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Extended Jacobson density theorem
for Lie ideals of rings with automorphisms

By K. I. BEIDAR (Tainan), M. BREŠAR (Maribor) and Y. FONG (Tainan)

Abstract. We prove a version of the Chevalley–Jacobson density theorem for
Lie ideals of rings with automorphisms and present some applications of the obtained
results.

1. Introduction

In the present paper we continue the project initiated recently in [7]
and developed further in [3], [4]; its main idea is to connect the concept of
a dense action on modules with the concept of outerness of derivations and
automorphisms. In [3] an extended version of Chevalley–Jacobson density
theorem has been proved for rings with automorphisms and derivations.
In the present paper we consider a Lie ideal of a ring acting on simple
modules via multiplication. Our goal is to extend to this context results
obtained in [3]. We confine ourselves with the case of automorphisms.
We note that Chevalley–Jacobson density theorem has been generalized in
various directions [1], [10], [14], [12], [13], [17], [19]–[22] (see also [18, 15.7,
15.8] and [9, Extended Jacobson Density Theorem]).

As an application we generalize results of Drazin on primitive rings
with pivotal monomial to primitive rings whose noncentral Lie ideal has
a pivotal monomial with automorphisms. Here we note that while Mar-
tindale’s results on prime rings with generalized polynomial identity were
extended to prime rings with generalized polynomial identities involving
derivations and automorphisms, the corresponding program for results of
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Amitsur and Drazin on primitive rings with (generalized) pivotal mono-
mials has not been done (see [2] for related results and references). In the
present paper we make the first step in this direction.

There are many results in the literature concerning automorphisms of
rings (most often prime rings) satisfying certain identities of polynomial
type. They are a part of the theory of rings with generalized identities
which is treated in the book [2]. The technique used in the proofs of these
results is well-established; usually one combines Kharchenko’s theory of X-
inner automorphsisms with some elementary but tricky calculations. In [3],
[4] an alternative unified approach to such problems has been presented.
In the present paper we continue to develop this approach by generalizing
a result of Bergen [6].

2. Density theorems for Lie ideals

Given a left module M over a ring A, we set

l(A;M) = {r ∈ A | rM = 0}.

Clearly l(A;M) is an ideal of A. Recall that an additive subgroup U of
a ring A is called a Lie ideal if [A,U ] ⊆ U . First we recall some known
results.

Theorem 2.2 ([15, Theorem 4]). Let A be a prime ring and U a Lie

ideal of A such that [U ,U ] = 0. Then U ⊆ Z(A), the center of A, unless

char(A) = 2 and A satisfies the standard identity St4 of degree 4.

The following result is contained in the proof of [11, Lemma 1.3].

Lemma 2.2. Let A be a semiprime ring with Lie ideal U . Suppose

that U is a subring of A. Then A[U ,U ]A ⊆ U .

We are now in a position to prove a density theorem for Lie ideals
of rings, our first main result, which is a generalization of [9, Extended
Jacobson Density Theorem].

Theorem 2.3. Let m,n1, n2, . . . , nm be positive integers, let A be

a ring with Lie ideal U and simple left modules M1,M2, . . . ,Mm, let

Di = EndAMi), i = 1, 2, . . . , m, let xi1, xi2, . . . , xini ∈ Mi be linearly in-

dependent over Di and let yi1, yi2, . . . , yini ∈Mi, i = 1, 2, . . . , m. Suppose

that the following conditions are fulfilled:
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(1) Mi �Mj for all i 6= j.

(2)
∑ni

j=1 xijDi 6= Mi for all i = 1, 2, . . . , m.

(3) [A,U ]Mi 6= 0 for all i = 1, 2, . . . ,m.

(4) Either U generates the ring A, or for each i, either

char(A/l(A;Mi)) 6= 2, or A/l(A;Mi) does not satisfy the standard

identity of degree 4.

Then there exists u ∈ U such that uxij = yij for all j = 1, 2, . . . , ni,

i = 1, 2, . . . , m.

Proof. It is enough to show that there exists u ∈ U such that ux11 =
y11 and uxij = 0 if (i, j) 6= (1, 1). To this end, we denote by W the
subring of A generated by U and set I = A[W,W]A. By [2, Lemma 9.1.2],
[W,W] ⊆ [W,A] = [U ,A]. Since [U ,A] ⊆ U ⊆ W, we conclude that W is
a Lie ideal of A and

(1) [W,W] ⊆ U .

Let 1 ≤ i ≤ m and let π : A → A/l(A;Mi) = A be a canonical projection
of rings. It follows from (3) that Uπ is a noncentral Lie ideal of A. There-
fore Wπ is a noncentral Lie ideal and a subring of A. It follows now from
(4) and Theorem 2.1, that Wπ is not commutative and so Iπ 6= 0 (recall
that A is a primitive ring). By Lemma 2.2, Iπ ⊆ Wπ. Therefore Mi is
a faithful simple left Wπ-module and End(WπMi) = Di. We may now
assume without loss of generality that A = W and respectively [A,A] ⊆ U
by (1).

By (2) there exists x ∈ M1 with x /∈ ∑n1
j=1 x1jD1. Next, by [3,

Proposition 2.1], there exist elements a, b ∈ A such that

axij = 0 = bxij for all j = 1, 2, . . . , ni, i = 2, 3, . . . , m,

ax = y11, ax1j = 0 for all j = 1, 2, . . . , n1 and

bx11 = x, bx1j = 0 for all j = 2, 3, . . . , n1.

Clearly u = [a, b] ∈ U is the desired element. ¤
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Example. Let F be a field, let n ≥ 2 be a positive integer, let A =
Mn(F) be the n × n matrix ring over F and let V be a vector space
over F with basis {x1, x2, . . . , xn}. Clearly V is a simple left A module
canonically. Let U = [A,A]. Take y1 = x1, y2 = y2 · · · = yn = 0. We
claim that there exists no u ∈ U with uxi = yi, i = 1, 2, . . . , n. Indeed,
such element u would have trace 1 whereas every matrix in U has trace 0.
We now see that the condition (2) of Theorem 2.3 can not be omitted.

The following result is a particular case of the above theorem.

Theorem 2.4. Let A be a left primitive ring with faithful simple left
module M, let U be a noncentral Lie ideal of A, let D = EndAM), let n
be a nonnegative integer, let x1, x2, . . . , xn ∈ M be linearly independent
over D and let y1, y2, . . . , yn ∈ M. Suppose that the following conditions
are fulfilled:

(1)
∑n

i=1 xiD 6= M.

(2) U generates the ring A, or char(A) 6= 2, or A does not satisfy the
standard identity of degree 4.

Then there exists u ∈ U with uxi = yi for all i = 1, 2, . . . , n.

Corollary 2.5. Let A be a left primitive ring with faithful simple left
module M, let U be a noncentral Lie ideal of A, let D = EndAM), let n
be a nonnegative integer, let x1, x2, . . . , xn ∈ M be linearly independent
over D and let y1, y2, . . . , yn ∈M. Suppose that A is not a simple Artinian
ring. Then there exists u ∈ U with uxi = yi for all i = 1, 2, . . . , n.

Let M be a simple left A-module and D = EndAM). Given r ∈ A,
we define a linear transformation Lr : M→M of the right vector space
M over the skew field D as follows: Lrx = rx for all x ∈ M. We now
recall definitions of M-inner and M-outer automorphisms [3].

Definition 2.6. An automorphism α of the ring A is called M-inner
if there exist an invertible element T ∈ End(M) such that

(2) TLaT−1 = Laα for all a ∈ A;

otherwise it is called M-outer.

We shall say that automorphisms α and β of A are M-independent
if the automorphism α−1β (and hence β−1α) is M-outer; otherwise they
are called M-dependent (see [3, Section 3] for details). We are now in a
position to prove the the following generalization of [3, Thorem 3.6], our
second main result.
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Theorem 2.7. Let A be a ring with simple left module M, let D =
EndAM), let U be a Lie ideal of A, let α1, α2, . . . , αn be automorphisms

of A, let m be a positive integer, let x1, x2, . . . , xm ∈ M be linearly inde-

pendent over D and let yij ∈ M, i = 1, 2, . . . , n, j = 1, 2, . . . , m. Suppose

that the following conditions are fulfilled:

(1) αi and αj are M-independent for all i 6= j.

(2)
∑m

i=1 xiD 6= M.

(3) [A,Uαi ]M 6= 0 for all i = 1, 2, . . . , n.

(4) U generates the ring A, or char(A/l(A;M)) 6= 2, or A/l(A;M) does

not satisfy the standard identity of degree 4.

Then there exists u ∈ U such that uαixj = yij for all i = 1, 2, . . . , n,

j = 1, 2, . . . , m.

Proof. Let 1 ≤ i ≤ n. We denote by Mi the left A-module on
additive abelian group M with multiplication a ∗ x = aαix for all a ∈ A,
x ∈ M. By [3, Proposition 3.5], Mi � Mj for all i 6= j and so the
first condition of Theorem 2.3 is fulfilled. As it was noted in [3, (3)],
EndAMi) = D and so the second condition of Theorem 2.3 is satisfied by
(2). The third condition follows from (3). Since l(A;Mi) = l(A;M)α−1

i ,
we conclude that α−1

i induces an isomorphism of rings A/l(A;M) and
A/l(A;Mi). Therefore the fourth condition of Theorem 2.3 follows from
(4). Thus all the conditions of Theorem 2.3 are fulfilled and so there exists
u ∈ U such that uαixj = yij for all i = 1, 2, . . . , n, j = 1, 2, . . . , m. ¤

Corollary 2.8. Let A be a left primitive ring with faithful simple

left module M, let D = EndAM), let U be a noncentral Lie ideal of

A, let α1, . . . , αn be automorphisms of A. Suppose that A is not simple

Artinian and αi and αj are M-independent for all i 6= j. Then for all

linearly independent over D elements x1, x2, . . . , xm ∈M and all yij ∈M,

i = 1, 2, . . . , n, j = 1, 2, . . . ,m, there exists u ∈ U such that uαixj = yij

for all i = 1, 2, . . . , n, j = 1, 2, . . . , m.

3. Applications

Let A be a left primitive ring with faithful simple left A-module
M, with Lie ideal U and with automorphisms α1, α2, . . . , αn. Let D =
EndAM) and let E = End(MD). Let X be an infinite set, let Z be the
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ring of integers and let F be the free Z-algebra on the set {xαi | x∈X,
i = 1, 2, . . . , n}. For a monomial

π = x
αrm
im

x
αrm−1
im−1

. . . x
αr1
i1

∈ F

of “length” m, the complement Pπ is defined to be the set of all monomials

τ = x
αsl
jl

x
αsl−1
jl−1

. . . x
αs1
j1

∈ F

subject to the following condition: if l ≤ m, then either jk 6= ik, or
sk 6= rk for some 1 ≤ k ≤ l. We shall say that π is a pivotal monomial with
automorphisms on U (abbreviated PMA on U) if for any homomorphism
of rings φ : F → A such that Xφ ⊆ U and (xαs)φ = (xφ)αs for all x ∈ X,
s = 1, 2, . . . , n, we have that πφ ∈ ∑

τ∈Pπ
Eτφ. We are now in a position

to prove our third main result.

Theorem 3.1. Let A be a left primitive ring with faithful simple left

module M, with Lie ideal U and with automorphisms α1, α2, . . . , αn. Let

D = End(AM). Suppose that α1, α2, . . . , αn are pairwise M-independent

and U has a PMA

π = x
αrm
im

x
αrm−1
im−1

. . . x
αr1
i1

of length m ≥ 2. Then dimD(M) ≤ m+1 and A is a simple Artinian ring.

Proof. Assume to the contrary that dimD(M) > m + 1.
Let v1, . . . , vm+1 ∈M be linearly independent over D. Since dimD(M)> 2,
it follows from Kaplansky’s theorem on primitive PI rings that A does
not satisfy St4 (see [16]). Therefore all the conditions of Theorem 2.7 are
fulfilled and so there exist elements ai1 , ai2 , . . . , aim ∈ U such that

aαs
ik

vt =
{

vt+1 if k = t, s = rt and t ≤ m

0 if k 6= t, or s 6= rt, or t = m + 1

for all k = 1, 2, . . . , m, s = 1, 2, . . . , n. We define a homomorphism φ :
F → A as follows: φ maps xαs

ik
to aαs

ik
for all k = 1, 2, . . . , m, s = 1, 2, . . . , n

and φ maps all other variables to 0. It follows that πφv1 = vm+1 while
τφv1 = 0 for all τ ∈ Pπ, a contradiction. The proof is complete. ¤

We note that the case U = A, n = 1 and α1 = 1 of the above theorem
is due to Drazin [8]. We are now in a position to prove our fourth main
result.
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Theorem 3.2. Let A be a ring, let α be an automorphism of A, let

J(A) be the Jacobson radical of A and let U be a Lie ideal of A such that

for every u ∈ U there is a positive integer n = n(u) with (u−uα)n ∈ J(A).
Suppose that U generates the ring A. Then a− aα ∈ J(A) for all a ∈ A.

Proof. Let M be a simple left A-module and let D = End(AM). It
is enough to show that a− aα ∈ l(A;M) for all a ∈ A.

First assume that

(3) u− uα ∈ l(A;M) for all u ∈ U .

It follows from Zorn’s lemma that we may assume without loss of gener-
ality that U is a maximal among the Lie ideals of A generating A and
satisfying (3). Given u, v ∈ U , we have that u− uα, v − vα ∈ l(A;M) and
so

uv − (uv)α = u(v − vα) + (u− uα)vα ∈ l(A;M).

Setting V = U + U2, we see that V is a Lie ideal of A generating A and
satisfying (3). Therefore V = U forcing U2 ⊆ U and so U = A. We see
that it is enough to show that (3) is fulfilled.

Next suppose that α is M-outer. Moreover assume that dim(MD)≥2
and pick a nonzero x ∈M. By Theorem 2.7 there exists u ∈ U such ux = x

and uαx = 0. But then (u − uα)nx = x for every positive integer n,
contradicting our assumption. Now assume that dim(MD) = 1. Then
A = A/l(A;M) is a skew field and so it has no nonzero nilpotent elements.
Denote by a the image of a ∈ A in A. Since (u−uα)n(u) ∈ J(A), u− uα is
nilpotent element of A forcing u− uα ∈ l(A;M) for all u ∈ U and whence
(3) is satisfied.

Therefore we may assume without loss of generality that α is M-
inner. That is there exists an invertible element T ∈ End(M) such that
aαx = T−1aTx for all x ∈ M and a ∈ A. It is now easy to see that
l(A;M)α = l(A;M). Replacing A by A/l(A;M) we reduce the proof to
the case when A is a left primitive ring with simple faithful left module
M and with Lie ideal U generating A such that (u − uα)n(u) = 0 for all
u ∈ U . In view of (3) it is enough to show that α = 1.

Suppose that there is x ∈M with x and Tx are linearly independent
over D. There are two cases to consider.

Case 1 . Suppose that dim(MD) > 2. Then according to Theorem 2.4
there exists u ∈ U with ux = x and uTx = 0. It follows that (u−uα)nx = x

for any positive integer n, a contradiction.
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Case 2 . Assume that dim(MD) = 2. Then {x, Tx} is a basis of M
over D. Clearly that A = M2(D) = End(MD) is a simple ring. Since
U generates A, it follows from [2, Lemma 9.1.2] that [A,A] ⊆ U . As
A = M2(D), a2 = 0 for any nilpotent element a ∈ A and so ([x, y] −
[x, y]α)2 = 0 for all x, y ∈ A is a generalized polynomial identity on A (see
[2, Chapter 7]). If α is X-outer, then ([x, y]− [u, v])2 = 0 for all x, y, u, v ∈
A by Kharchenko’s theorem [2, Theorem 7.5.9]. Taking u = 0 = v, we
see that [x, y]2 = 0 for all x, y ∈ A which is impossible. Therefore α is
X-inner and so there exists an invertible element t ∈ A with aα = t−1at

for all a ∈ A. Clearly t−1T commutes with all elements of the ring A and
so there exists 0 6= λ ∈ D with t−1Ty = yλ for all y ∈ M. We conclude
that {x, tx} is a basis of M over D.

Clearly {t, 1} and {t−1, 1} are linearly independent over C = Z(A).
Therefore (x1−t−1x1t)◦(x2−t−1x2t) is a nonzero generalized polynomial,
where u ◦ v = uv + vu. Linearizing (a− t−1at)2 = 0, we get that

(a− t−1at) ◦ (b− t−1bt) = 0 for all a, b ∈ U

and so ([x1, x2]− t−1[x1, x2]t) ◦ ([x3, x4]− t−1[x3, x4]t) is a nontrivial GPI
on A. By Martindale’s theorem [2, Theorem 6.1.6], dimC(A) < ∞.

We claim that we may assume without loss of generality that A =
Mn(C) for some n ≥ 2. Indeed, if |C| < ∞, then D = C by Wedderburn’s
theorem on finite skew fields [2, Theorem 4.2.3].

Suppose that |C| = ∞. Let C be the algebraic closure of C. Set
A = A ⊗C C and U = U ⊗C C. Clearly U ⊇ [A,A] is a Lie ideal of
A generating A. According to [2, Corollary 4.2.2], A = Mn(C) where
n2 = dimC(A). Next, {a − (t ⊗ 1)−1a(t ⊗ 1)}2 = 0 for all a ∈ U by [5,
Lemma 2.3] which proves our claim.

Since A = C + [A,A] = C + U , we conclude that (a − t−1at)2 = 0
for all a ∈ A. Recalling that {x, tx} are linearly independent over C, we
pick a ∈ A with ax = x and atx = 0. Then (a − t−1at)2x = x 6= 0, a
contradiction.

This shows that x and Tx are linearly dependent over D for any
x ∈M. Assume that dim(MD) > 1. Then by [3, Lemma 7.1] there exists
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λ ∈ D such that Tx = xλ for all x ∈ M. Given a ∈ A and x ∈ M, we
now have that

aαx = T−1aTx = T−1a(xλ) = T−1[(ax)λ] = ax

and so (a− aα)M = 0 forcing α = 1.
Finally, assume that dim(MD) = 1. Then A is a skew field. In

particular it has no nonzero nilpotent elements and so u = uα for all
u ∈ U . Since U generates A, we conclude that α = 1. The proof is thereby
complete. ¤

Corollary 3.3 [6, Theorem 5]). Let A be a semiprime ring and let α

be an automorphism of A. If (a− aα)n = 0 for every a ∈ A, where n is a

fixed integer, then α = 1.

Proof. The reduction to the prime case is easy (see [6, p. 232]).
Thus, assume that A is prime. Clearly (x− xα)n is a generalized identity
on A and so it is a generalized identity on the maximal right ring of
quotients Qmr of A by [2, Theorem 7.8.7]. If α is not X-inner, then Qmr

is a primitive ring with nonzero socle by [2, Theorem 7.8.4]. Therefore
a− aα ∈ J(Qmr) = 0 by Theorem 3.2 and whence α = 1, a contradiction.
Consequently, α is X-inner and so there exists an invertible element t ∈
Qmr such that aα = t−1at for all a ∈ A. We now have that (x − t−1xt)n

is a generalized polynomial identity on A. Let C be the extended centroid
of A. Assume that t /∈ C. Let F = Qmr ∗ C[x] be the free product of
C-algebras Qmr and C[x]. We denote by V the C-subspace of F generated
by all the generalized monomials in x of the form

tε1xtε2 . . . xtεn+1

where

εi ∈
{ {−1, 0, 1} if {1, t, t−1} are linearly independent

{0, 1} if {1, t, t−1} are linearly dependent

and
∑n+1

i=1 |εi| 6= 0. Clearly xn /∈ V and so (x − t−1xt)n is a nontrivial
GPI on A. By Martindale Theorem [2, Corollary 6.17], Q is a primitive
ring with nonzero socle and as before this contradicts Theorem 3.2. Thus
t ∈ C and so α = 1. ¤
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