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An inductive definition of higher gap
simplified morasses

By ISTVÁN SZALKAI (Veszprém)

Abstract. In this paper we give an inductive definition of higher (finite) gap sim-
plified morasses and prove their existence in L. Our construction continues Velleman’s
gap-2 definition [Ve8] towards higher (finite) gaps, after revealing the inner structure of
and the hierarchical connection among these combinatorial set- theoretical structures
of different gaps.

Our presented variant is different from Ch. Morgan’s [Mo] and Jensen’s [Je1]
ones and has application in [Sz1].

The present paper contains Sections 1 and 5 of the author’s Thesis [Sz2] dated
1991.

0. Introduction

Professor R. B. Jensen in 1972 [Je1] first defined structures which
he called “gap-β morasses of height κ” or shortly “(κ, β) morasses” for
every regular κ ≥ ω1 and for any (finite or infinite) 1 ≤ β < κ.

In 1984 D. Velleman [Ve2] invented the gap-1 so called “simplified
morasses” which possess much simpler structure and applications than
Jensen’s original ones, and he deduced that “there exists a simplified gap-1
morass iff there is a Jensen’s gap-1 morass”. He in 1987 in [Ve8] went fur-
ther. He defined the gap-2 simplified morasses and showed the consistency
of their existence by forcing. Jensen in the same year in [Je2] gave a direct
construction of gap-2 simplified morasses from his original gap-2 morasses.

Ch. Morgan in 1989 in his thesis [Mo] gave a definition of his higher
(finite) gap simplified morasses. He constructed these kinds of morasses
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from Jensen’s original higher gap morasses. This is because the idea of his
definition (based on sets of sequences of ordinals) is closer to Jensen’s one
than to Velleman’s: building of gap-2 morass from gap-1 morass-segments.

The present author in 1987 in [Sz1] and his PhD thesis [Sz2] gave
an alternate, inductive definition of higher (finite) gap simplified morasses
which are more similar to Velleman’s gap-2 definition of [Ve8], and he
constructed them from Morgan’s higher gap morasses. The gap-1 special
case of both variants (Morgan’s and Szalkai’s), give exactly Velleman’s
gap-1 simplified morasses. Furhermore, our definition presented in this
paper gives also in the gap-2 case precisely Velleman’s gap-2 simplified
morasses. Our idea is similar to Velleman’s idea: we build up higher gap
structures from suitable parts of smaller gap ones.

The aim of the present paper is to publish our definition and the
contsruction of our inductive higher gap simplified morasses from Morgan’s
morasses (see Sections 1.b and 3). The present paper is a part of the
author’s Thesis [Sz2].

In [Sz1], [Sz2] we also discuss several properties and an application

of our higher gap simplified morasses, and a definition of full linearizing
sequences for higher gaps. We think the existence of higher gap simplified
morasses with full linearizing sequences can be proved by forcing, similar
to the one presented in [Ve8]. We do not know any definition of simplified
morasses of infinite height. We intend to construct Morgan’s morasses
from ours in a forthcoming paper.

Organization of the paper: in Section 1 we give the definitions of
Velleman’s gap-1 and gap-2 simplified morasses (Section 1.a) and of our
inductive higher gap simplified morasses (Section 1.b). In Section 2 we
present Morgan’s definition. Section 3 contains the construction of our
higher gap simplified morasses, from a Morgan’s one.

Thanks. Here we say many thanks to prof. R. Jensen and to D. Vel-

leman for their discussions and warm hospitality in Oxford in 1987, and
resp. in Amherst in 1991, and last but not least to prof. A. Kanamori

for his valuable letters and the unknown referee for his suggestions for
improvement.

History

Professor R. B. Jensen in 1972 [Je1] first defined the (κ, β)-morasses
for any 1 ≤ β < κ and regular κ ≥ ω1. He extracted these structures from
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the fine structure of L while proving the two-cardinal transfer property.
These structures allow us to construct objects of size κ+β in κ steps, in
each step building objects of size < κ and, in the meantime, to handle
each subobject of κ+β of size < κ. (This is why this and similar structures
play a big role in combinatorial set theory.) For the gap-1 case (β = 1)
definitions see e.g. [CK], [Je0], [De0], [De1], [St1] or [Ve0]. The higher gap
definitions are unpublished, see [Je1], [Je2] and [St0].

Jensen proved in [Je0] for β = 1 and in [Je1] for any β ≥ 1 that
these morasses do exist in L for all regular κ. Jensen’s original proof for
the gap-1 case was simplified by K. Devlin in [De0], [De1]. S. Shelah

and L. J. Stanley proved in 1979 that for all A ⊆ ω1 there is an (ω1, 1)-
morass in L[A], see [SS0] or [De1]. Devlin in [De1] proved that there is
an (ω1, 1)- morass if ω2 is not an inaccessible cardinal in L. Stanley forced
gap-1 morasses in [St1]. P. Komjáth in [Ko] showed that Levy collapsing
an inaccessible cardinal to ω1 there would not be (ω1, 1) morass, supposing
the consistency of the existence of a Mahlo cardinal.

Many morass-like combinatorial structures have been developed for
deciding combinatorial problems and their existence was proven in L.
(Coarse morasses by Donder [Do0], quagmires by Burgess [Bu1], Sil-
vers’s Wκ principle e.g. in [Bu0] or [Ka0].) These structures and the mo-
rasses have many applications in combinatorial set theory, we only refer
to [Bu1], [Re], [Mi], [CK], [St0], [St1] and almost all papers of Kanamori
and of Velleman. In [HK], [SS2], [SS3] the authors conjectured that their
results can also be obtained by morasses. Some of these conjectures were
justified by Stanley, Velleman, Morgan in [SVM] and independently
by Szalkai in [Sz0] and in [Sz2]. See also Komjáth’s paper [Ko]. Further,
[Ka0], [Ka1], [Ka2] contain partial survey, while [Sz2] contains a detailed
survey of these structures, their existence and their applications.

In the meantime, in the early 80’s Shelah, Stanley, Solovay, Velleman
and others were looking for Martin’s Axiom-like forcing axioms which are
valid in L. This was result of a procedure motivated by a question of
K. Kunen (see e.g. [Ve0]):

“Why are there so many statements which can be shown to be consis-
tent with ZCF by forcing, and which are also true if V = L?”

S. Shelah and L. Stanley in [SS0], [SS1] and independently D. Velle-

man in [Ve0] obtained Martin’s Axiom like forcing axioms which are, in
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fact equivalent to the existence of gap-1-morasses. (R. Solovay begun sim-
ilar investigations in 1977 which remained unpublished.)

D. Velleman [Ve2] originally deduced the fact that there exists a
simplified gap-1 morass iff there is a Jensen’s original gap-1 morass via his
forcing principle (which answered Kunen’s question), later H. D. Donder

in [Do1] gave a direct proof for this fact. Forcing gap-1 simplified morasses
is an exercise, similar to forcing Silvers’s Wκ in [Bu0].

For many combinatorial problems (see e.g. [Ka0], [Ka1], [SS1], [Ve0])
simplified morasses themselves were not enough, Velleman in [Ve3] de-
fined the notion of linearizing sequences, and the notion of simplified mo-
rasses with buit in diamond . He showed the consistency of their exis-
tence for all but not weakly compact regular height by forcing in [Ve3].
H. D. Donder showed the following: (a) if there is a (κ, 1)-simplified morass
with linearizing sequences then κ is not weakly compact, (b) V = L implies
the existence of (κ, 1)-simplified morasses with linearizing sequences for all
κ not weakly compact cardinal.

Velleman’s simplified morasses provide us easier applications (con-
structions) since their structure are indeed simpler than Jensen’s morasses’,
and the existence of these two kinds of morasses are equivalent.

Looking for gap-n (n ≥ 1) simplified morasses we have to emphasize
their main property which is mainly used in applications: in κ many steps,
using objects of size < κ, we can build an object of size κ+ (if n = 1) or
of size κ+n (for any n), and so we can fix all < κ size subset of κ+n.

Velleman in [Ve8] defined the gap-2 simplified morasses and showed
the consistency of their existence by forcing. Jensen in [Je2] gave a direct
construction of gap-2 simplified morasses from his original gap-2 morasses.
As have we mentioned in the Introduction, Morgan and Szalkai indepen-
dently defined higher gap simplified morasses. Morgan [Mo] constructed
these kinds of morasses from Jensen’s original higher gap morasses, his
definition can be seen in our Definition 3.1. The present author in [Sz1],
[Sz2] gave an alternate, inductive definition of higher (finite) gap simplified
morasses, which are more similar to Velleman’s gap-2 definition of [Ve8].
The idea: we build higher gap structures from suitable pieces of lower gap
ones: using the natural connection among them. Then he constructed
them from Morgan’s higher gap morasses. The gap-1 special case of both
variants (Morgan’s and Szalkai’s), give exactly Velleman’s gap-1 simplified
morasses. Furthermore, our definition presented in this paper gives also
in the gap-2 case Velleman’s gap-2 simplified morasses.
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For application of higher-gap morasses we can only refer to [Mo], [Sz1],
[Sz2] and [Ve8]. In [Sz2] we also discuss several properties (similar to the
ones in [Ve8]) and an application of our higher gap simplified morasses,
and a definition of full linearizing sequences for higher gap morasses.

We do not know any forcing axiom equivalent to higher gap morasses.
It is interesting to note that any gap simplified morasses (Velleman’s,

Morgan’s and our variants) can be defined of height ω0 while Jensen’s orig-
inal definition of morasses is meaningful only for height ≥ ω1. Further,
Velleman in [Ve5] showed that (ω0, 1)-simplified morasses do exist in
ZCF , and in [Ve9] he showed that his (ω0, 2)-simplified morasses do exist
supposing the existence of a (ω1, 1)-simplified morass. This latter assump-
tion is necessary since for each n < ω0 if there exists a (κ, n)-simplified
morass, then there must exist (κ+s,m)-simplified morasses where 0 ≤ s,
m < n and m + s ≤ n (see our Statement 1.12).

Some noncommon notation

f ◦ g denotes the composition of any functions f and g:
(f ◦ g)(x) = f(g(x)) for any x ∈ Dom(g) s.t. g(x) ∈ Dom(f).

f ¹ H is the restriction of the function f to any subset H of Dom(f),
f ′′H := Range (f ¹ H) is the range of f to the set H for any subset

H of Dom(f)
idM is the identity function for any structure M.1

f→ and g⇒ are short notations of sequences and double sequences,
〈fi : i ≤ θ〉 and 〈gi,j : i < j ≤ θ〉 resp. if θ is known but any fixed
ordinal. These sequences have length θ. We denote the restrictions of these
sequences to ζ, that is the sequences 〈fi : i ≤ ζ〉 and 〈gi,j : i < j ≤ ζ〉, by
f→ ¹ (ζ + 1) and g⇒ ¹ (ζ + 1), resp.

|H| denotes the cardinality of H, in case H is a set, and the length of
H, if H is a sequence.

In this paper κ always denotes a regular infinite cardinal, possibly
countable.

1This is clear if M is simply a set. For other relevant structures we will define this

notion later in its right place.
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1. Definitions

In this chapter we give the definitions of our higher gap simplified
morasses. Because of the cumbersome technical details, to warm up let us
recall the definitions of Velleman’s gap-1 and gap-2 simplified morasses,
which will be done in Section 1.a. We present our higher gap definition in
Section 1.b.

1.a Gap-1 and -2 simplified morasses

For easier understanding our higher gap morass definition now we
state here Velleman’s original definitions of gap 1 and gap 2 simplified
morasses from [Ve2] and [Ve8], respectively.

In what follows κ always denotes a regular cardinal.

1.1 Definition [Ve2]. M = 〈→ϕ,
⇒
F〉 is a gap-1 simplified morass of

height κ (or a (κ, 1)− SM for short) iff

(0)
→
ϕ = 〈ϕα : α ≤ κ〉 is an increasing sequence of ordinals ϕα less than

κ for α < κ, ϕκ = κ+, and
⇒
F = 〈Fαβ : α < β ≤ κ〉 where Fα,β

are nonempty sets of order preserving functions f : ϕα → ϕβ for
α < β ≤ κ

(1) (∀α < β < κ) |Fαβ | < κ

(2) (∀α < β < γ ≤ κ) Fαγ = Fβγ ◦ Fαβ = {f ◦ g : f ∈ Fβγ , g ∈ Fαβ}
(composition)

(3) (∀α < κ) Fα,α+1 = {id, hα} where id : ϕα → ϕα is the identity,
and hα is a shifting function: that is for some σα < ϕα (the so called
splitting point) we have hα(ξ) = ξ for ξ < σα and hα(σα+ζ) = ϕα+ζ

for σα + ζ < ϕα (amalgam property)

(4) For every α ≤ κ limit, β1, β2 < α, f1 ∈ Fβ1α, f2 ∈ Fβ2α there exist
a γ: β1, β2 < γ < α and h1 ∈ Fβ1γ , h2 ∈ Fβ2γ and g ∈ Fγα such that
f1 = g ◦ h1 and f2 = g ◦ h2.

(5) (∀α ≤ κ limit) (∀β < α)

ϕα =
⋃
{f ′′ϕβ : f ∈ Fβα} (covering property). ¤

Velleman [Ve2] calls these structures “neat expanded simplified mo-
rasses”, but later on (in [Ve3], [Ve5], [Ve8]) this definition becomes the
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definition of simplified morasses. We mention again that in Velleman’s
and in our definition κ may be ω0, but not in Jensen’s original definition.
Moreover, the above structures exist in ZFC also for κ = ω0 as it is shown
in [Ve5].

Now we turn to gap-2 structures.
If we replace simply ϕκ = κ+ by ϕκ = κ++ in (0) then the existence

of such structures is inconsistent, so the definition of gap-2 simplified mo-
rasses is not so trivial. Velleman’s idea is the following. We have to build
up κ++ from objects of size less than κ in κ steps, which can be done
by building up a (κ+, 1) simplified morass itself in κ steps, in each step
using a part of the final morass of size less than κ, a so called fake morass.
Of course in this case we have to define also the embeddings between
these gap-1 fake morasses. Definition 1.2(vii) gives the definition of gap-2
morasses, but before we need some preliminary definitions. In Defini-
tions 1.2(i) through (vii) κ ≥ ω0 is a regular cardinal. These definitions
are taken from [Ve8].

1.2 Definition (i). M = 〈→ϕ,
⇒
F〉 is a fake gap-1 morass segment of

height θ and of size less than κ iff θ < κ, and M satisfies (0) through (5)
of Definition 1.1 with the below modification:

→
ϕ = 〈ϕα : α ≤ θ〉,

⇒
F = 〈Fαβ : α < β ≤ θ〉, ϕθ < κ.

We denote the height of M by ht(M), that is ht(M) = θ.

1.2 Definition (ii). Let M = 〈→ϕ,
⇒
G〉 and N = 〈→ϕ′,

⇒
G′〉 be fake gap-1

morass segments of height θ and θ′, resp. Call the function set

f = 〈f−,
→
f ,

⇒
f 〉 an f : M→N embedding iff

(1) f− : (θ + 1) → (θ′ + 1) is an order preserving function, f−(θ) = θ′

(2)
→
f = 〈fζ : ζ ≤ θ〉 where fζ : ϕζ → ϕf−(ζ) are order preserving
functions for ζ ≤ θ

(3)
⇒
f = 〈fζξ : ζ < ξ ≤ θ〉 where fζξ : Gζξ → G′f−(ζ),f−(ξ) are functions for
ζ < ξ ≤ θ

(4) fζ(σζ) = σ′f−(ζ) for ζ < θ where σζ ∈ ϕζ and σ′f−(ζ) ∈ ϕ′f−(ζ) are the
relevant splitting points

(5) fζη(c ◦ b) = fξη(c) ◦ fζξ(b) for b ∈ Gζξ, c ∈ Gξη, ζ < ξ < η ≤ θ

(6) fξ ◦ b = fζξ(b) ◦ fζ for b ∈ Gζξ, ζ < ξ ≤ θ.
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1.2 Definition (iii). Let M = 〈→ϕ,
⇒
G〉 be an initial segment of M′ =

〈→ϕ′,
⇒
G′〉, that is θ < θ′, ϕ′ζ = ϕζ for ζ ≤ θ and G′ζξ = Gζξ for ζ < ξ ≤ θ.

Then the embedding f : M→M′ is called a left branching embedding

iff f− ¹ θ = id ¹ θ, fζ = id ¹ ϕζ for ζ < θ, fζξ = id ¹ Gζξ for ζ < ξ < θ,
f−(θ) = θ′, fθ ∈ G′θθ′ and (by (vii)6))

fζθ(b) = fζθ(b) ◦ fζ = fθ ◦ b for ζ < θ and b ∈ Gζθ.

1.2 Definition (iv). f : M→M′ is called a right-branching embed-

ding iff M = 〈→ϕ,
⇒
G〉 is an initial segment of M′ = 〈→ϕ′,

⇒
G′〉 and for some

ordinal η ≤ θ we have:

(1) f− ¹ η = id ¹ η and f−(η + ζ) = θ + ζ if η + ζ ≤ θ

(2) fζ = id ¹ ϕζ for ζ < η and fη ∈ G′ηθ

(3) fζξ = id ¹ Gζξ for ζ < ξ < η

and fζξ
′′Gζξ = G′f−(ζ),f−(ξ) for η ≤ ζ < ξ ≤ θ.

η is called the splitting point of f .

1.2 Definition (v). If M, M′ are as in (iii), then F is an amalgam

iff it contains all left-branching M→M′ embeddings (for all fθ ∈ G′θθ′),
exactly one right-branching embedding, and nothing else.

1.2 Definition (vi). The composition h = g ◦ f of the embeddings
f : M → M′ and g : M′ → M′′ is straightforward: h : M → M′′

where h− = g− ◦ f−, hζ = gf−(ζ) ◦ fζ for any ζ ≤ ht(M), and hζξ =
gf−(ζ),f−(ξ) ◦ fζξ for any ζ < ξ ≤ ht(M).

Now follows the definition itself:

1.2 Definition (vii). The structure M = 〈→ϕ,
⇒
G ,

→
θ ,
⇒
F〉 is called a (κ, 2)-

simplified morass, or (κ, 2)-SM for short, iff

(0) (a) Mκ = 〈→ϕ,
⇒
G〉 is a (κ+, 1)-simplified morass

(b)
→
θ = 〈θα : α ≤ κ〉 where θα < κ for α < κ, θκ = κ+, and further

the structures Mα := 〈→ϕ ¹ (θα + 1),
⇒
G ¹ (θα + 1)〉 are gap-1 fake

morasses of height θα, further Mα is an initial segment of Mβ

for α < β ≤ κ.
(c) Mα are of size less than κ for α < κ, (that is, ϕζ < κ for ζ ≤ θα

and |Gζξ| < κ for ζ < ξ ≤ θα and for α < κ).
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(d)
⇒
F = 〈Fαβ : α < β ≤ κ〉 where Fα,β are sets of Mα → Mβ

embeddings for α < β ≤ κ.

(1) (∀α < β < κ) |Fαβ | < κ

(2) (∀α < β < γ ≤ κ) Fαγ = Fβγ ◦ Fαβ = {f ◦ g : f ∈ Fβγ , g ∈ Fαβ}
(3) (∀α < κ) Fαα+1 is an amalgam

(4) For α ≤ κ limit, β1, β2 < α, f1 ∈ Fβ1α, f2 ∈ Fβ2α there exists
a γ: β1, β2 < γ < α and h1 ∈ Fβ1γ , h2 ∈ Fβ2γ , g ∈ Fγα such that
f1 = g ◦ h1 and f2 = g ◦ h2.

(5) (∀α ≤ κ limit)

(a) θα =
⋃{f− ′′θβ : f ∈ Fβα}

(b) (∀ ζ ≤ θα)
ϕζ =

⋃{fζ
′′ϕζ : f−(ζ) = ζ where (∃β < α) f ∈ Fβα & ζ ≤ θβ}

(c) (∀ ζ < ξ ≤ θα)
Gζξ =

⋃{fζ ξ
′′Gζ ξ : f−(ζ)= ζ, f−(ξ)= ξ, (∃β < α) f ∈Fβα & ζ, ξ≤ θβ}.

End of Definition 1.2. ¤

Velleman in [Ve8] forced (κ, 2)-simplified morasses for any regular
κ ≥ ω0 while Jensen in [Je2] constructed gap-2 simplified morasses from
his original gap-2 morasses which are usually are constructed in L for
κ ≥ ω1.

Further Velleman proved in [Ve9] the following interesting result
in ZFC: “There exists an (ω0, 2)-simplified morass iff there is an (ω1, 1)-
simplified morass.” (Note that Mκ is always an (κ+, 1)-simplified morass.)

Further, every gap-2 morass contains a gap-1 one of the same height:

it is esy to see, using the notation of Definition 1.2, that 〈
→
θ ,
⇒
H〉 is a (κ, 1)-

simplified morass, where
⇒
H = 〈hα,β : α < β ≤ κ〉 and hα,β = {f− ¹ θα :

f ∈ Fα,β} for α < β ≤ κ.

1.b Higher gap simplified morasses

In this section we present our definition of higher gap simplified mo-
rasses. The definition is by induction on the gap of the morass. More
precisely we define several notions in connection with simplified morasses
by simultaneous induction on their gap in Definition 1.3 through 1.10.

In what follows all morasses are simplified ones.
The first of these definitions handles the gap-0 case.
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Definition 1.3 (i). M is a gap-0 simplified morass segment (SMS)
iff M = θ + 1 is a successor ordinal. The height of M is ht(M) = θ.
M is a (κ, 0)-morass (SM) iff ht(M) = κ is a regular cardinal.
M is an initial segment of N iff M≤ N (they are ordinals!). We denote
this fact by M≤ N .

(ii) For gap-0 SMS’sM = θ+1 andN = Ξ+1 we say that f : M→N
is a gap-0 embedding iff f is an order-preserving function from M to N
and f(θ) = Ξ.

(iii) An embedding f : M→N is called shift or right branching iff
for some ordinal σ < θ we have f(ξ) = ξ for ξ < σ and f(σ + ζ) = θ + ζ

for σ + ζ ≤ θ (and f(θ) = Ξ of course) where M = θ + 1 and N = Ξ + 1.
In this case σ is called the splitting point of f .

(iv) idθ : θ → θ is the well known identity function (the identity

embedding on θ).

(v) A family F of M → N embeddings is called an amalgam iff
F = {d, r} where r is a shift and d ¹ θ = idθ and d(θ) = Ξ, where
M = θ + 1 and N = Ξ + 1. ¤

In what follows n < ω0 is a fixed natural number. The Definitions 1.4
through 1.10 below are made simultaneously by induction on n, the gap
size of our morasses.

Definition 1.4. For any fixed n < ω0

(i) M = 〈
⇒
M,

⇒
F〉 is a gap-(n + 1) simplified morass segment (SMS) of

height θ (ie. ht(M) = θ) iff θ is any ordinal and

(0)
→
M = 〈Mi : i ≤ θ〉 is a sequence of gap-n SMS’s, Mi ≤ Mj are

initial segments for i < j ≤ θ. Further,
⇒
F = 〈Fij : i < j ≤ θ〉 where Fij

is a family of gap-n Mi → Mj embeddings for i < j ≤ θ, satisfying the
below properties:

(a) Fi,i+1 is an amalgam with splitting point σi < ht(Mi) for i < θ

(b) Fij = Fkj ◦ Fik = {f ◦ g : f ∈ Fkj , g ∈ Fik} for i < k < j ≤ θ

(composition)

(c) Mj =
⋃{f ′′Mi : f ∈ Fij , i < j} for j ≤ θ (covering property)

(d) For every j ≤ θ limit, i < j and f1, f2 ∈ Fij there is a k, i < k < j

and there are embeddings g ∈ Fkj and h1, h2 ∈ Fik such that f1 = g ◦ h1

and f2 = g ◦ h2.
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(ii) The gap-(n + 1) SMS M = 〈
→
M,

⇒
F〉 is an initial segment of the

gap-(n + 1) SMS N = 〈
→
N ,

⇒
G〉, denoted by M ≤ N iff ht(M) ≤ ht(N ),

Mj = Nj and Fij = Gij for i < j ≤ ht(M). ¤

We again stress that all the notions we use are already defined by
simultaneous induction on the gap of the morass (that is, on n).

Definition 1.5. (i) Let M = 〈
→
M,

⇒
F〉 and N = 〈

→
N ,

⇒
G〉 be gap-(n + 1)

SMS’s such that M is an initial segment of N , ht(M) = θ and ht(N ) = Ξ.

Then f = 〈f−,
→
f ,

⇒
f 〉 is called an M→N gap-(n + 1) embedding iff

(a) f− : (θ +1)→ (Ξ+ 1) is an order-preserving function, f−(θ)= (Ξ)

(b)
→
f = 〈fi : i ≤ θ〉 where fi : Mi → Nf−(i) are gap-n embeddings

for i ≤ θ

(c)
⇒
f = 〈fij : i < j ≤ θ〉 where

fi,j : Fi,j → Gf−(i),f−(j)

are functions for i < j ≤ θ satisfying properties (d) through (f) below

(d) if h ∈ Fi,i+1 is a (gap-n) shift embedding with splitting point
σi < ht(Mi), then

fi,i+1(h) ∈ Gf−(i),f−(i+1)

is also a shift embedding with splitting point (fi)−(σi) < ht(Mf−(i)) for
all i < θ

(e) fij(c◦b) = fkj(c)◦fik(b) for all b ∈ Fik, c ∈ Fkj and i < k < j ≤ θ

(f) fj ◦ b = fij(b) ◦ fi and

Range (fj ◦ b) = Range (fij(b)) ∩ Range (fj)

for all b ∈ Fij , i < j ≤ θ.
(ii) The identity embedding idM : M → M is defined as idM :=

〈f−,
→
f ,

⇒
f 〉 where f− = idht(M), fi = idMi and fij = idFij for i < j ≤

ht(M). ¤
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Definition 1.6. If f = 〈f−,
→
f ,

⇒
f 〉 is as in Definition 1.5(i) then we

define

f ′′(M) := Range (f)

:= Range (f−)
⋃
∪{Range (fi) : i ≤ θ}

⋃
∪{Range (fij) : i < j ≤ θ}.

(Here we use disjoint unions.) ¤

The composition and identity of gap-(n+1) embeddings can be easily
defined and are left to the reader.

Definition 1.7. Let M = 〈
→
M,

⇒
F〉 and N = 〈

⇒
N ,

⇒
G〉 be gap-(n + 1)

SMS’s, M ≤ N is initial segment, ht(M) = θ, ht(N ) = Ξ and let f =

〈f−,
→
f ,

⇒
f 〉 be an M→N gap-(n + 1) embedding. Then

(i) f is left branching iff f− ¹ θ = idθ, f−(θ) = Ξ, fi = idMi for
i < θ, fθ ∈ GθΞ, fij = idFij for i < j < θ and fiθ(b) = fθ ◦ b for i < θ,
b ∈ Fiθ.

(ii) f is a shift or right branching iff for some ordinal σ < θ (the
splitting point of f) we have

(a) f−(i) = i for i < σ

(b) f−(σ + ζ) = θ + ζ for σ + ζ ≤ θ

(c) fi = idMi for i < σ

(d) fij = idFij for i < j < σ

(e) fσ ∈ Fσθ

(f) Gf−(i),f−(j) = fi,j
′′F i,j for σ ≤ i < j ≤ θ. ¤

Definition 1.8. A family F of M → N gap-(n + 1) embeddings is
called an amalgam iff F contains all possible left branching and exactly
one right branching embeddings (shift) and nothing else. ¤

Definition 1.9. For any gap-0 SMS M = θ + 1 the size of M is |M|.
For gap-(n + 1) SMS M = 〈

→
M,

⇒
F〉 the size of M is defined by induction

on n as
|M| := | ht(M)|+

∑

i≤ht(M)

|Mi|+
∑

i<j≤ht(M)

|Fij |

which is a cardinal. ¤
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Definition 1.10. Let κ be any regular cardinal.

(i) The gap-0 SMS M is called a gap-0 simplified morass of height
κ, or (κ, 0)-SM for short, iff M = κ + 1.

(ii) For any finite n the gap-(n+1) SMS M = 〈
→
M,

⇒
F〉 is a simplified

morass of height κ, or (κ, n + 1)-SM for short, iff

(a) ht(M) = κ + 1

(b) |Fij | < κ for i < j < κ

(c) |Mi| < κ for i < κ

(d) Mκ is a (κ+, n) simplified morass.

This is the end of the inductive definition of gap-n simplified morasses.
¤

We stated that our definition in gap-1 and gap-2 cases covers Velle-
man’s definitions. The careful reader may observe that all our Defini-
tions 1.3 through 1.10 deal with structures of successor length whileVelle-
man’s gap-1 definition does not (see Definition 1.1). This is a technical
difference only: from any gap-1 morass we can construct another one, in
which each ϕα is a successor ordinal for α < κ, see e.g. [Ve3].

Below we define some special parts of higher gap simplified morasses
(we could call them “skeletons”) to state the result that any higher gap
simplified morass contains several smaller gap simplified morasses. Other
special parts of higher gap morasses are defined in [Sz2]. That work also
contains a list of basic properties of higher gap simplified morasses.

All the parts of the below definition are made simultaneously by in-
duction on the gap.

Definition 1.11. (a/i) The t-th reduct redt(M) of a (κ, n)-simplified

morass segment M = 〈
→
M,

⇒
F〉 for t ≤ n is the below gap-(n− t) simplified

morass segment: red0(M) := M, redn(M) := θ + 1, and for 0 < t < n

redt(M) :=
〈〈redt(Mi) : i ≤ θ〉, 〈redt(Fij) : i < j ≤ θ〉〉

where
→
M = 〈Mi : i ≤ θ〉,

⇒
F = 〈Fij : i < j ≤ θ〉,

redt(Fij) = {redt(f) : f ∈ Fij}

for i < j ≤ θ, and
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(a/ii) The t-th reduct redt(f) of a gap-n embedding f : M → N
between simplified morass segments M = 〈

→
M,

⇒
F〉 and N = 〈

→
N ,

⇒
G〉, f =

〈f−,
→
f ,

⇒
f 〉 for 0 ≤ t ≤ n is the below gap-(n− t) embedding:

redt(f) : redt(M) → redt(N )

where red0(f) := f , redn(f) := f−, and for 0 < t < n

redt(f) := 〈f−, redt(
→
f ), redt(

⇒
f )〉

where

redt(
→
f ) := 〈redt(fi) : i ≤ θ〉

and

redt(
⇒
f ) := 〈redt(fij) : i < j ≤ θ〉

where
redt(fij) : redt(b) 7→ redt(fij(b))

for b ∈ Fij and i < j ≤ θ, and as usual,
→
f = 〈fi : i ≤ θ〉 and

⇒
f = 〈fij :

i < j ≤ θ〉.
(b) The PM(κ+s,m)-reducts of a (κ, n)-simplified morass M for

0 ≤ s, m ≤ n, m + s ≤ n are defined as follows:

PM(κ+s, m) := PMκ(κ+s,m) for s ≥ 1, and PM(κ,m) := redn−m(M)

where M = (
→
M,

⇒
F),

→
M = 〈Mi : i ≤ κ〉 and

⇒
F = 〈Fij : i < j ≤ κ〉. ¤

Statement 1.12. If M is a (κ, n)-simplified morass, then PM(κ+s,m)
are (κ+s,m)-simplified morasses for 0 ≤ s, m ≤ n, m + s ≤ n.

The statement can be proved by induction, using the inductive defi-
nition of our morasses. ¤

2. Morgan’s definition

We shall prove in Theorem 3.7 by using Charles Morgan’s [Mo]
variant of simplified morasses and his result, that the existence of morasses
of his kind are equivalent to the existence of original morasses of R. Jensen.

In this section we present Morgan’s definition from [Mo].
First we need some notation, also from [Mo].
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2.0 Notation. In what follows s is a sequence of ordinals,
s = 〈s1, . . . , sj〉, the length of s is |s| := j.2 ∅ is the empty sequence and
|∅| = 0. We never mix the ordinal ξ and the singleton 〈ξ〉. ŝr denotes
the concatenation of the sequences s and r. Finally, for any k ≤ |s| we let
s ¹ k := 〈s1, s2, . . . , sk〉 the restriction of s.3 Especially we let s ¹ 0 := ∅.
Finally we let s¹ := s ¹ (|s| − 1), which e.g. implies 〈ξ〉¹ = ∅ for any
sigleton 〈ξ〉. In some complicated formulas we write simply s instead of s.

¤

Now we quote verbatim Ch. Morgan’s original definition from [Mo].
We only made some highlights, footnotes, and tried to correct all the
misprints of the manuscript [Mo].

To understand the forthcoming definition easier let us make some of
our own comments before. The morass consists a lot of sequences and
functions among them, all arranged in a sense of a hierarchy of n level,
where n < ω0 is fixed, denotes the gap of the morass. To belong to the
i’th hierarchy level for a sequence s, we can not say simply that its length
is at most n− i, we have also restrictions on its entries. This complicated
assumption is declared in (M + i) below. This is similar to the notion of
“co-ordinates” of our inductive higher gap morasses, defined and used in
connection to applications in partition calculus in [Sz2].

We again emphasize that we quote Morgan’s definition verbatim.

2.1 Definition [Mo]. Let n be finite and κ be an infinite cardinal. The
structure

〈〈
θi

α : α ≤ κ+i
〉
,

〈F i
α,β : α ≤ β ≤ κ+i

〉
: i < n

〉

is called a (κ, n)-Morgan-simplified morass iff the below properties (M+)
and (M0) through (M6) hold for any ordinals i < n and α ≤ β ≤ κ+i and
for any family of functions f ∈ F i

α,β :
(M +i) s = 〈s1, . . . , sj〉 is always a sequence satisfying |s| ≤ n−(i+1),

perhaps s = ∅. In case s 6= ∅ we have s1 ≤ θi
α and sk+1 ≤ θi+k

sk
for

0 < k < |s| = j.4 We write (s) ∈ (M + i) if s satisfies the above properties.

2The indexes run from 1 through j, this is only for simplicity, instead of the usual run
from 0 through j − 1.
3Observe that the definition of s � k is not the usual one, too.
4For simplicity, in the next section we shall allow to use the symbol s0 even in the case
s = ?, when s0 will denote the α fixed there. This also differs from [Mo].
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(M0) f ∈ F i
α,β is a disjoint family of functions:

f = {f} ∪
⋃{

f(s)σ : σ ≤ θi+|s|
sj

, j = |s|, s ∈ (M + i)
}

∪
⋃{

f(s)σ,τ : σ ≤ τ ≤ θi+|s|
sj

, j = |s|, s ∈ (M + i)
}

where
f : θi

α + 1 → θi
β + 1

and
f(s)σ : θi+|s|+1

σ + 1 → θ
i+|s|+1
fs(σ) + 1

are order-preserving functions,

f(s)σ,τ : F i+|s|+1
σ,τ → F i+|s|+1

fs(σ),fs(τ)

is a function where f∅ = f and fs = f(s�)sj
for j = |s|.5

Notation. We are rigorous, so we write f∅ instead of f (the single
function in the first bracket). This allows us simply to write f (standard)
instead of f (boldface).6

Further in what follows for s ∈ (M + i), |s| = j < n− (i+1) we define
f ( as

f
(( s) :=

〈
f∅(s1), fs1(s2), . . . , fs�(sj)

〉
.7

Of course for f ∈ F i
β,γ , g ∈ F i

α,β α ≤ β ≤ γ ≤ κ+i we define f ◦ g ∈ F i
α,γ

as:

f ◦ g := {f∅ ◦ g∅} ∪
⋃{

fg ((s)̂ gs(σ) ◦ gŝ σ :σ ≤ θi+|s|
sj

, j = |s|, s∈ (M + i)
}

∪
⋃{

f(g (( s))gs(σ),gs(τ) ◦ g(s)σ,τ : σ ≤ τ ≤ θi+|s|
sj

, j = |s|, s ∈ (M + i)
}

5This defines the functions fs for s ∈ (M + i), |s| < n − (i + 1) by induction on
|s| : f? := f and fs := f(s�)sj

where j = |s|, that is f(s)σ = fŝ σ and f = f?.

In [Mo] the values fs(ξ) are defined similarly as shorthand, but our definition in our
footnote (11) for (M4a) some pages below, is different from the present one, since for

e.g. fξ /∈ Fi+1
ξ,f(ξ)

by the present definition.
6You can not find these notations in [Mo], we use them for precise discussion. Further,
on the basis of the previous footnote we could write fŝ σ instead of f(s)σ , but this will

denote another thing, see the footnote (11) of (M4a).
7[Mo] uses f↓ instead of f (. We altered the notation for technical reason (our text
editor) only.
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(M1) (∀ j ≤ i < n) (∀α ≤ β < κ+i)

θi
α < κ+j and θi

κ+i = κ+(i+1) and8
∣∣F i

α,β

∣∣ < κ+i

(M2) (∀ i < n) (∀α ≤ β ≤ κ+i)
(∀ f ∈ F i

α,β

)

(a) (∀ s ∈ (M + i), j = |s|) (∀ ξ ≤ σ ≤ τ ≤ θ
i+|s|
sj

) (∀ b ∈ F i+|s|+1
ξ,σ

)
(∀ c ∈ F i+|s|+1

σ,τ

)

f(s)ξ,τ (c ◦ b) = f(s)σ,τ (c) ◦ f(s)ξ,σ(b)

(b) (∀ s ∈ (M + i), j = |s|) (∀ ξ ≤ τ ≤ θ
i+|s|
sj

) (∀ b ∈ F i+|s|+1
ξ,τ

)

f(s)τ ◦ b = f(s)ξ,τ (b) ◦ f(s)ξ

(c)9 (∀ k < n− (i + 1)) (∀ s ∈ (M + i)):
if |s| = k, ξ = sk and the splitting point10 of F i+k

ξ,ξ+1 is σξ, then
f(s)(σξ) = σf(s�)(ξ)

(M3) (∀ i < n) (∀α ≤ β ≤ γ ≤ κ+i)

F i
α,γ = F i

β,γ ◦ F i
α,β :=

{
f ◦ g : f ∈ F i

β,γ , g ∈ F i
α,β

}

(M4) (∀ i < n) (∀α ≤ κ+i) F i
α,α = {id} and (∀α < κ+i) F i

α,α+1 =
{d : d ≈ id} ∪ {hi

α} where id must be clear, ≈ and hi
α are defined as:

8[Mo] Chapter IV omitted the assumption
��Fi

α,β

�� < κ+i probably only by accident,

since in other parts of [Mo] it is required for 1- and 2- gap morasses.
9(M+) lists all possible sequences and so the requirement “∀ s ∈ (+) . . . ” immediately

implies:

“
�∀ r1 ≤ θi

α

��∀ r2 ≤ θi+1
r1

�
(∀ r3 ≤ θi+2

r2
) . . .

�∀ ξ ≤ θi+k
rk

�
(∃s ∈ (M + i))

s = 〈r1, r2, . . . , rk, ξ〉”.

The original definition [Mo,2c] verbatim is the following:

“∀ ξ ∃s ∃k = lh(s) such that ξ = sk−1 and if σξ is the splitting point of F i+k
ξ,ξ+1 then

f(s)(σξ) = σf(s�(k−1))(ξ)
.” NB. in [Mo] s = 〈s0, . . . , sk−1〉 if |s| = k.

10The splitting point will be defined in (M4b).
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(4a) d ≈ id (d is almost the identity) for d ∈ F i
α,α+1, iff d∅ ¹ θi

α =
id ¹ θi

α and dξ ∈ F i+1
ξ,d∅(ξ) for ξ ≤ θi

α,11,12

d(θi
α ŝ)ξ =

(
dθi

α

)
(s)ξ

for θi
α ŝ ∈ (M + i) and ξ ≤ θ

i+|s|+1
α ,

finally d(s)ξ = id for s ∈ (M + i) and s0 < θi
α.

(4b) f ∈ F i
α,α+1 is a shift for any i < n, α ≤ κ+i iff for some ordinal

σ = σi
α < θi

α (splitting point) we have f∅ ¹ σ = id ¹ σ,
f∅(σ + τ) = θi

α + τ for σ + τ ≤ θi
α, f(s)ξ = id if s1 < σ or s = ∅

and ξ < σ, fσ ∈ F i+1
σ,θi

α
(NB. f∅(σ) = θi

α),

f(σ̂ s)ξ = (fσ)(s)ξ and fξζ
′′F i+1

ξ,ζ = F i+1
f∅(ξ),f∅(ζ) for ξ ≤ ζ ≤ θi

α.

In what follows, hi
α denotes a fixed shift function13.

(M5) (∀ i < n) (∀α ≤ κ+i, α limit) (∀β0, β1 ≤ α)
(∀ f0 ∈ F i

β0,α, f1 ∈ F i
β1,α

)

(∃γ : β1, β2 < γ < α)
(∃f ′0 ∈ F i

β0,γ , f ′1 ∈ F i
β1,γ

) (∃g ∈ F i
γ,α

)

f0 = g ◦ f ′0 and f1 = g ◦ f ′1

(M6) (∀ i < n) (∀α ≤ κ+i, α limit)14

(6a) θi
α = ∪{

f ′′∅θi
β : f ∈ F i

βα, β < α
}

(6b) (∀ s ∈ (M + i))
(∀ ξ ≤ θ

i+|s|
sj , j = |s|)

θ
i+|s|+1
ξ = ∪{

f(s′)ξ′
′′θi+|s′|+1

ξ′ : f ∈ F i
βα, fs′(ξ′) = ξ, f

(( s′)

= s, β < α
}

(6c) (∀ s ∈ (M + i))
(∀ ξ ≤ τ ≤ θ

i+|s|
sj , j = |s|)

F i+|s|+1
ξτ = ∪{

f(s′)ξ′τ ′
′′F i+|s′|+1

ξ′τ ′ : f ∈ F i
βα, fs′(ξ′) = ξ, fs′(τ ′) = τ,

f
(( s′) = s, β < α

}

End of the Definition 2.1. ¤
11[Mo] does not define neither dξ nor dθi

α
. These may be the following:

Definition. For any i < n, α ≤ β ≤ κ+i, f ∈ F i
α,β and τ ≤ θi

α we let

fτ := {f(?)τ} ∪
[�

f(s)ξ ⊂ f : s1 = τ
	 ∪[�f(s)ξζ ⊂ f : s1 = τ

	
.

Now the requirements fτ ∈ F i+1
τ,f∅(τ)

and so dξ ∈ F i+1
ξ,d∅(ξ)

are meaningful.
12Using the previous assumption and (4), dξ = id ∈ F i+1

ξ,ξ must be for ξ ≤ θi
α.

13So Fi
α,α+1 contains exactly one shift, denoted by hi

α.
14In [Mo] we find “∀α < κ+i . . . ” which must be a misprint.
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3. On the existence of higher gap inductive morasses

In this selection in Theorem 3.7 we show that the existence of higher
gap simplified inductive morasses we defined in Section 1 follows from the
existence of morasses defined by professor Ronald Jensen in [Je1]. This
immediately gives, that in case V = L for every regular κ and finite n < ω0

there exist (κ, n)-simplified morasses in our sense.
We prove Theorem 3.7 by using Charles Morgan’s [Mo] variant

of simplified morasses defined in the previous section, and his result, that
the existence of morasses of his kind are equivalent to the existence of the
original morasses of R. Jensen. We construct our morasses using one of
Ch. Morgan’s morasses of the same gap.

We think however, the existence of morasses even with full linearizing
sequences, defined in [Sz1] or in our thesis [Sz2] could be proved by a
(complicated) forcing argument, similar to the one in [Ve8].

Now we start to show how to construct our inductive simplified mo-
rasses from Morgan’s above defined morasses. To avoid confusion call
Morgan’s morasses (κ, n)-Morgan-morasses and ours simply (κ, n)-sim-

plified-morasses and fake morasses or morass segments.

3.1 Theorem. Let n ≤ ω0, κ be a regular cardinal, both fixed, and

let

U =
〈〈

θi
α : α ≤ κ+i

〉
,
〈F i

α,β : α ≤ β ≤ κ+i
〉

: i < n
〉

be a fixed (κ, n)-Morgan-morass. Then we can construct from U a (κ, n)-
simplified morass (in the sense of Definitions 1.3 through 1.10).

Proof. We refer simply by (M+) and (M0) through (M6) to the
parts of Definition 2.1. ¤

3.2 The construction. By induction on t (1 ≤ t ≤ n) we construct the
gap-(t− 1) fake morasses N t

ξ and the families Gt
ξζ of gap-(t− 1) mappings

among them for ξ < ζ ≤ κ+(n−t), using U. Of course we will take care of
the assumption N t

ξ ≤ N t
ζ for ξ < ζ ≤ κ+(n−t). Moreover, the structures

Mt
τ :=

〈〈N t
ξ : ξ ≤ τ

〉
,
〈Gt

ξζ : ξ < ζ ≤ τ
〉〉

will be gap-t fake morasses for each τ ≤ κ+(n−t), and evenMt
κ+(n−t) will be

a (κ+(n−t), t)-morass. This means, that finally in case t = n the structure
Mn

κ will be a (κ, n)-morass.
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Each function g ∈ Gt
ξζ will be of from g = g(f) for some f ∈ Fn−t

ξζ for
all ξ < ζ < κ+(n−t). We mean that

g : Fn−t
ξζ → Gt

ξζ

is a bijection (one-to-one and onto).

To start with, let M0
τ := τ + 1 for τ ≤ κ+n and

N 1
ξ := M0

θn−1
ξ

= θn−1
ξ + 1

for ξ ≤ κ+n−1. Let further G1
ξζ := Fn−1

ξζ for ξ < ζ ≤ κ+n−1 and

M1
τ :=

〈〈N 1
ξ : ξ ≤ τ

〉
, 〈Fn−1

ξζ : ξ < ζ ≤ τ
〉〉

for τ ≤ κ+n−1.

3.3 Statement. M1
τ is a 1-gap fake morass for τ ≤ κ+(n−1) and

N 1
κ+(n−1) is a

(
κ+(n−1), 1

)
-morass.

Proof. Using (M + i) we have only ∅ ∈ (M + i) since i = n − 1.
So each element of G1

ξζ = Fn−1
ξζ is of form θn−1

ξ → θn−1
ζ by (M0) (ie.

f = f∅ for f ∈ Fn−1
ξζ ) and these functions are order preserving. By (M1)

we have θn−1
ξ < κ+(n−1) and

∣∣Fn−1
ξζ

∣∣ < κ+(n−1) for ξ < ζ < κ+(n−1), and
θn−1

κ+(n−1) = κ+n. By (M3) we have

Fn−1
ξ,η = Fn−1

ζ,η ◦ Fn−1
ξ,ζ

for ξ < ζ < η ≤ κ+n−1.
By (M4) F i

ξ,ξ+1 = {id≈, hξ} and id≈ ¹ θn−1
ξ = id ¹ θn−1

ξ , id≈(θn−1
ξ ) =

θn−1
ξ+1 , hξ ¹ σξ = id ¹ σξ (the ordinary identity) and hξ(σξ + τ) = θn−1

ξ + τ

for σξ + τ ≤ θn−1
ξ for some σξ < θn−1

ξ and for each ξ < κ+(n−1). (M5)
ensures the amalgam and (M6) the covering property. ¤
The inductive step

Suppose that we have constructed the gap-(t − 1) fake morasses N t
ξ

for some fixed t (1 ≤ t < n) and the families Gt
ξζ of embeddings of type

N t
ξ → N t

ζ have already been defined for all ξ < ζ ≤ κ+(n−t) such that
N t

ξ ≤ N t
ζ for ξ < ζ ≤ κ+(n−t). Suppose further, that the structures

Mt
τ :=

〈〈N t
ξ : ξ ≤ τ

〉
,
〈Gt

ξζ : ξ < ζ ≤ τ
〉〉
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are gap-t fake morasses for each τ ≤ κ+(n−t) and moreover that Mt
κ+(n−t)

is a
(
κ+(n−t), t

)
-morass. Recall further, that Gt

ξζ = g ′′Fn−t
ξζ for ξ < ζ ≤

κ+(n−t) for some function g : Fn−t
ξζ → Gt

ξζ by our inductive construction.
Let now defineN t+1

α := Mt

θ
n−(t+1)
α

for α ≤ κ+n−(t+1). Next, first of all

we have to define the elements of Gt+1
αβ , that is for each (Morgan’s) function

f ∈ Fn−(t+1)
αβ we have to define our embedding g(f) : N t+1

α → N t+1
β (in

the sense of Definition 1.5) for all α < β ≤ κ+n−(t+1). Clearly we will then
take Gt+1

αβ :=
{
g(f) : f ∈ Fn−(t+1)

αβ

}
.

Let α < β ≤ κ+n−(t+1) and f ∈ Fn−(t+1)
αβ be fixed, and let further

i = n − (t + 1). First, for all sequence s ∈ (M + i), |s| ≤ t we define the
set of functions g0(f, s) by descending induction on |s|.

For s = 〈s1, . . . , st〉 we put g0(f, s) := (g0(f, s))− :=
{
f(s�)st

}
.

For |s| < t, s = 〈s1, . . . , sj〉 we let

g0(f, s) := (g0(f, s))− ∪ (g0(f, s))→ ∪ (g0(f, s))⇒

where

(g0(f, s))− :=
{
f(s�)sj

}
,

(g0(f, s))→ :=
{
g0(f, s 〈̂ξ〉) : ξ ≤ θn−(t+1)+j

sj

}

and

(g0(f, s))⇒ =
{
(g0(f, s))ξζ : ξ < ζ ≤ θn−(t+1)+j

sj

}

where

(g0(f, s))ξζ : Gt−|s|
ξ,ζ → Gt−|s|

h(ξ),h(ζ) (h := (g0(f, s))−)

g(b) 7→ g
(
f(s)ξ,ζ(b)

)
for ξ < ζ ≤ θn−(t+1)+j

sj
.

Now we are able to define g(f) := g0(f,∅) where (g0(f,∅)) := f∅. This
defines g(f) for all f ∈ Fn−(t+1)

αβ and so we can let

Gt+1
αβ :=

{
g(f) : f ∈ Fn−(t+1)

αβ

}
.
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Remarks. Recall, that by induction we have Gt−|s|
ξζ = g ′′Fn−(t−|s|)

ξζ

and

f(s)ξ,ζ(b) ∈ Gt−|s|
h(ξ),h(ζ) = g′′Fn−(t−|s|)

h(ξ),h(ζ)

for b ∈ Gt−|s|
ξζ and for all possible ξ < ζ since |s| < t i.e. t − |s| > 0. So

the above definition is meaningful, (g0(f, s))ξζ is defined on the whole set
Gt−|s|

ξ,ζ .
Let us write (g0(f, s))ξ instead of g0(f, s 〈̂ξ〉) which allows us, as usual,

to write

(g0(f, s))→ =
{
(g0(f, s))ξ : ξ ≤ θn−(t+1)+j

sj

}
.

Why does it work?

In Lemma 3.6 we will show that the elements of Gt+1
α,β are N t+1

α →
N t+1

β embeddings for α < β ≤ κ+n−(t+1). Before that we need some
technical lemmas.

3.4 Lemma. g(f) = f for f ∈ Fn−(t+1)
αβ , α < β ≤ κ+n−(t+1), t < n.

Proof. f and g(f) both are disjoint unions of functions either order
preserving ones from ordinals to ordinals, or of functions mapping from
and into sets of such functions, etc.

The exact proof is by induction on t. The case t = 1 is OK by
definition (see just before Statement 3.3).

Let now α < β ≤ κ+n−(t+1), f ∈ Fn−(t+1)
αβ and 1 ≤ t < n be given

and fixed. We have to show that g(f) ∈ Gt+1
αβ contains exactly of the

functions f∅, f(s)ξ and f(s)ξζ where s ∈ (M + i), ξ < ζ ≤ θ
i+|s|
sj , j = |s|,

i = n − (t + 1). By the definition of g(f), g(f) is the disjoint union
of the function sets (g(f, s))−, (g(f, s))→ and (g(f, s))⇒ for s ∈ (M + i).
Examining the definition of g(f) we can see that the function sets (g(f, s))−

contain the functions f(s)ξ which collect the function sets (g(f, s))→, this
can be proved by descending induction on |s|. Similarly, the function sets
(g(f, s))⇒ contain of the functions f(s)ξζ since by the induction on t we
have g(b) = b for b ∈ Fk

ξζ and k ≤ t. The functions f(s)ξζ are collected
again by the function sets (g(f, s))→. Finally g(f)− = f∅. ¤
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Corollaries. (g(f, s))ξζ = f(s)ξ,ζ immediately follow for all possible s,
ξ, ζ, and similarly

fξ =
{
f(∅)ξ

} ∪
⋃ {

f(s) ∪ f(s)σ ∪ f(s)σ,τ : σ < τ ≤ θi+|s|
sj

,

j = |s|, s ∈ (M + i), s1 = ξ
}

for ξ ≤ θ
n−(t+1)
α . Moreover in the above equality we should not bother

what kind of function does fξ mean: in the sense of Definition 1.5 or the
above g(f)ξ or Morgan’s function (defined in footnote for (M4a)). In what
follows we will use this equality without any remark. Further, we will
distinguish f and g(f), Fn−t

αβ and Gt
αβ only in critical cases.

In order to prove Theorem 3.1 we need only one further statement.

3.5 Statement. The structures

Mt+1
τ :=

〈〈N t+1
α : α ≤ τ

〉
,
〈Gt+1

αβ : α < β ≤ τ
〉〉

are gap-(t+1) fake morasses for all ordinal τ ≤ κ+n−(t+1), and Mt+1
κ+n−(t+1)

is a
(
κ+n−(t+1), t + 1

)
morass.

Proof. We have to show that Mt+1
τ satisfies the requirement of Def-

inition 1.4. We prove this by induction on t. (The proof runs through the
next 5 pages.)

Statement 3.3 proved the case t = 1. Now let us consider the critical
points of Definition 1.4. (As we indicated, (M + i) and (M0) through (M6)
refers to the points of Definition 3.1.)

1.4.0): N t+1
α ≤ N t+1

β for α < β ≤ κ+(n−t) hold by the construction.
For the other half part of 1.4.0) (that is that the elements Gt+1

αβ are N t+1
α →

N t+1
β embeddings) we need the below lemma. ¤

3.6 Lemma. g(f) are gap-t N t+1
α → N t+1

β embeddings for all f ∈
Fn−(t+1)

αβ , α < β ≤ κ+n−(t+1) and t < n.

Proof. We prove the statement simultaneously for all fixed α, β and
any sequence s ∈ (M +i) by induction on |s| (and an outer induction on t).

To be more precise we show that

g(f, s) : N t−|s|+1
sj

→ N t−|s|+1
sj
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are gap-(t − |s|)-embeddings for all s ∈ (M + i) where j = |s| ≤ t, f ∈
Fn−(t+1)+|s|

αβ and α < β ≤ κ+n−(t+1).
For |s| = 0 we have g(f) = g(f,∅).
For the inductive step we distinguish two cases. Before, for simplicity

let i := n− (t + 1).
In case |s| = t we know that

g(f, s) = f(s�)st
: θn−1

st
+ 1 → θn−1

fs�(st)
+ 1

are order preserving functions, that is gap-0 morass embeddings, moreover
θn−1

st
+ 1 = N 1

st
and θn−1

fs�(st)
+ 1 = N 1

fs�(st)
.

In case |s| < t we have

g(f, s) = (g(f, s)) ∪ (g(f, s)) ∪ (g(f, s))

where

g(f, s)− = f(s�)sj
: θi+|s|

sj
+ 1 → θ

i+|s|
fs�(sj)

+ 1

are order preserving functions by (M0).
Further θ

i+|s|
sj + 1 = ht

(N t−|s|+1
sj

)
and j = |s| and

g(f, s)ξζ : Gt−|s|
ξ,ζ → Gt−|s|

h(ξ),h(ζ)

where h = (g(f, s))−,

g(f, s)ξ = g(f, s 〈̂ξ〉) : N t−|s|
ξ → N t−|s|

h(ξ)

where h = (g(f, s 〈̂ξ〉))− are gap-(t − |s| − 1) morass embeddings by the
induction hypothesis. This means that

g(f, s) : N t−|s|+1
sj

→ N t−|s|+1
h(sj)

is indeed a gap-(t − |s|) morass embedding if j = |s| and h = g(f, s)−,
again by the induction hypothesis, assuming that the requirements d)–f)
of Definition 1.5 hold.

We prove these requirements now.

1.5.d) Let

Gt−|s|
ξ,ξ+1 := {b : b is left branching embedding} ∪ {k}
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where k : N t−|s|
ξ → N t−|s|

ξ+1 is right branching embedding with splitting
point

σξ < θξ + 1 = θ
n−t+|s|
ξ + 1 = ht

(N t−|s|
ξ

)

and that ξ < θ
n−t+|s|
sj + 1 = ht

(N t−|s|+1
sj

)
.

(Recall that |s| � t now.) Now we have to show that the splitting
point of the right branching embedding ` ∈ Gt−|s|

z,z+1 is

σz = g(f, s)−ξ (σξ) < θn−t+|s|
z + 1 = ht

(N t−|s|
z

)

where z = g(f, s)−(ξ). Using Statement 3.4 and (M4b) we know that σξ

is also the splitting point of the shift function of Fn−t+|s|
ξ,ξ+1 . Now applying

(M2c) for the sequence r := s 〈̂ξ〉 ∈ (M + i) we get that the splitting point
of Fn−t+|s|

z,z+1 is

σz = f(r)(σξ) = f(ŝ 〈ξ〉)(σξ) = g(f, s)−ξ (σξ),

and moreover
z = f(r�)(ξ) = f(s)(ξ) = g(f, s)−(ξ).

This implies that σz is also the splitting point of ` ∈ Gz,z+1.
1.5.e): Using Statement 3.4, the definition of g(f, s) and (M2a) we

have

g(f, s)ξϑ(b ◦ c) = g(f, s)ξϑ(g(b ◦ c)) = g
(
f(s)ξϑ(b ◦ c))

= g
(
f(s)ζϑ(b) ◦ f(s)ξζ(c)

)
= g

(
f(s)ζϑ(b) ◦ f(s)ξζ(c)

)

= g
(
f(s)ζϑ(b)

) ◦ g
(
f(s)ξζ(c)

)
= g(f, s)ζϑ(g(b)) ◦ g(f, s)ξζ(g(c))

= g(f, s)ζϑ(b) ◦ g(f, s)ξζ(c)

hold for all ξ < ζ < ϑ < θ
n−t+|s|
sj + 1, b ∈ Gt−|s|

ζ,ϑ and c ∈ Gt−|s|
ξ,ζ .

1.5.f): The proof of Statement 3.4 also gives g(f, s)ζ = f(s)ζ for all
possible f , s and ζ. Now Statement 3.4 and (M2b) give 1.5.f).

This concludes the proof of the inductive step and so the proof of
Lemma 3.6. ¤

Now we turn back to the proof of Statement 3.5. So far we have
proved that the elements of Gt+1

α,β are N t+1
α → N t+1

β embeddings for α <

β ≤ κ+n−(t+1). Now we have to show that the structures

Mt+1
τ :=

〈〈N t+1
α : α ≤ τ

〉
,
〈Gt+1

αβ : α ≤ τ
〉〉
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are gap-(t + 1) fake morasses for τ ≤ κ+n−(t+1). We have to show that
Mt+1

τ satisfies the requirements of Definition 1.4. In what follows, we will
often use Statement 3.4 without mentioning it.

1.4.0): We have already proved this just before and in Lemma 3.6.

1.4.a): We have

Gt+1
α,α+1 =

{
g(d) : d ≈ id, d ∈ F i

α,α+1

} ∪ {
g(hi

α) : hi
α ∈ F i

α,α+1

}

where i = n− (t + 1).
First we show that the set

{
g(d) : d ≈ id, d ∈ F i

α,α+1

}

gives all the left branching embeddings N t+1
α → N t+1

β . By (M4a) we have

d− ¹ θ = d∅ ¹ θ = id ¹ θ

for θ = θi
α, and by the footnote for (M4a) we have dξ = id ∈ F i+1

ξ,ξ , that is
dξ = id ¹ N t

ξ for ξ < θ. Furthermore by the definition of g(d) we also have

d
(1.4. Def.)
θi

α
= d

(footnote (M4a))
θi

α
∈ F i+1

θi
α,θi

α+1
= Gt

θi
α,θi

α+1
.

Finally dξζ(b) = b for each b ∈ Gt
ξζ by 1.5.f) and the above results.

So g(d) is indeed a N t+1
α → N t+1

β left branching embedding if d ≈ id, d ∈
F i

α,α+1. The fact, that all the left branching N t+1
α → N t+1

β embeddings
are of form g(d) where d ≈ id and d ∈ F i

α,α+1, is trivial.
Now we turn to the right branching elements of Gt+1

α,α+1, that is we
show that g(hi

α) : N t+1
α → N t+1

β is a shift (right branching embedding),
where hi

α ∈ F i
α,α+1 is the function from (M4b) and i = n − (t + 1).

This means that we have to show that g(hi
α) satisfies the requirements of

Definition 1.7.ii)15.
In what follows, for simplicity, we write h instead of hi

α and θ instead
of θi

α.

1.7.ii) a) and b) are trivial since g(h)− = h∅.

15Recall that Fi
α,α+1 contains exactly one function hi

α ∈ Fi
α,α+1 in (M4b).
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1.7.ii) c): By (M4b) h(s)ξ = id and by (M2b) h(s)ξζ = id for all
s ∈ (M + i), ξ ≤ ζ ≤ sj , assuming either s1 < σ or (s = ∅ and ξ ≤ ζ < σ).
Then, by the Corollary of Statement 3.4 we have g(h)ξ = id for ξ < σ.

1.7.ii) d): we proved above that hξζ = id for ξ ≤ ζ < σ.

1.7.ii) e) and f): arguing as in c) we know that hσ ∈ F i+1
σ,θ = Gt

σ,θ and

hξζ
′′F i+1

ξ,ζ = F i+1
h−(ξ),h−(ζ) for σ ≤ ξ < ζ ≤ θ. So g(h) is a shift. So we have

proved that Gt+1
α,α+1 is an amalgam, and so we proved 1.4.a).

1.4.b): By (M3) and Statement 3.4.

1.4.c): Let α ≤ κ+i be limit where i = n−(t+1). Using Statement 3.4
and (M6a) we have

ht
(N t+1

α

)
= θi

α + 1 =
⋃ {

f− ′′ht
(N t+1

β

)
: f ∈ Gt+1

βα , β < α
}

since ht
(N t+1

β

)
= θi

β + 1 and f−
(
θi

β

)
= θi

α for f ∈ Gt+1
βα and β < α. Now

by (M6c)

Gt
ξτ =

⋃ {
fξ′,τ ′

′′Gt
ξ′τ ′ : f ∈ Gt+1

βα , f−(ξ′) = ξ, f−(τ ′) = τ, β < α
}

for ξ < τ ≤ θi
α.

By the construction of N t
ξ for ξ ≤ θi

α, N t
ξ are the disjoint unions of

the sets
ht

(N j
ρ

)
= θn−j

ρ + 1 and Gk
στ = Fn−k

στ

for 1 ≤ k < t, 1 ≤ j ≤ t, σ ≤ τ ≤ ht
(N j

ρ

)
= θn−j

ρ +1 where ρ ≤ ht
(N t

ξ

)
=

θn−t
ξ + 1 in case j = t, and ρ ≤ ht

(N j+1
rj+1

)
= θn−j−1

ρ in case j < t, and
further rt = ht

(N t
ξ

)
= θn−t

ξ + 1 and rj−1 = ht
(N j

rj

)
= θn−j

rj
+ 1.

So, by (M6b) and (M6c) we know that Nξ are covered by the ranges
of the functions f(s′)ξ′ and f(s′)ξ′τ ′ where especially f(s′1) = ξ. But fξ′ is
the union of these functions, where f ∈ Gt

βα, β < α, f−(ξ′) = ξ. N t
ξ′ and

N t
ξ have similar structures, so

N t
ξ =

⋃ {
fξ′

′′N t
ξ′ : f ∈ Gt+1

βα , f−(ξ′) = ξ, β < α
}

where ξ ≤ θi
α. This concludes the proof of 1.4.c).

1.4.d): use (M5) and Statement 3.4.

So far we showed that Mt+1
τ are gap-(t − 1) fake morasses for all τ ≤

κ+n−(t+1).
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Now we show that Mt+1
κ+n−(t+1) is a

(
κ+n−(t+1), t + 1

)
-morass, that is

it satisfies also Definition 1.10. (ii).

1.10. (ii)a): By the construction.

1.10. (ii)b): By (M1) and Gt+1
βα = Fn−(t+1)

αβ for α < β ≤ κ+n−(t+1).

1.10. (ii)c): The structure of N t+1
α and of N t

ξ for α ≤ κ+n−(t+1) and
ξ ≤ θi

α are similar (see the proof of 1.27.c)). So, using (M1) we have that
size(N t+1

α ) < κ+n−(t+1) for α ≤ κ+n−(t+1) since κ+n−(t+1) is a regular
cardinal.

1.10. (ii)d): By the inductive hypothesis on t.

So we proved Statement 3.5. ¤

This concludes the proof of Theorem 3.1.

Theorem 3.1 and Morgan’s Theorem 7 in [Mo Ch. IV.] (which says
that the existence of a (κ,m)-Morgan-morass is equivalent to the existence
of a (κ,m)-Jensen-morass for every m < ω0 and regular κ ≥ ω1) imply the
below theorem:

3.7 Theorem. If there is a (κ,m)-Jensen morass then there exists a

(κ,m)-simplified morass (in our sense) for m < ω0 and κ regular. ¤

Using the results of [Je1], which ensure the existence of (κ,m)-Jensen-
morasses for any ordinal m and regular κ ≥ ω1 we get:

3.8 Theorem. In case V = L there exist (κ,m)-simplified morass (in

the sense of Definitions 1.3–1.10) for all m < ω0 and κ regular. ¤
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