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Base N Just Touching Covering Systems

By GARY E. MICHALEK (Philadelphia)

Abstract. Let A = {a1, a2, . . . , aN} be a set of integers, where ai ≡ i (mod N)

and N > 1. Let B = A−A. The set of integers expressible in the form
Pk

i=0 biN
i, for

some nonnegative k with bi in B, is denoted ZB . We show (a1−aN , a2−aN , . . . , aN −
aN ) = d implies that ZB = dZ.

1. Introduction

The theorem proven in this note is suggested by a conjecture of
Kátai [1]. The case for N = 3 was proven by the author in [4].

Let A = {a1, a2, . . . , aN} be a set of integers, where ai ≡ i (mod N)
and N > 1. Let B = A − A. The set of integers expressible in the form∑k

i=0 biN
i, for some nonnegative k with bi in B, is denoted ZB . Integers

in ZB are said to be expressible in B. Let Z represent the integers and
(c1, c2, . . . , cN ) denote the greatest common divisor of the ci. We prove
the following theorems:

Theorem 1. ZB = dZ where d = (a1 − aN , a2 − aN , . . . , aN − aN ).

Theorem 2. Assume aN = 0 and (a1, a2, . . . , aN ) = 1. Then ZB = Z.

Theorem 1 is a consequence of Theorem 2:

Proof of Theorem 1. Since (a1 − aN , a2 − aN , . . . , aN − aN ) = d,
d divides every ai − aj , and hence every element of ZB , so ZB ⊂ dZ.
On the other hand, A′ = {(a1 − aN )/d, (a2 − aN )/d, . . . , (aN − aN )/d}
is a set of representatives of the N congruence classes and meets the
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hypotheses of Theorem 2. Therefore each integer m can be written in
the form

∑k
i=0 ciN

i, for some nonnegative k, where ci is of the form
(a − aN )/d − (a′ − aN )/d = (a − a′)/d for some a and a′ in A. Then
any md is expressible in B, so ZB ⊃ dZ. ¤

The remainder of the paper will prove Theorem 2, and we will assume
throughout that aN = 0, though this is used only in the final step. The
proof of Theorem 2 is illustrated with the example N = 4, with A =
{13,−6, 15, 0}.

When ZB = Z, the set A is called a Just Touching Covering System
(JTCS). See the articles by K. H. Indlekofer, I. Kátai, and P. Racskó,
[1]–[3] for the original definition of a JTCS and the demonstration of the
equivalence to the current formulation.

2. Proof of Theorem 2

Consider the map FA on the integers defined by FA(n) = (n− ai)/N ,
where ai is in A and n ≡ ai (mod N). Let FA

k be the kth iterate of FA.
We have:

Lemma 1. The integer m is expressible in B if there is some integer j

and some k for which FA
k(j) = FA

k(j + m).

Proof. If r = FA
k(j), then j = Nkr +

∑k−1
i=0 ciN

i with ci in A.
Similarly, since r = FA

k(j + m), j + m = Nkr +
∑k−1

i=0 c′iN
i with c′i in A.

Then m =
∑k−1

i=0 (c′i − ci)N i is in ZB . ¤

Consider a listing of the integers in a row referred to as Line 0. Directly
below each integer write its image under FA. This will be called Line 1.
Directly below that, list the images of Line 1 elements under FA, in Line 2.
Continue, to define Line k for any nonnegative integer k. In the illustrative
example, we show part of the first three lines:

Line 0: −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Line 1: 1 −4 0 −3 2 −3 1 −2 3 −2 2 −1 4 −1 3 0 5 0 4 1 6 1
Line 2: −3 −1 0 −4 2 −4 −3 1 −3 1 2 −4 1 −4 −3 0 −2 0 1 −3 3−3

A key observation about the Lines is recorded as:
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Lemma 2. Let S denote any substring of Line k, and t be any integer.

Then the substring S′ of Line k located Nkt places away from S consists

of the same pattern as S, but with t added to each number.

Proof. Since FA(m + Nt) = FA(m) + t, for any m and t, it follows
that FA

k(m + Nkt) = FA
k(m) + t. ¤

Therefore the numbers in Line k are completely determined by those
in positions 0 through Nk − 1. (These are the numbers shown in bold
in the example.) The Nk numbers in that basic pattern are repeated as
the line is extended, shifted up by 1 each time the pattern is repeated Nk

places to the right, and shifted by −1 as it is repeated Nk places to the
left. Of course, as Lemma 2 points out, this is true for any substring of
the line, however long.

According to Lemma 1, m is in ZB if some Line k contains the same
number exactly m places apart. In Line 2 above, we see for example that
8 is expressible since there are two occurrences of −4 eight places apart,
showing that FA

2(3) = FA
2(11). Theorem 2 will obviously follow from:

Lemma 3. Assume the hypotheses of Theorem 2. Given any positive

integer m, there is some Line k in which there is a substring of length m

consisting of the same number repeated m times.

In fact, the string of length m consisting of a single repeated number
shows that any integer less than m in absolute value is in ZB , by Lemma 1.
Since m is arbitrary, this establishes the theorem. To prove Lemma 3 we
need to examine the action of FA more closely, which we do in the next
section.

3. Directed graphs

Consider the directed graph where every integer is connected by an
arrow to its image under FA. It is easy to show (see [1]) that FA(m) is
less than m in absolute value, if m lies outside the interval IA = [−|a|/
(N − 1), |a|/(N − 1)], where a is the member of A largest in absolute
value. If m is in IA, then so is FA(m). Therefore, the important part
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Figure 1: Directed Graph for A = {13,−6, 15, 0}.

of the directed graph displays the action of FA on IA. In the illustrative
example, IA = [−5, 5], and the graph is displayed in Figure 1.

A number m is said to be periodic for A if FA
k(m) = m for some

positive k. Of course, all periodic numbers are contained in IA. In the
example there are four loops of periodic numbers, consisting of {0}, {2},
{−5}, and {−1,−4}.

In general, define r to be the least common multiple of the lengths of
the loops for the graph of a given FA. In the example r = 2. Notice that
FA

r(m) = m for any periodic number m. Define the map LA on Z as fol-
lows: LA(m) is the periodic number that is the image of m under repeated
applications of FA

r. Of course, for a periodic number m, LA(m) = m. De-
fine the Table of LA to be a listing of all the integers, in columns headed
by their images under LA. In the example, the column headers and some
of the integers in the body of the table are displayed in Table 1:

0 2 −1 −4 −5

0, 13,−6, 15 2, 8, 21, 23 −1,−3, 4,−2, 6 −4, 1, 3, 5, 7,−8 −5,−7

Table 1.

The significance of the table is this: Consider any finite length sub-
string in some Line k. Then there is a substring in some lower Line k′,
with k′ = k + ir for some i, where each of the numbers in the original
substring has been replaced by the number at the head of its column in
the Table of LA. We will examine the implications of this, in the example.

4. Proof of Lemma 3 in the example

Consider the substring of Line 2 of length 22 in the example above.
(The same technique will work for any finite substring, though the Line
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numbers may differ.) Table 1 implies that a later line (Line 6 actually,
using the directed graph) will contain the revised substring, where each
number is replaced by its column header in Table 1:

Line 2: −3 −1 0 −4 2 −4 −3 1 . . .
Line 6: −1 −1 0 −4 2 −4 −1 −4 . . .

This latter string will involve only the column headers {0, 2,−1,−4,

−5}. By Lemma 2, a substring of any line will be repeated further along
in that same line, but with each integer shifted by t, where t is arbitrary.
In this example, 3(46) places to the right in Line 6, we have the same
sequence shifted up by 3:

Line 6: −1 −1 0 −4 2 −4 −1 −4 . . . 2 2 3 −1 5 −1 2 −1 . . .
Line 10: . . . 2 2 −4 −1 −4 −1 2 −1 . . .

That is, there is a string of the same length, involving the numbers
{3, 5, 2,−1,−2}. Then referring back to Table 1, we see that some lower
line (Line 10 for example, by the directed graph) has the same sequence
replaced by its column headers. But the set of such headers is only
{−4, 2,−1}: 3 and 5 are both in the column headed by −4, while −2
and −1 are both in the column headed by −1. This is the key observation:
a string of any finite length involving any integers implies the existence of
a string of the same length involving members of {0, 2,−1,−4,−5}. This
in turn implies the existence of a string of the same length involving only
members of {−4, 2,−1}. The table above can be consolidated into a new
table as follows:

−4 2 −1

0, 13,−6, 15, 2, 8, 21, 23 4,−3,−1,−2, 6 1, 3,−4, 5, 7,−8,−5,−7

Table 2.

Here, the numbers formerly in the columns headed by 0 and 2 in
Table 1 are now in the column headed by −4 = LA(0 + 3) = LA(2 + 3).
Similarly, the numbers originally headed by −4 or −5, will now be headed
by −1 = LA(−4 + 3) = LA(−5 + 3), and numbers formerly headed by −1
will now be headed by LA(−1 + 3) = 2.
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The new table is to be interpreted exactly as the original table was:
Any finite string in a particular line implies the existence of the same string
in some other line, but with each number replaced by its column header.

It is important to note that numbers which were in the same column
in the original table are also together in the consolidated table.

The reason we were able to reduce the number of columns is because
the original column headers, when shifted by 3, gave results which were
contained in only three of the original columns. This suggests the reason
for shifting by 3 and an appropriate shift for the next step. If a and b

are column headers, find two numbers in a column which differ by a − b.
If these two numbers are t + a and t + b, then shifting a and b by t

will lead to a table with fewer columns. In Table 2, we have the column
headers {−4, 2,−1}. Since −4 and 2 have a difference of 6, find numbers
in a column of Table 2 which are 6 apart, for example, −5 and 1. That
suggests a shift of −1. Then a string involving {−4, 2,−1} implies one
involving {−5, 1,−2} due to shifting by −1. That implies, by Table 2, a
string involving only {−1, 2}. Tracing through the implications, we can
again combine columns to produce:

−1 2

0,−13,−6, 15, 2, 8, 21, 23, 4,−3,−1,−2, 6 1, 3,−4, 5, 7,−8,−5,−7

Table 3.

For the final step, the column headers are 3 apart, as are the numbers
−8 and −5, which belong to the “2” column. By shifting −7, a sequence
involving {−1, 2} will involve instead the numbers {−8,−5}, which ac-
cording to Table 3 implies a sequence involving only the number 2. Thus
we have consolidated all integers into a single column headed by a 2. Re-
membering the interpretation of the tables, this implies that any finite
string, however long, implies the existence of one of equal length involving
the single digit 2. This establishes Lemma 3 in the case of the example.

5. Proof of Lemma 3 in general

Begin with the Table of LA as described above. If two numbers in
a column have the same difference as two column headers, columns may
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be consolidated as described in the last section. If the Table of LA has as
column headers c1, c2, . . . , cn (all the periodic numbers), and some column
contains both ci+t and cj+t, for some integer t, then the consolidated table
can be described as follows: If a number m was in the column headed by
ci in the original table, in the new table m will be in the column headed by
the header of ci + t in the original table. The new headers are some proper
subset of the original headers. The new table has the same significance
as the previous: Any finite length substring in any line will imply the
existence of the same string in some other line with the original numbers
replaced by the column headers.

Repeat this consolidation process as many times as possible. In fact,
according to Lemma 4 below, the end result will be a single column headed
by a single periodic number. According to the meaning of the table, this
implies the existence of strings of arbitrary length consisting of a single
repeated digit, proving Lemma 3, and Theorem 2. It remains only to
establish:

Lemma 4. In a table of more than one column, created by the process

described above, with headers c1, . . . , ck, there exists a column containing

two numbers with difference equal to some ci − cj .

Proof of Lemma 4. Assume the ci are in increasing order. Replace
the header ci by hi, where hi = ci − c1. Then the hi are nonnegative and
in increasing order, with h1 = 0. For simplicity write the largest header
hk as d. (The hi are no longer necessarily periodic numbers, but that will
not matter to the proof. Essentially, we are replacing column headers by
their new values after a shift.) Since hi−hj = ci− cj , we must show some
column contains two numbers differing by some hi−hj . Assume this is not
the case. This assumption will severely restrict the ways in which integers
can be positioned in the body of the table.

The integers are partitioned into k columns headed by h1, h2, . . . , hk,
where h1 = 0 and hk = d. Consider the numbers 0 through d − 1 in the
body of the table. Call this set of numbers Block 0, or B0 for short. Like-
wise, B1 refers to the numbers d through 2d− 1, and in general Bi is the
set B0 + id, where i is any integer. Given the column locations of the num-
bers in B0, the locations of the numbers in B1 are completely determined:
Since the numbers in the set S = {d−h1, d−h2, . . . , d−hk−1, d−hk} are
located in k different columns by the assumption, the location of d = d−h1
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is determined by the location of the other k− 1 numbers in S, all of which
are in B0. Similarly d + 1 has its location determined by the locations of
{d + 1− h2, d + 1− h3, . . . , d + 1− hk}, all of which are in B0 ∪ {d}. Then
continuing, any m in B1 has its location determined by the locations of
elements in B0 or of elements smaller than m in B1, which were themselves
previously located using the knowledge about B0. In similar fashion, we
can show the location of numbers in B0 determines the location of numbers
in B−1. By continuing the argument, we see the location of the numbers
of B0 (or in fact of any one Bi) determines the location of all the integers
in the table.

Given Bi, let Pi denote the string of locations (column numbers) of
the members of Bi in their natural order. This produces a string of length
d using the symbols {1, 2, . . . , k}. Since only a finite number of such strings
exist, we must have Pi = Pi+t for some i and t. That is, the locations of
the numbers in block Bi are the same as for block Bi+t. (More accurately,
the number id +m in Bi is located in the same column as (i + t)d + m in
Bi+t, where m is between 0 and d−1.) By the argument above, since each
block will determine its adjacent block, this means that Pi+1 = Pi+t+1.
In fact, since each block will determine all other blocks, Pi+j = Pi+t+j for
any j. In short, Pj = Pj+t for any j. This means that any number m is in
the same column as m + td. Thus, numbers which are congruent modulo
td are in the same column of the table. This fact will lead to the desired
contradicton.

With r as defined earlier in the definition of LA, choose positive j

and s such that (Nr)(j+is) ≡ (Nr)j modulo (td) for any positive integer i.
This is possible since the pattern of (mod td) congruence classes of the
powers of Nr must begin to repeat at some stage.

Since (a1, a2, . . . , aN ) = 1, there are integers k′i such that
∑

k′iai = d.
This implies there is a number

∑
kiai congruent to d (mod (td)) with

each ki nonnegative. (We have d + (
∑

ai)(tdm) =
∑

(tdm + k′i)ai. For
sufficiently large m, letting ki = tdm + k′i, we have each ki nonnegative
and

∑
kiai ≡ d modulo (td) as desired.)

For the contradiction, let C = [Nr(j+s)a1 + Nr(j+2s)a1 + · · ·+
Nr(j+k1s)a1] +[Nr(j+k1s+s)a2 +Nr(j+k1s+2s)a2 + · · ·+Nr(j+k1s+k2s)a2] +
· · ·+[ Nr(j+k1s+k2s+···+kN−1s+s)aN + · · ·+Nr(j+k1s+k2s+···+kN s)aN ]. Here
there are ki terms involving ai, and the powers of Nr increase from term
to term by s, but are all congruent to Nrj modulo (td).
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It is easy to see that C is congruent to Nrj (
∑

kiai) modulo (td),
and hence to Nrjd modulo (td). Then C is in the same column as Nrjd
as noted above. Since aN = 0, we have FA

rj(Nrjd) = d, and hence
LA(d) = LA(Nrjd). Then d and Nrjd are in the same column in the
Table of LA, and hence in all derived tables as well. Then C is in the same
column as d.

On the other hand, repeated application of FA
r to C eventually results

in 0. (For each i, FA (ai) = 0, and hence FA
r(ai) = 0, since aN = 0.

Moreover, FA
r(mNr) = m for any m, again because aN = 0.) Since

aN = 0, 0 is periodic, and therefore LA(C) = 0. Then C is in the same
column as 0, which is a contradiction: As noted above, 0 and d are in
separate columns since their difference is d− 0 = hk − h1 = ck − c1. ¤
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