname{supp}(g) \subseteq T$.

PROOF. Suppose g is a singular (a, b)-Cauchy function. Then $g = \check{g} + \hat{g}$ by Theorem 1. Since this decomposition is unique $\hat{g} = 0$. Thus $\operatorname{supp}(g) = \operatorname{supp}(\check{g}) \subseteq T$ by Lemma 2 (i).

T. M. K. Davison

Conversely suppose $g : \mathbb{N}_0 \to \Gamma$ satisfies $\operatorname{supp}(g) \subseteq T$. Then g(am + bn) + g(0) - g(am) - g(bn) = 0 + 0 - 0 - 0 = 0 since $am + bn \notin T$, $0 \notin T$, $am \notin T$; $bn \notin T$ and $x \notin T$ implies g(x) = 0. Thus g is an (a, b)-Cauchy function. It is a singular one since $\operatorname{supp}(g)$ is a finite set. \Box

It remains to characterize regular (a, b)-Cauchy functions. As a first step we show that there are many such.

Lemma 4. The functions N_{ab} , χ_a^j , χ_b^k are regular (a, b)-Cauchy functions, for all $j, k \in \mathbb{N}_0$.

PROOF. We show first that $N_{a,b}$ is *ab*-quasi-periodic. Since a, b are relatively prime ax + by = au + bv implies that $x \equiv u \mod b$ and $y \equiv v \mod a$. Hence all the non-negative solutions of ax + by = n are in the list

$$(x_0, y_0), (x_0 + b, y_0 - a), \dots, (x_0 + kb, y_0 - ka)$$

where $k = N_{a,b}(n) - 1$. So all the non-negative solutions of ax + by = n + abare in the list $(x_0, y_0 + a), (x_0 + b, y_0), \dots, (x_0 + kb, y_0 - ka)$. Thus $N_{a,b}(n + ab) = k + 2 = N_{a,b}(n) - 1 + 2$, and so

$$N_{a,b}(n+ab) + N_{a,b}(0) = N_{a,b}(n) + N_{a,b}(ab)$$

since $N_{a,b}(0) = 1$ and $N_{a,b}(ab) = 2$. This proves that $N_{a,b}$ is *ab*-quasiperiodic.

Now to prove that $N_{a,b}$ is (a, b)-Cauchy let $m, n \in \mathbb{N}_0$. By the division theorem we can write m = bm' + u with $0 \le u \le b - 1$, and n = an' + vwith $0 \le v \le a - 1$. Then an easy computation using the *ab*-periodicity of $N_{a,b}$ (in particular equation (7))

$$\begin{split} N_{a,b}(am+bn) + N_{a,b}(0) - N_{a,b}(am) - N_{a,b}(bn) \\ &= N_{a,b}(au+bv+(m'+n')ab) + N_{a,b}(0) \\ &- N_{a,b}(au+m'ab) - N_{a,b}(bv+n'ab) \\ &= N_{a,b}(au+bv) + N_{a,b}((m'+n')ab) - N_{a,b}(au) - N_{a,b}(m'ab) \\ &+ N_{a,b}(0) - N_{a,b}(bv) - N_{a,b}(n'ab) + N_{a,b}(0) \\ &= N_{a,b}(au+bv) + N_{a,b}(0) - N_{a,b}(au) - N_{a,b}(bv) \\ &+ N_{a,b}(m'ab+n'ab) + N_{a,b}(0) - N_{a,b}(m'ab) - N_{a,b}(n'ab) \\ &= N_{a,b}(au+bv) + N_{a,b}(0) - N_{a,b}(au) - N_{a,b}(bv). \end{split}$$

Thus $N_{a,b}$ is an (a, b)-Cauchy function if, and only if,

(14)
$$N_{a,b}(au+bv) + N_{a,b}(0) = N_{a,b}(au) + N_{a,b}(bv)$$

for all u, v in \mathbb{N}_0 satisfying $0 \le u \le b-1$, $0 \le v \le a-1$. Now $N_{a,b}(0) = N_{a,b}(au) = N_{a,b}(bv) = 1$. It remains to prove that $N_{a,b}(au + bv) = 1$ also for (14) to be satisfied. If ax + by = au + bv with $(x, y) \in \mathbb{N}_0^2$ and x > u then v > y; but then y < 0 – which is a contradiction $[v \equiv y \mod a \text{ and } y < v < a \text{ implies } y < 0]$. Similarly if x < u then y > v and x < 0; also a contradiction. Hence $N_{a,b}(au + bv) = 1$, and equation (14) has been shown to be satisfied. Thus $N_{a,b}$ is an (a, b)-Cauchy function.

Next $\chi_a^j(am + bn) = \chi_a^j(bn)$ since χ_a^j is purely *a*-periodic, as noted in the introduction. Thus $\chi_a^j(am + bn) + \chi_a^j(0) - \chi_a^j(am) - \chi_a^j(bn) = \chi_a^j(bn) + \chi_a^j(0) - \chi_a^j(0) - \chi_a^j(bn) = 0$. Hence χ_a^j is an (a, b)-Cauchy function. Now χ_a^j is also trivially *ab*-quasi-periodic since $\chi_a^j(m+ab) + \chi_a^j(0) - \chi_a^j(m) - \chi_a^j(ab) = \chi_a^j(m) + \chi_a^j(0) - \chi_a^j(m) - \chi_a^j(0) = 0$. Thus χ_a^j is a regular (a, b)-Cauchy function. \Box Cauchy function. Similarly, χ_b^k is a regular (a, b)-Cauchy function. \Box

We can now prove

Theorem 3. The function $h : \mathbb{N}_0 \to \Gamma$ is a regular (a, b)-Cauchy function if, and only if, there are elements $\alpha_1, \ldots, \alpha_{a-1}, \beta_1, \ldots, \beta_{b-1}, \gamma_0, \gamma_{ab}$ in Γ such that for all $m \in \mathbb{N}_0$

(15)
$$h(m) = \sum_{j=1}^{a-1} \chi_a^{jb}(m) \alpha_j + \sum_{k=1}^{b-1} \chi_b^{ka}(m) \beta_k + \gamma_0 + N_{a,b}(m) \gamma_{ab}.$$

PROOF. Let the elements $\alpha_1, \ldots, \gamma_{ab}$, be given. Then the functions $\chi_a^{jb} \alpha_j, \chi_b^{ka} \beta_k, \gamma_0$ and $N_{a,b} \gamma_{ab}$ are regular (a, b)-Cauchy functions from \mathbb{N}_0 to Γ using Lemma 4. Hence so is h(m) as defined by equation (15).

Assume conversely that h is a regular (a, b)-Cauchy function. Define elements $\alpha_j := h(jb) - h(0), \ \beta_k := h(ka) - h(0), \ \gamma_0 := 2h(0) - h(ab)$ and $\gamma_{ab} := h(ab) - h(0)$. Define $h' : \mathbb{N}_0 \to \Gamma$ by $h'(m) := \sum_{j=1}^{a-1} \chi_a^{jb}(m)\alpha_j + \sum_{k=1}^{b-1} \chi_b^{ka}(m)\beta_k + \gamma_0 + N_{a,b}(m)\gamma_{ab}$. Then by the direct part of the theorem $h' : \mathbb{N}_0 \to \Gamma$ is a regular (a, b)-Cauchy function. Now define $\overline{h} := h - h'$. Then \overline{h} is also a regular (a, b)-Cauchy function.

It suffices to show that \overline{h} vanishes on S. For then $\operatorname{supp}(\overline{h}) \subseteq T$ and \overline{h} would be a singular (a, b)-Cauchy function by Theorem 2. So $\overline{h} = 0$, and

thus h = h', as described. First $\overline{h}(0) = h(0) - h'(0) = h(0) - \gamma_0 - \gamma_{ab} = 0$. (For $\chi_a^{jb}(0) = 0$ for j = 1, 2, ..., a - 1 since a and b are relatively prime; similarly $\chi_b^{ka}(0) = 0$.) Second

$$h(ab) = h(ab) - h'(ab) = h(ab) - \gamma_0 - 2\gamma_{ab} = 0.$$

Now for arbitrary $n \in \mathbb{N}$ we have

$$\overline{h}(nab) = \overline{h}((n-1)ab + ab) + \overline{h}(0) = \overline{h}((n-1)ab) + \overline{h}(ab) = \overline{h}((n-1)ab),$$

and so $\overline{h}(nab) = 0$ for all $n \in \mathbb{N}$ by induction.

Third, let $\ell \in \mathbb{N}_0$, $1 \leq \ell \leq a-1$. Then, for $1 \leq j \leq a-1$, $\chi_a^{jb}(\ell b) = 1$ iff $jb \equiv \ell b \mod a$, iff $j \equiv \ell \mod a$, iff $j = \ell$ since j, ℓ are both small. Hence $\sum_{j=1}^{a-1} \chi_a^{jb}(\ell b) \alpha_j = \alpha_\ell$. Next $\chi_b^{ka}(\ell b) = 0$. So $\overline{h}(\ell b) = h(\ell b) - h'(\ell b) =$ $h(\ell b) - \alpha_\ell - \gamma_0 - \gamma_{ab} = 0$. Similarly, $\overline{h}(ma) = 0$ for $1 \leq m \leq b-1$. Finally, let $s = ax + by \in S$. Write x = bx' + u, y = ay' + v where $0 \leq u \leq b-1$, $0 \leq v \leq a-1$. Then $\overline{h}(ax + by) = \overline{h}(au + bv + (x' + y')ab) = \overline{h}(au + bv)$ (since $\overline{h}(au) + \overline{h}(bv) = 0 + 0 = 0$). Thus \overline{h} is zero on S, and the proof is complete. \Box

Corollary. Let $p \in \mathbb{N}$. Then $f : \mathbb{N}_0 \to \Gamma$ is p-quasi-periodic if, and only if, there are elements $\beta_1, \ldots, \beta_{p-1}, \gamma_0, \gamma_p$ in Γ such that

(16)
$$f(n) = \sum_{k=1}^{p-1} \chi_p^k(m) \beta_k + \gamma_0 + N_{1,p}(n) \gamma_p.$$

PROOF. This is merely the case a = 1, b = p of the theorem. \Box

It is easy to evaluate $N_{1,p}(n)$ with the help of a well known *p*-quasiperiodic function. Let $p \in \mathbb{N}$. There are *p*-quasi-periodic functions $q_p : \mathbb{N}_0 \to \mathbb{N}_0$ and $r_p : \mathbb{N}_0 \to \{0, 1, 2, \dots, p-1\}$ for all $n \in \mathbb{N}_0$,

(17)
$$n = pq_p(n) + r_p(n).$$

Of course the notation is self-explanatory: q_p is the quotient after division by p, and r_p is the remainder. We can now state **Lemma 5.** Let $p \in \mathbb{N}$. Then

(18)
$$N_{1,p}(n) = q_p(n) + 1; \quad n \in \mathbb{N}_0.$$

PROOF. $N_{1,p}(n) = \operatorname{card}\{(x,y) \in \mathbb{N}_0^2 : x + py = n\}$. Now write $n = pq_p(n) + r_p(n)$ as in equation (17). Then $(r_p(n), q_p(n)), (r_p(n) + p, q_p(n) - 1), \dots, (n, 0)$ is the complete list of non-negative solutions (x, y) to x + py = n. There are $q_p(n) + 1$ distinct entries on the list. So $N_{1,p}(n) = q_p(n) + 1$.

In turn we can use the corollary above to determine another expression for $N_{a,b}(n)$.

Proposition. Let χ_S be the characteristic function of S: that is $\chi_S(n) \in \{0,1\}$ and $\chi_S(n) = 1$ if, and only if, $n \in S$. Then

(19)
$$N_{a,b}(n) = q_{ab}(n) + \chi_S(r_{ab}(n)); \quad n \in \mathbb{N}_0.$$

PROOF. N_{ab} is a regular (a, b)-Cauchy function by Lemma 4. So, using the corollary to Theorem 3 we have

$$N_{ab}(n) = \sum_{k=1}^{ab-1} \chi_{ab}^{k}(n)\beta_{k} + \gamma_{0} + N_{1,ab}(n)\gamma_{ab}$$
$$= \sum_{k=1}^{ab-1} \chi_{ab}^{k}(n)\beta_{k} + \gamma_{0} + \gamma_{ab} + q_{ab}(n)\gamma_{ab}$$

using Lemma 5. We know that $\gamma_0 = 2N_{a,b}(0) - N_{a,b}(ab) = 0$, and $\gamma_{a,b} = N_{a,b} - N_{a,b}(0) = 2 - 1 = 1$, $\beta_k = N_{a,b}(k) - N_{a,b}(0)$. So $N_{a,b}(n) = q_{ab}(n) + \chi =_S (r_{ab}(n))$ if, and only if $\chi_S(r_{ab}(n)) = 1 + \sum_{k=1}^{ab-1} \chi_{ab}^k(n)[N_{a,b}(k) - 1]$. We see that both sides remain invariant under the transformation $n \mapsto n + ab$. So it suffices to prove the result for $0 \le n < ab$. Now $N_{a,b}(k) - 1 = -\chi_T(k)$ since $1 \le k < ab$. So $\sum_{k=1}^{ab-1} \chi_{ab}^k(n)(-\chi_T(k)) = -\chi_T(n)$ (n < ab used here). Finally $1 - \chi_T(n) = \chi_S(n)$ for $0 \le n < ab$. Thus the result follows.

Equation (19) is well-known. (See [4, p. 65].) However the above proof uses our analysis of the solutions of a functional equation and not elementary number theory directly. T. M. K. Davison : Some Cauchy-like functional equations ...

3. Concluding remarks

We mention briefly how to use our results to solve, for $f : \mathbb{Z} \to \Gamma$, $a, b \in \mathbb{N}$ relatively prime

(20)
$$f(am + bn) + f(0) = f(am) + f(bn); \quad (m, n) \in \mathbb{Z}^2.$$

If f is an (a, b)-Cauchy function over \mathbb{Z} then f is ab-quasi-periodic over \mathbb{Z} . (For now $S(a, b) = \mathbb{Z}$ and Lemma 1 still gives the result.) Hence f restricted to \mathbb{N}_0 is a regular (a, b)-Cauchy function. We can therefore state

Theorem. $f : \mathbb{Z} \to \Gamma$ satisfies equation (20) if, and only if, there are elements $\alpha_1, \ldots, \alpha_{a-1}, \beta_1, \ldots, \beta_{b-1}, \delta_0, \delta_{ab}$ in Γ such that

$$f(n) = \sum_{j=1}^{a-1} \chi_a^{jb}(n) \alpha_j + \sum_{k=1}^{b-1} \chi_b^{ka}(n) \beta_k + \delta_0 + \left[q_{ab}(n) + \chi_S(r_{ab}(n)) \right] \delta_{ab}$$

for all $n \in \mathbb{Z}$.

312

Here, of course $q_p : \mathbb{Z} \to \mathbb{Z}$ is the quotient function extended to \mathbb{Z} :

$$q_p(n) := q_p(n+|n|p) - |n|; \qquad n \in \mathbb{Z}$$

References

- L. E. DICKSON, History of the Theory of Numbers, Volume II, Chelsea Publishing, New York, 1952.
- [2] L. K. HUA, Introduction to Number Theory, Springer, New York, 1982.
- [3] K. H. ROSEN, Elementary Number Theory and its Applications, (2nd edition), Addison-Wesley, Reading, 1988.
- [4] J. V. USPENSKY and M. A. HEASLET, Elementary Number Theory, McGraw Hill, New York, 1939.

T. M. K. DAVISON MCMASTER UNIVERSITY HAMILTON, ONTARIO CANADA

(Received November 2, 1998; revised December 18, 2000)