A Hosszú-like functional equation

By T. M. K. DAVISON (Hamilton)

Abstract

The equation $f(x+y)+f(x y)=f(x y+x)+f(y)$ is solved over both the natural numbers and the integers.

1. Introduction

Hosszu's equation [2] is

$$
\begin{equation*}
f(x+y-x y)+f(x y)=f(x)+f(y) \tag{1}
\end{equation*}
$$

where the domain of f is understood to be a ring, and the codomain is an abelian group. When the domain in equation (1) is a field with at least 5 elements then Hosszú's equation is equivalent to Cauchy's equation [5], in the sense that any solution of the one is a solution of the other. Of course, Cauchy's equation in its affine form is

$$
\begin{equation*}
f(x+y)+f(0)=f(x)+f(y) \tag{2}
\end{equation*}
$$

A few years ago [3] I mentioned that the equation

$$
\begin{equation*}
f(x+y)+f(x y)=f(x y+x)+f(y) \tag{3}
\end{equation*}
$$

might be worthy of discussion. In equation (3) the domain is a subset of a ring, the variables enter in a bilinear way as they do in equation (1), and any solution of equation (2) is a solution of equation (3). Hence the last equation is Hosszú-like. I proved (unpublished) that any solution

Mathematics Subject Classification: 39B52.
Key words and phrases: Cauchy's functional equation, Hosszú's functinal equation.
of equation (3) where the domain of f is the rational field must satisfy equation (2): again making the equation Hosszú-like. At ISFE 17 (1979) W. Benz proved that every continuous solution of equation (3) (the domain being the real field) is indeed an affine Cauchy function.

Recently Girgensohn and Lajkó ([6], to appear) showed that over a field of characteristic not 2 or 3 any solution of equation (3) is a solution of equation (2).

Indeed Lajkó [8] has shown that if f satisfies equation (3) then g : $x \longmapsto f(-x)$ satisfies equation (1). This implies in particular that when the domain of equation (3) is a field with at least 5 elements all solutions must satisfy equation (2).

In this paper I solve equation (3) in two, I believe, interesting cases; Firstly when the domain of f is $\mathbb{N}=\{1,2,3, \ldots\}$ the set of natural numbers and secondly when the domain is \mathbb{Z}, the ring of (rational) integers. Basically what I show is that every solution is a linear combination (in the codomain) of four functions:

$$
\left.\begin{array}{l}
\chi_{2}^{0}: x \mapsto\left\{\begin{array}{ll}
1 & \text { if } x \text { is even } \\
0 & \text { if } x \text { is odd }
\end{array} \quad \chi_{2}^{1}: x \mapsto \begin{cases}0 & \text { if } x \text { is even } \\
1 & \text { if } x \text { is odd }\end{cases} \right. \\
q_{2}: x \mapsto q_{2}(x) \text { where } x=2 q_{2}(x)+r_{2}(x) \text { and } r_{2}(x) \in\{0,1\}
\end{array}\right\} \begin{aligned}
& q_{3}: x \mapsto q_{3}(x) \text { where } x=3 q_{3}(x)+r_{3}(x) \text { and } r_{3}(x) \in\{0,1,2\} .
\end{aligned}
$$

See also my paper ([6], to appear).

2. Linearizing the equation

Let $f: S \rightarrow H$. Here S is either \mathbb{N} or \mathbb{Z} and H is an abelian group written additively.

Proposition 1. If $f: S \rightarrow H$ satisfies equation (3) then for each $x \in S$

$$
\begin{equation*}
f(2 x)=f(x+1)+f(x)-f(1) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
f(2 x+1)=f(x+3)+f(x+2)-f(3)-f(2)+f(1) . \tag{5}
\end{equation*}
$$

Proof. Put $y=1$ in equation (3) to deduce (4). With $y=2,3$ in equation (3) we deduce that

$$
\begin{align*}
& f(2 x)+f(x+2)=f(3 x)+f(2) \tag{6}\\
& f(3 x)+f(x+3)=f(4 x)+f(3) \tag{7}
\end{align*}
$$

for all $x \in S$.
Now from (4) we deduce that

$$
f(4 x)=f(2 x+1)+f(2 x)-f(1)
$$

so substituting this in (7) yields

$$
f(3 x)+f(x+3)=f(2 x+1)+f(2 x)-f(1)+f(3) .
$$

Finally using equation (6) we deduce (5).
We notice that $f(2 x+4)$ and $f(2 x+1)$ differ by a constant $(f(3)+f(2)-2 f(1))$: so some 3-periodicity has already surfaced. It is this phenomenon that inspires our next step.

Definition. Suppose $f: S \rightarrow H$ satisfies equation (3). For each $x \in S$ we set

$$
\begin{equation*}
\hat{f}(x):=f(x+4)+f(x+3)-f(x+1)-f(x), \tag{8}
\end{equation*}
$$

so, $\hat{f}: S \rightarrow H$ too.
Proposition 2. If f satisfies equation (3) then, for each $x \in S$

$$
\begin{equation*}
\hat{f}(2 x)=\hat{f}(x) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{f}(2 x+1)=\hat{f}(x+1) . \tag{10}
\end{equation*}
$$

Proof. Immediate.

Corollary.

(i) If $S=\mathbb{N}$ then, for all $x \in S$

$$
\begin{equation*}
\hat{f}(x)=\hat{f}(1) . \tag{11}
\end{equation*}
$$

(ii) If $S=\mathbb{Z}$, then for all $x \in S$,

$$
\hat{f}(x)= \begin{cases}\hat{f}(1) & x \in \mathbb{N} \tag{12}\\ \hat{f}(0) & x \notin \mathbb{N} .\end{cases}
$$

Proof. Use induction $x \rightarrow x+1$ when $x \in \mathbb{N}$ and $x \mapsto x-1$ when $x \notin \mathbb{N}$, and the proposition.

We need the next result to complete our exploration of (some) linear consequences of equation (3).

Proposition 3. If $f: \mathbb{Z} \rightarrow H$ satisfies equation (3) then

$$
\begin{equation*}
f(5)+f(0)=f(3)+f(2) . \tag{13}
\end{equation*}
$$

Proof. Put $x=6, y=-1$ in equation (3):

$$
\begin{equation*}
f(-6)+f(5)=f(0)+f(-1) . \tag{14}
\end{equation*}
$$

Now

$$
\begin{aligned}
f(-6)= & f(-2)+f(-3)-f(1) \\
= & f(0)+f(-1)-f(1)+f(1)+f(0)-f(3) \\
& -f(2)+f(1)-f(1),
\end{aligned}
$$

so

$$
\begin{equation*}
f(-6)=2 f(0)+f(-1)-f(3)-f(2) \tag{15}
\end{equation*}
$$

using equations (4) and (5) to expand $f(-2), f(-3)$ respectively. Substituting (15) into (14) and simplifying we deduce equation (13).

Corollary. If $f: \mathbb{Z} \rightarrow H$ satisfies equation (3) then

$$
\begin{equation*}
\hat{f}(1)=\hat{f}(0) . \tag{16}
\end{equation*}
$$

Proof. $\hat{f}(1)=\hat{f}(0)$ iff $f(5)+f(4)-f(2)-f(1)=f(4)+f(3)-$ $f(1)-f(0)$ iff $f(5)+f(0)=f(3)+f(2)$.

We can now state and prove the main result of this section.

Theorem 4. Suppose $f: S \rightarrow H$ satisfies equation (3) where S is \mathbb{N} or \mathbb{Z}. Then
(a) $f=0 \quad$ if $f(1)=0, f(2)=0, f(3)=0, \quad$ and $f(5)=0$
and, for all $x \in S$
(b) $\quad f(x+6)-f(x)=\hat{f}(1)$.

Proof. (a) Assume $f(1)=0, f(2)=0, f(3)=0$ and $f(5)=0$. Then $f(4)=(f(3)+f(2)-f(1))=0$ also, and so $\hat{f}(x)=\hat{f}(1)=0$ for all $x \in \mathbb{N}$. If $S=\mathbb{N}$ this yields $f(x)=0$ for all $x \in \mathbb{N}$. If $S=\mathbb{Z}$ we see that $\hat{f}(x)=\hat{f}(0)=0$ (by the Corollary to Proposition 3) for all $x \in \mathbb{Z} \backslash \mathbb{N}$. Again this yields $f(x)=0$ for all $x \notin \mathbb{N}$.
(b) Since $\hat{f}(1)=\hat{f}(0)$ we deduce that

$$
\hat{f}(x)=\hat{f}(1) \quad \text { for all } x \in S \text {. }
$$

So $\hat{f}(x+1)-\hat{f}(x)=0$, for all $x \in S$

$$
\begin{equation*}
f(x+5)-f(x+3)-f(x+2)+f(x)=0 . \tag{18}
\end{equation*}
$$

Thus, replacing x by $x+1$,

$$
f(x+6)-f(x+4)-f(x+3)+f(x+1)=0
$$

Rewriting this we deduce that

$$
f(x+6)-[f(x+4)+f(x+3)-f(x+1)-f(x)]-f(x)=0 .
$$

So $f(x+6)-\hat{f}(1)-f(x)=0$, as claimed.
From part (b) of the theorem we see that 2-periodicity and 3-periodicity are consequences of equation (3).

3. Solving the equation

Let $g: S \rightarrow H$, define $G: S^{2} \rightarrow H$

$$
\begin{equation*}
G(a, b):=g(a b)+g(a+b)-g(a b+a)-g(b) . \tag{19}
\end{equation*}
$$

Definition. $(a, b) \in S^{2}$ is admissible (for equation (3)) iff $G(a, b)=0$.
Thus g satisfies equation (3) if, and only if S^{2} is admissible.

Proposition 5. Let $p \in \mathbb{N}, \alpha \in H$. Suppose

$$
\begin{align*}
& g: S \rightarrow H \quad \text { satisfies } \\
& g(x+p)=g(x)+\alpha \tag{20}
\end{align*}
$$

for all $x \in S$. Then g satisfies equation (3) if and only if

$$
\begin{equation*}
G(a, b)=0, \quad 1 \leq a \leq p \quad \text { and } \quad 1 \leq b \leq p . \tag{21}
\end{equation*}
$$

Proof. The necessity of condition (21) is clear. For the sufficiency, first we note that for all $t \in S$

$$
\begin{equation*}
g(x+t p)=g(x)+t \alpha . \tag{22}
\end{equation*}
$$

Next we note that given $x, y \in S$ there are $a, b \in S$ with $1 \leq a \leq p$ and $1 \leq b \leq p$ such that $x=a+s p, y=b+t p$ where $s, t \in S \cup\{0\}$. Now

$$
\begin{aligned}
G(x, y)= & g(x y)+g(x+y)-g(x y+x)-g(y) \\
= & g(a b+(a t+b s+s t p) p)+g(a+b+(s+t) p) \\
& -g(a b+a+(a t+b s+s t p+s) p)-g(b+t p) \\
= & g(a b)+(a t+b s+s t p) \alpha+g(a+b)+(s+t) \alpha \\
& -g(a b+a)-(a t+b s+s t p+s) \alpha-g(b)-t \alpha=G(a, b) .
\end{aligned}
$$

So

$$
G(x, y)=0 \quad \forall(x, y) \in S^{2},
$$

if, and ony if

$$
G(a, b)=0 \quad \forall(a, b) \in[1, p]^{2} .
$$

We now search for solutions when $p=2$ and $p=3$, and $H=\mathbb{Z}$.
Proposition 6.
(a) $\chi_{2}^{0}, \chi_{2}^{1}$ and q_{2} all satisfy equation (3).
(b) q_{3} satisfies equation (3).

Proof. (a) Suppose $g(x+2)=g(x)+\alpha$. Then $G(1,1)=0, G(1,2)=0$, $G(2,1)=g(2)+g(3)-g(4)-g(1)=g(2)+g(1)+\alpha-g(2)-\alpha-g(1)=0$, and
$G(2,2)=g(4)+g(4)-g(6)-g(2)=g(2)+\alpha+g(2)+\alpha-g(2)-2 \alpha-g(2)=0$. So every function that is 2-periodic on S to \mathbb{Z} satisfies equation (3). But these functions are of the form

$$
g(x)=\chi_{2}^{0}(x)[g(1)+g(2)-g(3)]+\chi_{2}^{1}(x)[g(1)]+q_{2}(x)[g(3)-g(1)]
$$

and $\alpha=g(3)-g(1)$, as it must.
(b) Let $g: S \rightarrow \mathbb{Z}$ satisfy, for all $x \in S$

$$
g(x+3)=g(x)+\alpha .
$$

Then $G(1, b)=0$ for all b, and

$$
\begin{aligned}
G(3, b) & =g(3 b)+g(3+b)-g(3 b+3)-g(b) \\
& =g(3)+(b-1) \alpha+g(b)+\alpha-g(3)-b \alpha-g(b)=0 .
\end{aligned}
$$

Now

$$
\begin{aligned}
G(2,1) & =g(2)+g(3)-g(4)-g(1) \\
& =g(2)+g(3)-g(1)-\alpha-g(1)=g(3)+g(2)-2 g(1)-\alpha, \\
G(2,2) & =g(4)+g(4)-g(6)-g(2) \\
& =2 g(1)+2 \alpha-g(3)-\alpha-g(2)=-[g(3)+g(2)-2 g(1)-\alpha]
\end{aligned}
$$

and $G(2,3)=0$. So g satisfies equation (3) if, and only if $\alpha=g(3)+g(2)-$ $2 g(1)$; that is

$$
g(x+3)=g(x)+g(3)+g(2)-2 g(1) .
$$

Now $q_{3}(x+3)=q_{3}(x)+1$ and $1=q_{3}(3)+q_{3}(2)-2 q_{3}(1)$. Thus q_{3} is a solution, as claimed.

Putting the above proposition and Theorem 4 together we have:
Theorem 7. Let S be \mathbb{N} or \mathbb{Z}, and H an abelian group written additively. Then $f: S \rightarrow H$ satisfies equation (3) if and only if there are elements h_{1}, h_{2}, h_{3} and h_{4} in H such that

$$
f(x)=\chi_{2}^{0}(x) h_{1}+\chi_{2}^{1}(x) h_{2}+q_{2}(x) h_{3}+q_{3}(x) h_{4}
$$

for all $x \in S$.
Proof. Clearly, by Proposition 6 each of

$$
x \mapsto \chi_{2}^{0}(x) h_{1}, \quad x \mapsto \chi_{2}^{1}(x) h_{2}, \quad x \mapsto q_{2}(x) h_{3}, \quad x \mapsto q_{3}(x) h_{4}
$$

satisfies equation (3). So does their sum hence the 'if' part is proved.
Now suppose $f: S \rightarrow H$ satisfies equation (3). Define

$$
\begin{array}{ll}
h_{1}:=f(2)+f(3)-f(5) & h_{2}:=f(1) \\
h_{3}:=f(5)-f(3) & h_{4}:=2 f(3)-f(1)-f(5)
\end{array}
$$

and consider

$$
\tilde{f}(x):=f(x)-\chi_{2}^{0}(x) h_{1}-\chi_{2}^{1}(x) h_{2}-q_{2}(x) h_{3}-q_{3}(x) h_{4} .
$$

Then \tilde{f} satisfies equation (3). Moreover

$$
\begin{aligned}
\tilde{f}(1) & =f(1)-h_{2}=0 \\
\tilde{f}(2) & =f(2)-h_{1}-h_{3}=f(2)-f(2)-f(3)+f(5)-f(5)+f(3)=0 \\
\tilde{f}(3) & =f(3)-h_{2}-h_{3}-h_{4} \\
& =f(3)-f(1)-f(5)+f(3)-2 f(3)+f(1)+f(5)=0 \\
\tilde{f}(5) & =f(5)-h_{2}-2 h_{3}-h_{4} \\
& =f(5)-f(1)-2 f(5)+2 f(3)-2 f(3)+f(1)+f(5)=0 .
\end{aligned}
$$

So \tilde{f} is the zero function by Theorem 4 part (a). Hence f has the form claimed.

4. Concluding remarks

What is interesting about the linearization of equation (3) is that it leads to "coupled" equations (4) and (5) whose solutions are very different on \mathbb{N} and \mathbb{Z}. A non-zero \mathbb{Z}-solution of equations (4) and (5) can be identically zero on \mathbb{N}. This phenomenon is worthy of further investigation.

Finally the Pexiderization of equation (3) over \mathbb{N} and \mathbb{Z} is also not without interest.

References

[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York, 1966.
[2] Z. Daróczy, On the general solution of the functional equation $f(x y)+f(x+y-x y)=f(x)+f(y)$, Aequationes Mathematicae 6 (1971), 130-132.
[3] T. M. K. Davison, Problem 191, Siebzehnte internationale Tagung über Funktionalgleichungen in Oberwolfach vom 17.6 bis 23.6 1979, Aequationes Math. 20 (1980), 286-315.
[4] T. M. K. Davison, On the functional equation $f(m+n-m n)+f(m n)=f(m)+f(n)$, Aequationes Math. 10 (1974), 206-211.
[5] T. M. K. Davison, The complete solution of Hosszú's functional equation over a field, Aequationes Math. 11 (1974), 273-276.
[6] T. M. K. Davison, Some Cauchy-like functional equations on the natural numbers, Publ. Math. Debrecen (to appear).
[7] R. Girgensohn and K. Lajkó, A functional equation of Davison and its generalization, Aequationes Math. (to appear).
[8] K. Lajkó, Recent applications of extensions of additive Functions, Proceedings of Numbers, Functions, Equations '98, Leaflets in Mathematics, Pécs, 1998, 111-112.

```
T. M. K. DAVISON
DEPARTMENT OF MATHEMATICS AND STATISTICS
MCMASTER UNIVERSITY
HAMILTON, ONTARIO
CANADA
```

(Received September 7, 1999; revised March 7, 2000)

