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On some class of hypersurfaces of semi-Euclidean spaces
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Abstract. In the paper we prove that under some additional curvature condition
the relations R ·R = 0 and R ·S = 0 are equivalent for hypersurfaces of semi-Euclidean
spaces. We present also examples of hypersurfaces having the curvature tensor expressed
by the square, in the sense of the Kulkarni–Nomizu product, of the Ricci tensor.

1. Introduction

Let (M, g), n = dimM ≥ 3, be a connected semi-Riemannian man-
ifold of class C∞ and let ∇ be its Levi–Civita connection. A manifold
(M, g) is said to be semisymmetric ([26]) if

(1) R ·R = 0

on M . Every locally symmetric manifold (∇R = 0) is semisymmetric. The
converse statement is not true. For precise definitions of the symbols used,
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we refer to Section 2. A semi-Riemannian manifold (M, g) is said to be
Ricci-semisymmetric if

(2) R · S = 0

on M . Every Ricci-symmetric manifold (∇S = 0) is Ricci-semisymmetric;
the converse statement is not true. Ricci-semisymmetric manifolds were
investigated by many authors (e.g., see [1], [9], [10], [23] and [24]). It
is clear that every semisymmetric manifold is Ricci-semisymmetric. The
converse statement is not true (e.g. see [11]). Although (1) and (2) do not
coincide for manifolds in general, it is a long standing question whether
the conditions R ·R = 0 and R · S = 0 are equivalent for hypersurfaces of
Euclidean spaces (see Problem P 808 of [25] by P. J. Ryan). We can also
consider the problem whether (1) and (2) are equivalent for hypersurfaces
of a semi-Riemannian space form Nn+1(c), and more general, the problem
of equivalence of (1) and (2) on semi-Riemannian manifolds, i.e. without
the assumption that a given manifold can be realized as a hypersurface in
a semi-Riemannian space form. A survey of results related to the above
subject is given in [12] (see also [1] and [17]).

In [14] it was shown that if M is a hypersurface of a semi-Euclidean
space En+1

s , with signature (s, n + 1 − s), n ≥ 4, satisfying on UC ⊂ M

the condition C ·R = LQ(g, C) then C ·R = 0 and R ·R = 0 hold on UC .
Recently, this result was extended to the case when the ambient space
is a semi-Riemannian space of constant curvature ([7]). In this paper we
consider semi-Riemannian manifolds (M, g), n ≥ 4, satisfying at every
point the condition

(∗) the tensors C ·R and Q(g, R) are linearly dependent.

We note that (∗) is satisfied on (M, g) if and only if

(3) C ·R = LQ(g,R)

on UR = {x ∈ M | R − κ
n(n−1)G 6= 0 at x}, where L is some function

on UR.
In Section 2 we prove that if (∗) is satisfied on (M, g), n ≥ 4, then

(M, g) is a manifold with pseudosymmetric Weyl tensor, i.e. a manifold
satisfying at every point the condition ([11], Section 12.6)

(∗)1 the tensors C · C and Q(g, C) are linearly dependent.
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(∗)1 is satisfied on (M, g) if and only if C · C = LCQ(g, C) on UC =
{x ∈ M | C 6= 0 at x}, where LC is some function on UC . We note that
UC as well as the set US = {x ∈ M | S − κ

ng 6= 0 at x} are subsets of
UR. We denote by Uκ the subset of M consisting of all points of the set
U = UC ∩ US ⊂ M at which the scalar curvature κ is nonzero. Semi-
Riemannian manifolds fulfilling (∗), (∗)1 or other conditions of this kind
are called manifolds of pseudosymmetry type. Recently, a review of results
on pseudosymmetry type manifolds was given in [13].

It is known that every hypersurface of a semi-Euclidean space satisfies
the following relation ([18], Corollary 3.1).

(4) R ·R = Q(S, R).

In Section 3 we consider Ricci-semisymmetric manifolds satisfying (∗)
and (4). In Theorem 3.1 we present curvature properties of such manifolds.
In particular, Theorem 3.1(vi) states that if (M, g), n ≥ 4, is a Ricci-
semisymmetric manifold satisfying at a point x ∈ Uκ ⊂ M the conditions:

L 6= ± κ
n−1 and L 6= κ

(n−2)(n−1) , then R =
(
2(n− 2)L + 2(n−2)

n−1 κ
)−1

S ∧ S

holds on some neighbourhood V of x. We present an example of a semi-
Riemannian manifold realizing assumptions of Theorem 3.1(vi). Namely,
we check that the warped product M ×F M̃ , p = dim M ≥ 2, n − p =
dim M̃ ≥ 2, with some warping function F , defined in Example 4.1 of [6], is
a manifold realizing the assumptions of Theorem 3.1(vi) (see Example 3.1).

In Section 4 we state that the mentioned above warped product can
be realized as a hypersurface of En+1

s (see Example 4.2). Further, in this
section we prove our main result (Theorem 4.1): For hypersurfaces of
En+1

s , n ≥ 4, satisfying (∗) the conditions of semisymmetry and Ricci-
semisymmetry are equivalent . Furthermore, we prove that (Theorem 4.2):
Every hypersurface M of En+1

s , n ≥ 4, having nilpotent shape operator
satisfies the following relation

(5) κR =
1
2
S ∧ S.

We note that the last equality implies (3) (Lemma 2.1(ii)). In Exam-
ple 4.1 we present some semisymmetric hypersurfaces of semi-Euclidean
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space satisfying (5). We prove also a converse statement (Theorem 4.3):
If (5) holds on the subset Uκ of a hypersurface M of En+1

s , n ≥ 4, then
on Uκ the shape operator A of M is nilpotent.

2. Preliminary results

We define on a semi-Riemannian manifold (M, g), n ≥ 3, the endo-
morphisms X ∧A Y , R(X, Y ) and C(X, Y ) by

(X ∧A Y )Z = A(Y, Z)X −A(X, Z)Y,

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

C(X, Y ) = R(X, Y )− 1
n− 2

(
X ∧g SY + SX ∧g Y − κ

n− 1
X ∧g Y

)
,

respectively, where the Ricci operator S is defined by S(X, Y ) = g(X,SY ),
S is the Ricci tensor, κ the scalar curvature, A a symmetric (0, 2)-tensor
and X,Y, Z ∈ Ξ(M), Ξ(M) being the Lie algebra of vector fields of M .
The tensor S2 is defined by S2(X, Y ) = S(SX,Y ). The tensor G, the
Riemann–Christoffel curvature tensor R and the Weyl conformal curva-
ture tensor C of (M, g) by G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),
R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4), C(X1, X2, X3, X4) =
g(C(X1, X2)X3, X4), respectively. For a (0, k)-tensor T , k ≥ 1, and a sym-
metric (0, 2)-tensor A, we define the (0, k + 2)-tensors R · T and Q(A, T )
by

(R · T )(X1, . . . , Xk; X, Y ) = (R(X,Y ) · T )(X1, . . . , Xk)

= −T (R(X, Y )X1, X2, . . . , Xk)

− · · · − T (X1, . . . , Xk−1,R(X, Y )Xk),

Q(A, T )(X1, . . . , Xk; X, Y )

= ((X ∧A Y ) · T )(X1, . . . , Xk) = −T ((X ∧A Y )X1, X2, . . . , Xk)

− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk),

respectively. Putting in the above formulas T = R, T = S, T = C or
T = G and A = g or A = S, we obtain the tensors: R · R, R · S, R · C,
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Q(g, R), Q(g, C), Q(S,R) and Q(S,C). The tensors C · R and C · C we
define in the same manner as the tensor R ·R; the tensor C · S is defined
in the same manner as the tensor R · S. For (0, 2)-tensors A and B we
define their Kulkarni–Nomizu product A ∧B by

(A ∧B)(X1, X2, X3, X4) = A(X1, X4)B(X2, X3) + A(X2, X3)B(X1, X4)

−A(X1, X3)B(X2, X4)−A(X2, X4)B(X1, X3).

Lemma 2.1. Let (M, g), n ≥ 3, be a semi-Riemannian manifold.

(i) ([20]) Let B be a symmetric (0, 2)-tensor on M and let UB be a

set consisting of all points of M at which B is not proportional to g. If at

a point x ∈ UB the following relation is satisfied: B ∧B = 2αg∧B +2βG,

α, β ∈ R, then α2 = −β and rank(B − αg) = 1 at x.

(ii) ([21]) If at a point x ∈ M the following condition is satisfied:

R = β
2 S ∧ S, β ∈ R − {0}, then R · R = Q(S, R) = 0 and C · R =

( 1
(n−2)β − κ

n−1 )Q(g, R) at x. In particular, if β = ((n− 2)τ + n−2
n−1κ)−1 and

τ + κ
n−1 6= 0 then C ·R = τQ(g,R) at x.

Examples of manifolds fulfilling R = β
2 S ∧ S are present in [21] (see

also Example 4.1).
Let (M, g), n ≥ 4, be a semi-Riemannian manifold. We denote by

Ghijk, Chijk and (C · R)hijklm the local components of the tensors G, C

and C ·R, respectively. Thus, by definition, we have the following relations:
Ghijk = ghkgij − ghjgik,

Chijk = Rhijk − 1
n− 2

(ghkSij + gijShk − ghjSik − gikShj)(6)

+
κ

(n− 1)(n− 2)
Ghijk,

(C ·R)hijklm = grs(RrijkCshlm + RhrjkCsilm + RhirkCsjlm(7)

+ RhijrCsklm),

respectively. We have also the following identities:

grsQ(g, R)hrsklm = ghlSkm + gklShm − ghmSkl − gkmShl(8)

= Q(g, S)hklm,
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grsQ(g,R)rijkls = gklSij − gjlSik − (n− 1)Rlijk,(9)

grsQ(S,R)hrsklm = Alkhm −Alhmk −Amkhl + Amhlk,(10)

grsQ(S, R)rijkls = Alijk −Ailjk −Ajilk −Akijl(11)
− κRlijk + SklSij − SjlSik,

Amijk = Smrg
rsRsijk = S s

mRsijk, S p
m = grpSmr.(12)

Applying (6) in (7) we get

(C ·R)hijklm = (R ·R)hijklm − 1
n− 2

Q(S,R)hijklm(13)

+
κ

(n− 1)(n− 2)
Q(g,R)hijklm

− 1
n− 2

(ghlAmijk − ghmAlijk − gilAmhjk + gimAlhjk

+ gjlAmkhi − gjmAlkhi − gklAmjhi + gkmAljhi),

where (R ·R)hijklm, Q(S, R)hijklm and Q(g,R)hijklm are the local compo-
nents of the tensors R ·R, Q(S,R) and Q(g,R), respectively.

If (3) is satisfied on the set UR ⊂ M then (13) turns into

(R ·R)hijklm =
1

n− 2
Q(S,R)hijklm(14)

+
(

L− κ

(n− 1)(n− 2)

)
Q(g, R)hijklm

+
1

n− 2
(ghlAmijk − ghmAlijk − gilAmhjk + gimAlhjk

+ gjlAmkhi − gjmAlkhi − gklAmjhi + gkmAljhi).

Contracting this with gij and using (8) and (10) we obtain

R · S = Q(g, D),(15)

D =
1

n− 2
S2 + µS, µ = L− κ

(n− 1)(n− 2)
.(16)

We note that we can present (15) in the form

(17) (R · S)hijk = Ahijk + Aihjk = ghjDik + gijDhk − ghkDij − gikDhj .
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Contracting this with gij we get

(18) Bkm = − 2
n− 2

S2
km − nµSkm + ρgkm, ρ =

tr(S2)
n− 2

+ κµ,

where Bkm = SrsRrkms. Further, summing (17) cyclically in h, j, k, we
obtain

(19) Ahijk + Ajikh + Akihj = 0.

Now (10) and (11) reduce to

grsQ(S, R)hrsklm = Ahklm + Akhlm,(20)

grsQ(S, R)rijkls = −Ailjk − κRlijk + SklSij − SjlSik.(21)

Proposition 2.1. If the condition C · R = LQ(g, R) is satisfied on
the subset UC ⊂ M of a semi-Riemannian manifold (M, g), n ≥ 4, then
C · C = LQ(g, C) on UC .

Proof. Contracting (C · R)hijklm = LQ(g, R)hijklm with gij and
using (6)–(8), we find

(22) (C · S)hklm = LQ(g, S)hklm.

Further, applying (6) and (22) in the identity

(C · C)hijklm = grs(CrijkCshlm + ChrjkCsilm + ChirkCsjlm + ChijrCsklm)

we obtain

(C · C)hijklm = (C ·R)hijklm − 1
n− 2

(
ghk(C · S)ijlm + gij(C · S)hklm

− ghj(C · S)iklm − gik(C · S)hjlm

)
,

which by making use of (3) and (22), after straightforward calculations,
turns into

(C · C)hijklm = LQ(g, C)hijklm,

which completes the proof our proposition. ¤
From the above result it follows immediately the following

Theorem 2.1. A semi-Riemannian manifold (M, g), n ≥ 4, fulfilling
(∗) is a manifold with pseudosymmetric Weyl tensor.
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3. Ricci-semisymmetric manifolds fulfilling (3) and (4)

Let (3) and (4) be satisfied on the subset UR of a semi-Riemannian
manifold (M, g), n ≥ 4. Now, by our assumptions, (14) turns on UR into

n− 3
n− 2

Q(S, R)hijklm = µQ(g, R)hijklm(23)

+
1

n− 2
(ghlAmijk − ghmAlijk − gilAmhjk + gimAlhjk

+ gjlAmkhi − gjmAlkhi − gklAmjhi + gkmAljhi).

Contracting this with ghm and using (9), (17) and (21) we obtain

2Alijk = − n− 3
2(n− 2)

(S ∧ S)lijk +
(

n− 3
n− 2

κ− (n− 1)µ
)

Rlijk(24)

+ µ(gklSij − gjlSik) +
1

n− 2
(gklBij − gjlBik)

+
n− 3
n− 2

(ghjDik + gijDhk − ghkDij − gikDhj).

We assume now that the hypersurface M is Ricci-semisymmetric. We
restrict our considerations to the set US ⊂ M . Now (17) yields

(25) (R · S)hijk = Ahijk + Aihjk = 0,

which, by contraction with ghk, gives B = S2. Applying this in (18) we
obtain

1
n− 2

S2 + µS =
1
n

ρg,(26)

1
n− 2

B + µS =
1
n

ρg.(27)

By (26), (16) turns into

(28) D =
1
n

ρg.
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By making use of (27) and (28), (24) reduces to

2Alijk = − n− 3
2(n− 2)

(S ∧ S)lijk(29)

+
(

n− 3
n− 2

κ− (n− 1)µ
)

Rlijk +
1
n

ρGlijk.

Transvecting (29) with S l
m and symmetrizing the resulting equality in j,

m and applying (25) we find

(30)
n− 3

2(n− 2)
Q(S, S2) = ρQ(g, S).

On the other hand, (26) implies

(31) − n

n− 2
Q(S, S2) = ρQ(g, S).

Further, (30) and (31) yield ρQ(g, S) = 0, whence, in view of Lemma 2.4
(i) of [18], it follows that ρ = 0 on US . Thus (29) turns into

(32) 2Alijk = − n− 3
2(n− 2)

(S ∧ S)lijk + (κ− (n− 1)L)Rlijk.

In addition, (26) reduces to

(33) S2 = −(n− 2)µS,

Next, transvecting (32) with S l
m and using (33) we get

(34) (−2(n− 2)µ− κ + (n− 1)L)Alijk = (n− 3)
µ

2
(S ∧ S)lijk.

We finish this section with the following

Theorem 3.1. Let the conditions: C ·R = LQ(g,R), R ·R = Q(S, R)
and R · S = 0 be satisfied on the subset U = UC ∩ US ⊂ M of a semi-

Riemannian manifold (M, g), n ≥ 4, and let x be a point of U .

(i) If µ and κ vanish at x then at x we have: C ·R = 0 and

(35) Q

(
S, R− 1

2(n− 2)
g ∧ S

)
= 0.
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(ii) If µ = 0 and κ 6= 0 at x then at x we have: κR = 1
2S ∧ S and

(36) R ·R = Q(S, R) = 0.

(iii) If µ 6= 0 and κ = 0 at x then at x we have:

(37) Q

(
S − L

2
g, R− 1

2(n− 2)L
S ∧ S

)
= 0.

(iv) If µ 6= 0, κ 6= 0 and L− κ
n−1 = 0 at x then at x we have:

(38) Q

(
S − κ

n− 1
g, R− n− 1

4(n− 2)
S ∧ S

)
= 0.

(v) If µ 6= 0, κ 6= 0, L− κ
n−1 6= 0 and L+ κ

n−1 = 0 at x then at x we have:

rankS = 1, A = κR and (36).

(vi) If µ 6= 0, κ 6= 0, L− κ
n−1 6= 0 and L+ κ

n−1 6= 0 at x then at x we have:

(36) and

(39) R =
(

2(n− 2)L +
2(n− 2)
n− 1

κ

)−1

S ∧ S.

Proof. (i) If µ and κ vanish at x then L = 0 and C · R = 0 at x.
From (32) we get A = − n−3

4(n−2)S ∧ S. Now (23) turns into Q(S,R) =
− 1

4(n−2)Q(g, S ∧ S), which, by making use of the equality (16) of [3],
completes the proof in the first case.

(ii) By our assumptions (34) reduces to (L − κ
n−1 )A = 0, whence it

follows that A vanishes at x. Now (23) and (32) complete the proof of (ii).

(iii) (32), by the assumption κ = 0, takes the form A = − n−3
4(n−2)S ∧

S − (n−1)L
2 R. Next, applying the above relations in (23) we get (37).

(iv) We note that (34) reduces to A = − n−3
4(n−2)S ∧ S. Applying this

in (23) we obtain (38).

(v) (32), by multiplication by µ and making use of (34), yields

((n− 1)L− κ)(A + (n− 2)µR) = 0,(40)

A = −(n− 2)µR.(41)
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Evidently, from (41) we obtain A = κR. Applying this in (32) we get
S ∧ S = 0, whence rank S = 1. In addition, from (23) it follows that (36)
holds at x.

(vi) We note that (32), by making use of (41), turns into (39). Now
Lemma 2.1(ii) completes the proof in the last case. Our theorem is thus
proved. ¤

Remark 3.1. From (35) and (38), by making use of results of [16]
(Lemma 3.4, Theorem 4.2), we can obtain more information about the
curvature tensor R of the semi-Riemannian manifolds considered in the
last theorem.

Example 3.1. Let M be a nonempty open connected subset of Rp,
p ≥ 2, equipped with the standard metric g, gab = εaδab, εa = ±1,
where a, b ∈ {1, . . . , p}. We put F = F (x1, . . . , xp) = k exp(ξaxa), where
k, ξ1, . . . , ξp ∈ R, ξ2

1 +· · ·+ξ2
p > 0 and k > 0. Further, let Ñ be a nonempty

open connected subset of Rn−p, n ≥ 4, equipped with the standard metric
g̃, g̃αβ = εαδαβ , εα = ±1, where α, β ∈ {p + 1, . . . , n}. We consider the
warped product M×F Ñ of the manifolds (M, g) and (Ñ , g̃) with the warp-
ing function F defined above. This warped product satisfies the following
relations ([6], Example 4.1):

(42)

Sab = −n− p

4
ξaξb, Sαβ =

(
− tr T

2
− n− p− 1

4F
∆1F

)
g̃αβ ,

Tab =
F

2
ξaξb,

∆1F = F 2ξfξf , trT =
F

2
ξfξf , κ = − (n− p)(n− p + 1)

4
ξfξf ,

where ξf = gefξe. We note that if p = 1 then the warped product M×F Ñ

is a conformally flat manifold ([6], Example 4.1). Therefore we consider
only the case: p ≥ 2. In that case the warped product M ×F Ñ is a non
conformally flat semisymmetric manifold satisfying (4) ([6], Example 4.1).
Further, using the above relations we can easily check that M×F Ñ satisfies

(43) κR =
n− p + 1
2(n− p)

S ∧ S.
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By Lemma 2.1(ii), we have also on M ×F Ñ the following relation

(44) C ·R = − (p− 2)κ
(n− 2)(n− 1)(n− p + 1)

Q(g, R).

It is clear that there exist the constants ε, εa, and ξa such that ξfξf is
nonzero. Now the scalar curvature κ of the manifold M ×F Ñ is nonzero.
Thus we see that the assumptions of Theorem 3.1(vi) are fulfilled.

4. Hypersurfaces satisfying (5)

Let M , n = dim M ≥ 3, be a connected hypersurface immersed iso-
metrically in a semi-Riemannian manifold (N, g̃). We denote by g the
metric tensor of M , induced from the metric tensor g̃. Further, we denote
by ∇̃ and ∇ the Levi–Civita connections corresponding to the metric ten-
sors g̃ and g, respectively. Let ξ be a local unit normal vector field on M
in N and let ε = g̃(ξ, ξ) = ±1. We can present the Gauss formula and
the Weingarten formula of M in N by: ∇̃XY = ∇XY + εH(X, Y )ξ and
∇̃Xξ = −A(X), respectively, where X, Y are vector fields tangent to M ,
H is the second fundamental tensor of M in N , A is the shape operator of
M in N and Hk(X, Y ) = g(Ak(X), Y ) and tr(Hk) = tr(Ak), where k ≥ 1.
We assume that the ambient space is a semi-Euclidean space En+1

s , n ≥ 3.
The Gauss equation of M in En+1

s we can present in the form R = ε
2H∧H,

where R is the curvature tensor of M . Let the equations xr = xr(yh) be
the local parametric expression of M in En+1

s , where yr and xr are the
local coordinates of M and En+1

s , respectively, and h, i, j, k, l ∈ {1, . . . , n}
and r ∈ {1, . . . , n + 1}. Thus we have

(45) Rhijk = ε(HhkHij −HhjHik), ε = ±1,

where Rhijk and Hhk are the local components of the tensors R and H,
respectively. Contracting (45) with gij and ghk we obtain

Shk = ε(tr(H)Hhk −H2
hk),(46)

κ = ε((tr(H))2 − tr(H2)),(47)

respectively, where H2
hk = gijHihHjk. From (46), by transvection with

S h
l , we obtain

(48) S2
lk = H4

lk − 2 tr(H)H3
lk + (tr(H))2H2

lk,
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where H3
hk = gijH2

ihHjk and H4
hk = gijH3

ihHjk. It is well known that on
every hypersurface M of a semi-Riemannian space of constant curvature
Nn+1(c), n ≥ 4, the following condition is satisfied ([18]): R·R−Q(S, R) =
− (n−2)eκ

n(n+1)Q(g, C), where κ̃ is the scalar curvature of the ambient space.
Evidently, when the ambient space is En+1

s , n ≥ 4, the last relation reduces
to (4).

Proposition 4.1. If the conditions: C · R = LQ(g, R) and R · S = 0
are satisfied on the subset UC of a hypersurface M of En+1

s , n ≥ 4, then

R ·R = 0 on UC .

Proof. From Theorem 2.1 it follows that C · C = LQ(g, C) on UC .
Now, in view of Theorem 4.1 of [8], we obtain (1) on UC , which completes
the proof. ¤

Theorem 4.1. For every hypersurface of En+1
s , n ≥ 4, which satisfy

(∗) the conditions of semisymmetry and Ricci-semisymmetry are equiva-

lent.

Proof. (1) and (2) are equivalent on the set M−UC ([15], Lemma 2).
Proposition 4.1 yields the equivalence of both conditions on UC . Our
theorem is thus proved. ¤

Example 4.1 ([14], Examples 4.1 and 5.1). Let (Ñ , g̃), be a 1-dimen-
sional Riemannian manifold. Let M be a nonempty open connected subset
of Rp, p = n − 1 ≥ 3, equipped with the standard metric g, gab = εaδab,
εa = ±1. We put F = F (x1, . . . , xp) = k exp(ξaxa), where ξ1, . . . , ξp and
k are constants such that ξ2

1 + · · · + ξ2
p > 0, gabξaξb = 0 and k > 0. We

consider the warped product M̄ ×F Ñ . This warped product satisfies the
following relations:

(49)
Rabcd = 0, Rnabn = −F

4
ξaξbg̃nn, Tab =

F

2
ξaξb, tr(T ) = 0,

∆1F = 0, Sab = −1
4
ξaξb, Snn = 0, S2 = 0 κ = 0,

respectively. Using the above formulas we can check that the manifold
M ×F Ñ satisfies the following conditions: rank S = 1, κ = 0, S2 = 0,
R · R = 0 and C(SX1, X2, X3, X4) = 0, for any vector fields X1, . . . , X4

on M . These relations imply R(SX1, X2, X3, X4) = 0, i.e. the tensor A
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with the local components Ahijk defined by (12), is a zero tensor. It is clear
that (5) trivially is fulfilled on M . Let H be the (0, 2)-tensor on M ×F Ñ ,
with the local components Hij , defined by Hab = − ε

4l

√
Fξaξb, Han = 0,

Hnn = l
√

F g̃nn, where ε = ±1 and l is a positive constant. The tensor H

fulfils (45) and H3 = tr(H)H2. Furthermore, we can check that H is a
Codazzi tensor. Thus we see that the manifold M ×F Ñ can be realized as
a hypersurface immersed isometrically in En+1

s . Therefore on M we have:
R · R = Q(S, R) = 0. Now (13) reduces on M to C · R = 0. In addition,
the tensor H2, with the local components H2

hk, of the hypersurface M is a
nonzero tensor. We note also that (M, g) satisfies S ·R = 0. Hypersurfaces
satisfying the last condition were investigated in [2] and [3].

We note that, in virtue of (45)–(47), (5) is equivalent to

H2
hkH2

ij −H2
hjH

2
ik + tr(H2)(HhkHij −HhjHik)(50)

= tr(H)(HhkH2
ij + HijH

2
hk −HhjH

2
ik −HikH2

hj).

As an immediate consequence of the above remark we have the following

Theorem 4.2. Every hypersurface of En+1
s , n ≥ 4, having nilpotent

shape operator A, satisfies the relation κR = 1
2S ∧ S.

Examples of hypersurface of En+1
s , having nilpotent shape operator

are presented in [22].

Proposition 4.2 (cf. [19], Lemma 1). Let M be a hypersurface of

En+1
s , n ≥ 4. If at a point x ∈ UR ⊂ M the second fundamental tensor H

of M satisfies the condition

(51) H2 = αH + βg, α, β ∈ R,

then R · S = −εβQ(g, S) at x.

Further, as an immediate consequence of Proposition 3.1 of [5], we
have

Proposition 4.3. Let M be a Ricci-semisymmetric hypersurface of

En+1
s , n ≥ 4. Then at every point x ∈ US ⊂ M the following relation is

satisfied

(52) H3 = tr(H)H2 + λH, λ ∈ R.
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Proposition 4.4. Let M be a Ricci-semisymmetric hypersurface of a

semi-Euclidean space En+1
s , n ≥ 4. Then at every point x ∈ US ⊂ M we

have: (52) and the tensor H2 is not a linear combination of the tensors H

and g, or H2 = αH, α 6= tr(H), α ∈ R.

Proof. We suppose that (51) is satisfied at a point x ∈ US . From
the fact that the tensor R ·S vanishes at x it follows that β = 0 at x. Thus
(51) reduces to H2 = αH. In addition, if α = tr(H) then H2 = tr(H)H
and, by (46), S = 0, a contradiction. Thus α 6= tr(H) at x. The last
remark completes the proof. ¤

Let now M be a hypersurface of En+1
s , n ≥ 4, satisfying (5). First of

all we note that (5) holds on M − UR if and only if its curvature tensor
R vanishes on M − UR. Similarly, (5) holds on M − US if and only if its
Ricci tensor S vanishes on M − US . Let x be a point of the set M − UC .
The identity

κC = κR− κ

n− 2
g ∧ S +

κ2

(n− 1)(n− 2)
G,

by making use of (5) and C = 0, turns into

S ∧ S =
2κ

n− 2
g ∧ S +

2κ2

(n− 1)(n− 2)
G.

Applying to this Lemma 2.1(i) we get 4κ2

(n−2)2 = 4κ2

(n−1)(n−2) and rank(S −
κ

n−2g) = 1, whence it follows that κ = 0 and rank S = 1 on M − UC . Let
now x ∈ UR ⊂ M . We note that that from (5) it follows immediately that
κ vanishes at x if and only if rank S ≤ 1 at x. We recall that in Example
4.1 it was stated that there exist hypersurfaces of a semi-Euclidean space
satisfying the conditions: κ = 0, rank S = 1 and H2 6= 0. Thus we see, that
with respect to the above comments, we can restrict our considerations to
the set Uκ consisting of all points of the set U = US ∩ UC ⊂ M at which
the scalar curvature κ of M is nonzero. Evidently, from (5) it follows that
R · S = 0, S2 = 0, and A = 0 on U , where the tensor A is defined by (12).
The last two relations, by (45)–(48), turn into

H4 = 2 tr(H)H3 − (tr(H))2H2,(53)

tr(H)(H2
hkHij −H2

hjHik) = H3
hkHij −H3

hjHik,(54)
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respectively. We recall that a hypersurface M is quasiumbilical at a point
x ∈ M if its tensor H has at this point the following decomposition:
H = αg + βw ⊗ w, where w ∈ T ∗x (M) and α, β ∈ R. By the main
result of [18], M is quasiumbilical at x if and only if its Weyl conformal
curvature tensor C vanishes at this point. Thus we see that U has no
quasiumbilical points. Since (U, g) is a Ricci-semisymmetric hypersurface,
from Proposition 4.4 it follows that at every point x ∈ U at least one of
the following two equations must be fulfilled: H2 = αH, α 6= tr(H), or
H3 = tr(H)H2+λH, λ ∈ R, and the tensor H2 is not a linear combination
of the tensors H and g. In the first case, (53) turns into α(α2−2 tr(H)α+
(tr(H)2)H) = 0, whence α(α − tr(H)) = 0. Since α − tr(H) 6= 0, the
last relation reduces to α = 0, i.e. H2 = 0. We consider now the second
case. First of all, we note that (54) reduces to λ(HijH

2
hk −HikH2

hj) = 0,
whence, by symmetrization in h, i we obtain λQ(H,H2) = 0. This, in
view of Lemma 2.4(i) of [18], implies λ = 0. Thus we have at x: H3 =
tr(H)H2. Transvecting now (50) with Hh

l and using the last relation we
obtain (tr(H2) − (tr(H))2)(HijH

2
lk − HikH2

lj) = 0. Symmetrizing this
in l, i we obtain (tr(H2) − (tr(H))2)Q(H, H2) = 0, which, in view of
Lemma 2.4(i) of [18] and (47), implies κ = 0, a contradiction. Thus we
have proved the following

Theorem 4.3. If M is a hypersurface of En+1
s , n ≥ 4, such that

κR = 1
2S ∧S is fulfilled on the set Uκ ⊂ M then on Uκ the shape operator

A of M is nilpotent.

Example 4.2 ([6], Example 4.1). Let M×F Ñ , p = dim M ≥ 2, n−p =
dim M̃ , n ≥ 4, be the warped product defined in Example 3.1. Let τ be
a function on M ×F Ñ such that τ2 = − ε

4ξfξf , ε = ±1, on M ×F Ñ . It
is clear that there exist constants ε, εa, and ξa such that the function τ
is nonzero at every point x of M ×F Ñ and the right-hand side of the
last relation is positive at every point x. Further, let H be the (0, 2)-
tensor on M×F Ñ , with local components Hij , defined by Hab = − 1

4τ ξaξb,
Haα = 0, Hαβ = ετgαβ . We can check that the following relations are
satisfied on M×F Ñ : ∇XH(Y,Z) = ∇Y H(X, Z) and R(X1, X2, X3, X4) =
ε
2 (H ∧H)(X1, X2, X3, X4), where X,Y, Z,X1, . . . , X4 are vectors fields on
M ×F Ñ . Thus we see that the manifold M ×F Ñ can be realized as a
hypersurface of a semi-Euclidean space En+1

s ([6] (Example 4.1). Clearly,
on such hypersurface (43) is satisfied. Since p ≤ n−2 < n−1, (43) cannot
reduce to (5). Thus the constructed above hypersurface do not satisfy the
assumptions of Theorem 4.3.
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Example 4.3. The product manifold of the p-dimensional standard
sphere Sp, p≥ 2, and a (n− p)-dimensional Euclidean space En−p, n≥ 4,
is a semisymmetric manifold satisfying the following condition ([21]): κR =
p(p−1)

2 S ∧ S. It is known that this product manifold can be realized as a
hypersurface of a (n + 1)-dimensional Euclidean space En+1.
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