Some Cauchy-like functional equations on the natural numbers

By T. M. K. DAVISON (Hamilton)

Abstract

The equation $f(a m+b n)+f(0)=f(a m)+f(b n)$ is solved, where a, b are fixed relatively prime positive integers and m, n are arbitrary natural numbers.

1. Introduction

In this paper we give necessary and sufficient conditions that a function f from the natural numbers (denoted \mathbb{N}_{0}) to an additive abelian group (denoted Γ) satisfy

$$
\begin{equation*}
f(a m+b n)+f(0)=f(a m)+f(b n) ; \quad(m, n) \in \mathbb{N}_{0}^{2} \tag{1}
\end{equation*}
$$

Here a, b are fixed positive integers that are relatively prime. If $a=1$ and $b=1$ then equation (1) becomes the affine version of Cauchy's equation; namely

$$
\begin{equation*}
f(m+n)+f(0)=f(m)+f(n) ; \quad(m, n) \in \mathbb{N}_{0}^{2} . \tag{2}
\end{equation*}
$$

It is clear that if f satisfies equation (2) then it also satisfies equation (1). For this reason we call solutions of equation (1) (a, b)-Cauchy functions.

We need some elementary number theory to enable us to complete the characterization of (a, b)-Cauchy functions. References for this are Dickson [1: Chapter III], Hua [2: Chapters 1, 2, 11], Rosen [3: Chapter 2] and Uspensky and Heaslet [4: Chapter III].

The following sets of natural numbers are significant in the understanding of (a, b)-Cauchy functions:

$$
\begin{equation*}
S=S(a, b):=\left\{a x+b y:(x, y) \in \mathbb{N}_{0}^{2}\right\} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
T=T(a, b):=\mathbb{N}_{0} \backslash S(a, b) . \tag{4}
\end{equation*}
$$

Since a and b are relatively prime T is finite: more precisely, for all $n \in \mathbb{N}_{0}$

$$
\begin{equation*}
n \geq(a-1)(b-1) \Rightarrow n \in S(a, b) . \tag{5}
\end{equation*}
$$

(See [1: p. 65], [3: p. 109].) Indeed, the largest element of T is $a b-a-b$ [3: p. 109] and the number of elements in T is $\frac{(a-1)(b-1)}{2}$ [3: p. 109]. We see that T is empty if $a=1$ or $b=1$. Now letting $p \in \mathbb{N}$ we say a function $f: \mathbb{N}_{0} \rightarrow \Gamma$ is p-quasiperiodic if

$$
\begin{equation*}
f(m+p)+f(0)=f(m)+f(p) ; \quad m \in \mathbb{N}_{0} . \tag{6}
\end{equation*}
$$

It is easy to see that equation (6) implies

$$
\begin{equation*}
f(m+p n)+f(0)=f(m)+f(p n) ; \quad(m, n) \in \mathbb{N}_{0}^{2} . \tag{7}
\end{equation*}
$$

Hence a p-quasi-periodic function is none other than a ($1, p$)-Cauchy function. We require two more bits of terminology prior to stating our first theorem. An (a, b)-Cauchy function g is singular if g has finite support: that is to say

$$
\begin{equation*}
\operatorname{supp}(g):=\left\{n \in \mathbb{N}_{0}: g(n) \neq 0\right\} \tag{8}
\end{equation*}
$$

is a finite set. An (a, b)-Cauchy function h is regular if h is also an $(1, a b)$ Cauchy function: in other words h is regular if it is an (a, b)-Cauchy function that is also $a b$-quasi-periodic. We observe that the sum/difference of singular/regular functions is singular/regular.

We now state our main results: the proofs are deferred to the second section of the paper.

Theorem 1. Let $\mathbb{N}_{0} \rightarrow \Gamma$ be an (a, b)-Cauchy function. Then f can be written uniquely as $g+h$ where g is a singular (a, b)-Cauchy function, and h is a regular (a, b)-Cauchy function.

Thus, to understand (a, b)-Cauchy functions we need only characterize the special types: singular and regular. Singular functions are relatively easy:

Theorem 2. The function $g: \mathbb{N}_{0} \rightarrow \Gamma$ is a singular (a, b)-Cauchy function if, and only if, $\operatorname{supp}(g) \subset T$. (Here $\operatorname{supp}(g)$ is defined by (8)).

To characterize regular (a, b)-Cauchy functions we require a supply of quasi-periodic functions: indeed those defined below are purely periodic. Let $p \in \mathbb{N}$. For $j \in \mathbb{N}_{0}$ we define the characteristic function $\chi_{p}^{j}: \mathbb{N}_{0} \rightarrow$ $\{0,1\}$ by $\chi_{p}^{j}(m)=1$ if, and only if, $m \equiv j \bmod p$. It is clear that

$$
\chi_{p}^{j}(m+p)=\chi_{p}^{j}(m) ; \quad m \in \mathbb{N}_{0},
$$

so χ_{p}^{j} is certainly p-quasi-periodic for all $j \in \mathbb{N}_{0}$. Finally we define $N_{a, b}(n)$ as the number of pairs $(x, y) \in \mathbb{N}_{0}^{2}$ satisfying the linear Diophantine equation

$$
\begin{equation*}
a x+b y=n \tag{9}
\end{equation*}
$$

Our third main result is:
Theorem 3. Let $h: \mathbb{N}_{0} \rightarrow \Gamma$. Then h is a regular (a, b)-Cauchy function if, and only if, there are elements $\alpha_{1}, \ldots \alpha_{a-1}, \beta_{1}, \ldots \beta_{b-1}, \gamma_{0}$, $\gamma_{a b}$ of Γ such that, for all $m \in \mathbb{N}_{0}$

$$
h(m)=\sum_{j=1}^{a-1} \chi_{a}^{j b}(m) \alpha_{j}+\sum_{k=1}^{b-1} \chi_{b}^{k a}(m) \beta_{k}+\gamma_{0}+N_{a, b}(m) \gamma_{a b} .
$$

In the final section of the paper we show how (a, b)-Cauchy functions over \mathbb{Z} can easily be characterized using our results over \mathbb{N}_{0}.

2. Properties of (a, b)-Cauchy functions

We show first that (a, b)-Cauchy functions are $a b$-quasi-periodic on S.
Lemma 1. Let f be an (a, b)-Cauchy function. Then for all $s \in S$

$$
\begin{equation*}
f(s+a b)+f(0)=f(s)+f(a b) . \tag{10}
\end{equation*}
$$

Proof. Let $s \in S$; so $s=a x+b y$ for some $x, y \in \mathbb{N}_{0}$. Then $f(s+a b)+$ $f(0)=f(a x+b(y+a))+f(0)=f(a x)+f(a b+b y)=f(a x)+f(a b)+$ $f(b y)-f(0)=f(a x+b y)+f(a b)=f(s)+f(a b)$, using equation (1) repeatedly.

Let $f: \mathbb{N}_{0} \rightarrow \Gamma$ be arbitrary. We define functions $\check{f}, \hat{f}: \mathbb{N}_{0} \rightarrow \Gamma$ as follows:

$$
\begin{array}{ll}
\check{f}(m):=f(m)+f(a b)-f(m+a b)-f(0) ; & \\
(m):=f(m+a b)+f(0)-f(a b) ; & \tag{12}\\
\hat{f}\left(\mathbb{N}_{0}\right. \\
m \in \mathbb{N}_{0} .
\end{array}
$$

We see that, for all $m \in \mathbb{N}_{0}$

$$
\begin{equation*}
f(m)=\check{f}(m)+\hat{f}(m) . \tag{13}
\end{equation*}
$$

If f is assumed to be an (a, b)-Cauchy function then equation (13) is, as we will show, the decomposition of f into singular and regular parts.

Lemma 2. Let f be an (a, b)-Cauchy function
(i) \check{f} is a singular (a, b)-Cauchy function and $\operatorname{supp}(\check{f}) \subseteq T$
(ii) $\hat{f}(s)=f(s)$ for all $s \in S$
(iii) \hat{f} is a regular (a, b)-Cauchy function.

Proof. (i) Let $s \in S$. Then $\check{f}(s)=f(s)+f(a b)-f(s+a b)-f(0)=0$ by Lemma 1. Thus $\operatorname{supp}(\check{f}) \subseteq T$. But $|T|=\frac{(a-1)(b-1)}{2}$ so $\operatorname{supp}(\check{f})$ is finite. Now \check{f} is clearly an (a, b)-Cauchy function as, in equation (1), $a m+b n$, $a m, b n$ all belong to S so we require $0+0=0+0$ which is certainly true.
(ii) Since $\hat{f}(s)=f(s)-\check{f}(s)$ by equation (13) we deduce that $\hat{f}(s)=$ $f(s)$ for all $s \in S$ from part (i).

Since $\hat{f}=f-\check{f}$ and both f, \check{f} are (a, b)-Cauchy functions we see that \hat{f} is also an (a, b)-Cauchy function. We have to show that \hat{f} is $a b$-quasiperiodic. Let $m \in \mathbb{N}_{0}$ Then $m+a b \in S$ since $m+a b \geq(a-1)(b-1)$ using the criterion for S-membership in equation (5). Hence

$$
\begin{aligned}
\hat{f}(m+a b)+\hat{f}(0) & =f(m+a b)+f(0) & & \text { (by part (i) above) } \\
& =f(m)+f(a b) & & (\text { by equation (12)) } \\
& =\hat{f}(m)+\hat{f}(a b) & & (\text { since } a b \in S) .
\end{aligned}
$$

This proves that \hat{f} is $a b$-quasi-periodic, and completes the proof that \hat{f} is regular.

One more result is useful in proving Theorem 1: only the zero function is both singular and regular.

Lemma 3. Suppose f is an (a, b)-Cauchy function function that is both singular and regular. Then $f=0$.

Proof. We note that $f=0$ if, and only if, $\operatorname{supp}(f)$ is the empty set. So suppose $\operatorname{supp}(f) \neq \emptyset$. Since $\operatorname{supp}(f)$ is finite (f is singular) there is a largest element in $\operatorname{supp}(f)$: call it m_{0}. Then $f\left(m_{0}+a b\right)+f(a b)=$ $f\left(m_{0}+2 a b\right)+f(0)$, since f is $a b$-quasi-periodic. Since $m_{0}+2 a b>m_{0}+a b>$ m_{0} we have that $f\left(m_{0}+2 a b\right)=0$ and $f\left(m_{0}+a b\right)=0$ (else m_{0} is not largest in $\operatorname{supp}(f))$. We deduce that $f(a b)=f(0)$, and so for all $m \in \mathbb{N}_{0}$ $f(m+a b)=f(m)$. But this implies $0=f\left(m_{0}+a b\right)=f\left(m_{0}\right) \neq 0$. This contradiction shows that $\operatorname{supp}(f)=\emptyset$ and hence that $f=0$, as claimed.

We can now prove
Theorem 1. Let $f: \mathbb{N}_{0} \rightarrow \Gamma$ be an (a, b)-Cauchy function. Then f can be written uniquely as $g+h$ where g is a singular (a, b)-Cauchy function, and h is a regular (a, b)-Cauchy function.

Proof. From equation (13) we know that $f=\check{f}+\hat{f}$, and from Lemma 2 we know that \check{f} is a singular (a, b)-Cauchy function and \hat{f} is a regular (a, b)-Cauchy function if f is an arbitrary (a, b)-Cauchy function. This proves the existence of the claimed decomposition.

For the uniqueness suppose $g+h=g^{\prime}+h^{\prime}$ where g, g^{\prime} are singular (a, b)-Cauchy functions and h, h^{\prime} are regular (a, b)-Cauchy functions. Then $g-g^{\prime}=h^{\prime}-h$. Moreover $g-g^{\prime}$ is a singular (a, b)-Cauchy function and $h^{\prime}-h$ is a regular (a, b)-Cauchy function. Thus the function $g-g^{\prime}$ is both singular and regular. By Lemma 3 it follows that $g-g^{\prime}=0$. Hence $g=g^{\prime}$ and so, $h=h^{\prime}$. This proves the uniqueness of the decomposition.

A consequence of this theorem is that we need only characterize the special types: singular and regular. We characterize the singular functions in

Theorem 2. A function $g: \mathbb{N}_{0} \rightarrow \Gamma$ is a singular (a, b)-Cauchy function if, and only if $\operatorname{supp}(g) \subseteq T$.

Proof. Suppose g is a singular (a, b)-Cauchy function. Then $g=$ $\check{g}+\hat{g}$ by Theorem 1. Since this decomposition is unique $\hat{g}=0$. Thus $\operatorname{supp}(g)=\operatorname{supp}(\check{g}) \subseteq T$ by Lemma 2 (i).

Conversely suppose $g: \mathbb{N}_{0} \rightarrow \Gamma$ satisfies $\operatorname{supp}(g) \subseteq T$. Then $g(a m+$ $b n)+g(0)-g(a m)-g(b n)=0+0-0-0=0$ since $a m+b n \notin T, 0 \notin T$, $a m \notin T ; b n \notin T$ and $x \notin T$ implies $g(x)=0$. Thus g is an (a, b)-Cauchy function. It is a singular one since $\operatorname{supp}(g)$ is a finite set.

It remains to characterize regular (a, b)-Cauchy functions. As a first step we show that there are many such.

Lemma 4. The functions $N_{a b}, \chi_{a}^{j}, \chi_{b}^{k}$ are regular (a, b)-Cauchy functions, for all $j, k \in \mathbb{N}_{0}$.

Proof. We show first that $N_{a, b}$ is $a b$-quasi-periodic. Since a, b are relatively prime $a x+b y=a u+b v$ implies that $x \equiv u \bmod b$ and $y \equiv$ $v \bmod a$. Hence all the non-negative solutions of $a x+b y=n$ are in the list

$$
\left(x_{0}, y_{0}\right),\left(x_{0}+b, y_{0}-a\right), \ldots,\left(x_{0}+k b, y_{0}-k a\right)
$$

where $k=N_{a, b}(n)-1$. So all the non-negative solutions of $a x+b y=n+a b$ are in the list $\left(x_{0}, y_{0}+a\right),\left(x_{0}+b, y_{0}\right), \ldots,\left(x_{0}+k b, y_{0}-k a\right)$. Thus $N_{a, b}(n+a b)=k+2=N_{a, b}(n)-1+2$, and so

$$
N_{a, b}(n+a b)+N_{a, b}(0)=N_{a, b}(n)+N_{a, b}(a b)
$$

since $N_{a, b}(0)=1$ and $N_{a, b}(a b)=2$. This proves that $N_{a, b}$ is $a b$-quasiperiodic.

Now to prove that $N_{a, b}$ is (a, b)-Cauchy let $m, n \in \mathbb{N}_{0}$. By the division theorem we can write $m=b m^{\prime}+u$ with $0 \leq u \leq b-1$, and $n=a n^{\prime}+v$ with $0 \leq v \leq a-1$. Then an easy computation using the $a b$-periodicity of $N_{a, b}$ (in particular equation (7))

$$
\begin{aligned}
& N_{a, b}(a m+b n)+N_{a, b}(0)-N_{a, b}(a m)-N_{a, b}(b n) \\
&= N_{a, b}\left(a u+b v+\left(m^{\prime}+n^{\prime}\right) a b\right)+N_{a, b}(0) \\
&-N_{a, b}\left(a u+m^{\prime} a b\right)-N_{a, b}\left(b v+n^{\prime} a b\right) \\
&= N_{a, b}(a u+b v)+N_{a, b}\left(\left(m^{\prime}+n^{\prime}\right) a b\right)-N_{a, b}(a u)-N_{a, b}\left(m^{\prime} a b\right) \\
&+N_{a, b}(0)-N_{a, b}(b v)-N_{a, b}\left(n^{\prime} a b\right)+N_{a, b}(0) \\
&= N_{a, b}(a u+b v)+N_{a, b}(0)-N_{a, b}(a u)-N_{a, b}(b v) \\
&+N_{a, b}\left(m^{\prime} a b+n^{\prime} a b\right)+N_{a, b}(0)-N_{a, b}\left(m^{\prime} a b\right)-N_{a, b}\left(n^{\prime} a b\right) \\
&= N_{a, b}(a u+b v)+N_{a, b}(0)-N_{a, b}(a u)-N_{a, b}(b v) .
\end{aligned}
$$

Thus $N_{a, b}$ is an (a, b)-Cauchy function if, and only if,

$$
\begin{equation*}
N_{a, b}(a u+b v)+N_{a, b}(0)=N_{a, b}(a u)+N_{a, b}(b v) \tag{14}
\end{equation*}
$$

for all u, v in \mathbb{N}_{0} satisfying $0 \leq u \leq b-1,0 \leq v \leq a-1$. Now $N_{a, b}(0)=$ $N_{a, b}(a u)=N_{a, b}(b v)=1$. It remains to prove that $N_{a, b}(a u+b v)=1$ also for (14) to be satisfied. If $a x+b y=a u+b v$ with $(x, y) \in \mathbb{N}_{0}^{2}$ and $x>u$ then $v>y$; but then $y<0$ - which is a contradiction $[v \equiv y \bmod a$ and $y<v<a$ implies $y<0$]. Similarly if $x<u$ then $y>v$ and $x<0$; also a contradiction. Hence $N_{a, b}(a u+b v)=1$, and equation (14) has been shown to be satisfied. Thus $N_{a, b}$ is an (a, b)-Cauchy function.

Next $\chi_{a}^{j}(a m+b n)=\chi_{a}^{j}(b n)$ since χ_{a}^{j} is purely a-periodic, as noted in the introduction. Thus $\chi_{a}^{j}(a m+b n)+\chi_{a}^{j}(0)-\chi_{a}^{j}(a m)-\chi_{a}^{j}(b n)=$ $\chi_{a}^{j}(b n)+\chi_{a}^{j}(0)-\chi_{a}^{j}(0)-\chi_{a}^{j}(b n)=0$. Hence χ_{a}^{j} is an (a, b)-Cauchy function. Now χ_{a}^{j} is also trivially $a b$-quasi-periodic since $\chi_{a}^{j}(m+a b)+\chi_{a}^{j}(0)-\chi_{a}^{j}(m)-$ $\chi_{a}^{j}(a b)=\chi_{a}^{j}(m)+\chi_{a}^{j}(0)-\chi_{a}^{j}(m)-\chi_{a}^{j}(0)=0$. Thus χ_{a}^{j} is a regular $(a, b)-$ Cauchy function. Similarly, χ_{b}^{k} is a regular (a, b)-Cauchy function.

We can now prove
Theorem 3. The function $h: \mathbb{N}_{0} \rightarrow \Gamma$ is a regular (a, b)-Cauchy function if, and only if, there are elements $\alpha_{1}, \ldots, \alpha_{a-1}, \beta_{1}, \ldots, \beta_{b-1}, \gamma_{0}, \gamma_{a b}$ in Γ such that for all $m \in \mathbb{N}_{0}$

$$
\begin{equation*}
h(m)=\sum_{j=1}^{a-1} \chi_{a}^{j b}(m) \alpha_{j}+\sum_{k=1}^{b-1} \chi_{b}^{k a}(m) \beta_{k}+\gamma_{0}+N_{a, b}(m) \gamma_{a b} . \tag{15}
\end{equation*}
$$

Proof. Let the elements $\alpha_{1}, \ldots, \gamma_{a b}$, be given. Then the functions $\chi_{a}^{j b} \alpha_{j}, \chi_{b}^{k a} \beta_{k}, \gamma_{0}$ and $N_{a, b} \gamma_{a b}$ are regular (a, b)-Cauchy functions from \mathbb{N}_{0} to Γ using Lemma 4 . Hence so is $h(m)$ as defined by equation (15).

Assume conversely that h is a regular (a, b)-Cauchy function. Define elements $\alpha_{j}:=h(j b)-h(0), \beta_{k}:=h(k a)-h(0), \gamma_{0}:=2 h(0)-h(a b)$ and $\gamma_{a b}:=h(a b)-h(0)$. Define $h^{\prime}: \mathbb{N}_{0} \rightarrow \Gamma$ by $h^{\prime}(m):=\sum_{j=1}^{a-1} \chi_{a}^{j b}(m) \alpha_{j}+$ $\sum_{k=1}^{b-1} \chi_{b}^{k a}(m) \beta_{k}+\gamma_{0}+N_{a, b}(m) \gamma_{a b}$. Then by the direct part of the theorem $h^{\prime}: \mathbb{N}_{0} \rightarrow \Gamma$ is a regular (a, b)-Cauchy function. Now define $\bar{h}:=h-h^{\prime}$. Then \bar{h} is also a regular (a, b)-Cauchy function.

It suffices to show that \bar{h} vanishes on S. For then $\operatorname{supp}(\bar{h}) \subseteq T$ and \bar{h} would be a singular (a, b)-Cauchy function by Theorem 2. So $\bar{h}=0$, and
thus $h=h^{\prime}$, as described. First $\bar{h}(0)=h(0)-h^{\prime}(0)=h(0)-\gamma_{0}-\gamma_{a b}=0$. (For $\chi_{a}^{j b}(0)=0$ for $j=1,2, \ldots, a-1$ since a and b are relatively prime; similarly $\chi_{b}^{k a}(0)=0$.) Second

$$
\bar{h}(a b)=h(a b)-h^{\prime}(a b)=h(a b)-\gamma_{0}-2 \gamma_{a b}=0 .
$$

Now for arbitrary $n \in \mathbb{N}$ we have
$\bar{h}(n a b)=\bar{h}((n-1) a b+a b)+\bar{h}(0)=\bar{h}((n-1) a b)+\bar{h}(a b)=\bar{h}((n-1) a b)$,
and so $\bar{h}(n a b)=0$ for all $n \in \mathbb{N}$ by induction.
Third, let $\ell \in \mathbb{N}_{0}, 1 \leq \ell \leq a-1$. Then, for $1 \leq j \leq a-1, \chi_{a}^{j b}(\ell b)=1$ iff $j b \equiv \ell b \bmod a$, iff $j \equiv \ell \bmod a$, iff $j=\ell$ since j, ℓ are both small. Hence $\sum_{j=1}^{a-1} \chi_{a}^{j b}(\ell b) \alpha_{j}=\alpha_{\ell}$. Next $\chi_{b}^{k a}(\ell b)=0$. So $\bar{h}(\ell b)=h(\ell b)-h^{\prime}(\ell b)=$ $h(\ell b)-\alpha_{\ell}-\gamma_{0}-\gamma_{a b}=0$. Similarly, $\bar{h}(m a)=0$ for $1 \leq m \leq b-1$. Finally, let $s=a x+b y \in S$. Write $x=b x^{\prime}+u, y=a y^{\prime}+v$ where $0 \leq u \leq b-1$, $0 \leq v \leq a-1$. Then $\bar{h}(a x+b y)=\bar{h}\left(a u+b v+\left(x^{\prime}+y^{\prime}\right) a b\right)=\bar{h}(a u+b v)$ (since $\bar{h}(a u)+\bar{h}(b v)=0+0=0)$. Thus \bar{h} is zero on S, and the proof is complete.

Corollary. Let $p \in \mathbb{N}$. Then $f: \mathbb{N}_{0} \rightarrow \Gamma$ is p-quasi-periodic if, and only if, there are elements $\beta_{1}, \ldots, \beta_{p-1}, \gamma_{0}, \gamma_{p}$ in Γ such that

$$
\begin{equation*}
f(n)=\sum_{k=1}^{p-1} \chi_{p}^{k}(m) \beta_{k}+\gamma_{0}+N_{1, p}(n) \gamma_{p} \tag{16}
\end{equation*}
$$

Proof. This is merely the case $a=1, b=p$ of the theorem.
It is easy to evaluate $N_{1, p}(n)$ with the help of a well known p-quasiperiodic function. Let $p \in \mathbb{N}$. There are p-quasi-periodic functions q_{p} : $\mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ and $r_{p}: \mathbb{N}_{0} \rightarrow\{0,1,2, \ldots, p-1\}$ for all $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
n=p q_{p}(n)+r_{p}(n) . \tag{17}
\end{equation*}
$$

Of course the notation is self-explanatory: q_{p} is the quotient after division by p, and r_{p} is the remainder. We can now state

Lemma 5. Let $p \in \mathbb{N}$. Then

$$
\begin{equation*}
N_{1, p}(n)=q_{p}(n)+1 ; \quad n \in \mathbb{N}_{0} . \tag{18}
\end{equation*}
$$

Proof. $N_{1, p}(n)=\operatorname{card}\left\{(x, y) \in \mathbb{N}_{0}^{2}: x+p y=n\right\}$. Now write $n=$ $p q_{p}(n)+r_{p}(n)$ as in equation (17). Then $\left(r_{p}(n), q_{p}(n)\right),\left(r_{p}(n)+p, q_{p}(n)-1\right)$, $\ldots,(n, 0)$ is the complete list of non-negative solutions (x, y) to $x+p y=n$. There are $q_{p}(n)+1$ distinct entries on the list. So $N_{1, p}(n)=q_{p}(n)+1$.

In turn we can use the corollary above to determine another expression for $N_{a, b}(n)$.

Proposition. Let χ_{S} be the characteristic function of S : that is $\chi_{S}(n) \in\{0,1\}$ and $\chi_{S}(n)=1$ if, and only if, $n \in S$. Then

$$
\begin{equation*}
N_{a, b}(n)=q_{a b}(n)+\chi_{S}\left(r_{a b}(n)\right) ; \quad n \in \mathbb{N}_{0} . \tag{19}
\end{equation*}
$$

Proof. $N_{a b}$ is a regular (a, b)-Cauchy function by Lemma 4. So, using the corollary to Theorem 3 we have

$$
\begin{aligned}
N_{a b}(n) & =\sum_{k=1}^{a b-1} \chi_{a b}^{k}(n) \beta_{k}+\gamma_{0}+N_{1, a b}(n) \gamma_{a b} \\
& =\sum_{k=1}^{a b-1} \chi_{a b}^{k}(n) \beta_{k}+\gamma_{0}+\gamma_{a b}+q_{a b}(n) \gamma_{a b}
\end{aligned}
$$

using Lemma 5. We know that $\gamma_{0}=2 N_{a, b}(0)-N_{a, b}(a b)=0$, and $\gamma_{a, b}=$ $N_{a, b}-N_{a, b}(0)=2-1=1, \beta_{k}=N_{a, b}(k)-N_{a, b}(0)$. So $N_{a, b}(n)=q_{a b}(n)+$ $\chi={ }_{S}\left(r_{a b}(n)\right)$ if, and only if $\chi_{S}\left(r_{a b}(n)\right)=1+\sum_{k=1}^{a b-1} \chi_{a b}^{k}(n)\left[N_{a, b}(k)-1\right]$. We see that both sides remain invariant under the transformation $n \mapsto$ $n+a b$. So it suffices to prove the result for $0 \leq n<a b$. Now $N_{a, b}(k)-1=$ $-\chi_{T}(k)$ since $1 \leq k<a b$. So $\sum_{k=1}^{a b-1} \chi_{a b}^{k}(n)\left(-\chi_{T}(k)\right)=-\chi_{T}(n)(n<a b$ used here). Finally $1-\chi_{T}(n)=\chi_{S}(n)$ for $0 \leq n<a b$. Thus the result follows.

Equation (19) is well-known. (See [4, p. 65].) However the above proof uses our analysis of the solutions of a functional equation and not elementary number theory directly.

3. Concluding remarks

We mention briefly how to use our results to solve, for $f: \mathbb{Z} \rightarrow \Gamma$, $a, b \in \mathbb{N}$ relatively prime

$$
\begin{equation*}
f(a m+b n)+f(0)=f(a m)+f(b n) ; \quad(m, n) \in \mathbb{Z}^{2} \tag{20}
\end{equation*}
$$

If f is an (a, b)-Cauchy function over \mathbb{Z} then f is $a b$-quasi-periodic over \mathbb{Z}. (For now $S(a, b)=\mathbb{Z}$ and Lemma 1 still gives the result.) Hence f restricted to \mathbb{N}_{0} is a regular (a, b)-Cauchy function. We can therefore state

Theorem. $f: \mathbb{Z} \rightarrow \Gamma$ satisfies equation (20) if, and only if, there are elements $\alpha_{1}, \ldots, \alpha_{a-1}, \beta_{1}, \ldots, \beta_{b-1}, \delta_{0}, \delta_{a b}$ in Γ such that

$$
f(n)=\sum_{j=1}^{a-1} \chi_{a}^{j b}(n) \alpha_{j}+\sum_{k=1}^{b-1} \chi_{b}^{k a}(n) \beta_{k}+\delta_{0}+\left[q_{a b}(n)+\chi_{S}\left(r_{a b}(n)\right)\right] \delta_{a b}
$$

for all $n \in \mathbb{Z}$.
Here, of course $q_{p}: \mathbb{Z} \rightarrow \mathbb{Z}$ is the quotient function extended to \mathbb{Z} :

$$
q_{p}(n):=q_{p}(n+|n| p)-|n| ; \quad n \in \mathbb{Z} .
$$

References

[1] L. E. Dickson, History of the Theory of Numbers, Volume II, Chelsea Publishing, New York, 1952.
[2] L. K. Hua, Introduction to Number Theory, Springer, New York, 1982.
[3] K. H. Rosen, Elementary Number Theory and its Applications, (2nd edition), Addison-Wesley, Reading, 1988.
[4] J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw Hill, New York, 1939.
T. M. K. DAVISON

MCMASTER UNIVERSITY
HAMILTON, ONTARIO
CANADA
(Received November 2, 1998; revised December 18, 2000)

