Strong convergence theorems for $H_{p}(\mathbb{T} \times \cdots \times \mathbb{T})$

By FERENC WEISZ (Budapest)

Abstract

Multiplier operators on the Hardy space $H_{p}(\mathbb{T} \times \cdots \times \mathbb{T})$ are investigated and Bernstein's inequality for multi-parameter trigonometric polynomials is verified. We prove that certain means of the partial sums of the multi-parameter trigonometric Fourier series are uniformly bounded operators from $H_{p}(\mathbb{T} \times \cdots \times \mathbb{T})$ to L_{p} $(1 / 2<p \leq 1)$. As a consequence we obtain strong convergence theorems concerning the partial sums. The dual inequalities are also verified and a Marcinkiewicz-Zygmund type inequalities is obtained for the $B M O(\mathbb{T} \times \cdots \times \mathbb{T})$ spaces.

1. Introduction

We introduce the d-dimensional Hardy space $H_{p}(\mathbb{T} \times \cdots \times \mathbb{T})$ by the $L_{p}\left(\mathbb{T}^{d}\right)$ norm of the non-tangential maximal function of a distribution on \mathbb{T}^{d}. It is known that the trigonometric system is not a basis in $L_{1}(\mathbb{T})$. Moreover, there exist functions in $H_{1}(\mathbb{T})$, the partial sums of which are not bounded in $L_{1}(\mathbb{T})$. Smith [10] and recently Belinskir [1] proved the following strong convergence result for one-parameter trigonometric Fourier series:

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{\left\|s_{k} f-f\right\|_{1}}{k}=0
$$

where $f \in H_{1}(\mathbb{T})$ and $s_{k} f$ denotes the k-th partial sum of the Fourier series. This result for one-parameter Walsh-Fourier series can be found in Simon [9].

Mathematics Subject Classification: Primary: 43A75, 42B05, 42B08; Secondary: 42B30. Key words and phrases: Hardy spaces, multiplier operators, Bernstein's inequality, strong means.
This research was supported by OTKA No. F019633, FKFP No. 0228/1999 and by the Széchenyi Professorship.

Recently the author [12] generalized this result for two-parameter trigonometric Fourier series by taking the sum over a cone. More exactly, we verified that there exists a constant C depending only on $\alpha>0$ such that

$$
\frac{1}{\log n \log m} \sum_{\substack{2^{-\alpha} \leq k / l \leq 2^{\alpha} \\(k, l) \leq(n, m)}} \frac{\left\|s_{k, l} f\right\|_{1}}{k l} \leq C\|f\|_{H_{1}\left(\mathbb{T}^{2}\right)} .
$$

Note that the space $H_{1}\left(\mathbb{T}^{2}\right)$ defined in [12] is different from $H_{1}(\mathbb{T} \times \mathbb{T})$ used here. With the help of Riesz and conjugate transforms one can show that $\|\cdot\|_{H_{1}\left(\mathbb{T}^{2}\right)} \leq\|\cdot\|_{H_{1}(\mathbb{T} \times \mathbb{T})}$. We obtained also the convergence result

$$
\frac{1}{\log n \log m} \sum_{\substack{2^{-\alpha} \leq k / l \leq 2^{\alpha} \\(k, l) \leq(n, m)}} \frac{\left\|s_{k, l} f-f\right\|_{1}}{k l} \rightarrow 0 \quad \text { as } n, m \rightarrow \infty
$$

where $f \in H_{1}\left(\mathbb{T}^{2}\right)$. The analogous results for two-parameter WalshFourier series can also be found in [12].

In this paper we extend these theorems to the d-dimensional case and prove an even stronger inequality for $f \in H_{1}(\mathbb{T} \times \cdots \times \mathbb{T})$:

$$
\frac{1}{\prod_{i=1}^{d} \log n_{i}} \sum_{i=1}^{d} \sum_{k_{i}=1}^{n_{i}} \frac{\left\|s_{k} f\right\|_{H_{1}(\mathbb{T} \times \cdots \times \mathbb{T})}}{\prod_{i=1}^{d} k_{i}} \leq C\|f\|_{H_{1}(\mathbb{T} \times \cdots \times \mathbb{T})}
$$

where C is an absolute constant. From this it follows easily that

$$
\lim _{n \rightarrow 0} \frac{1}{\prod_{i=1}^{d} \log n_{i}} \sum_{i=1}^{d} \sum_{k_{i}=1}^{n_{i}} \frac{\left\|s_{k} f-f\right\|_{H_{1}(\mathbb{T} \times \cdots \times \mathbb{T})}}{\prod_{i=1}^{d} k_{i}}=0
$$

whenever $f \in H_{1}(\mathbb{T} \times \cdots \times \mathbb{T})$. We extend these results also to $p<1$, which was unknown even in the one-parameter case.

In the proof we have to use a different method than in [12], we use the multi-parameter Hardy-Littlewood inequality (see Jawerth and Torchinsky [8]) and the fact that the maximal operator of the Cesaro means of a distribution is bounded from $H_{p}(\mathbb{T} \times \cdots \times \mathbb{T})$ to $L_{p}\left(\mathbb{T}^{d}\right)$ (see Weisz [13]).

Moreover, we extend Bernstein's inequality to multi-parameter trigonometric polynomials. We investigate also multiplier operators and give
a sufficient condition for the multiplier such that the operator is bounded on the Hardy space.

I would like to thank the referee for reading the paper carefully and for his useful comments.

2. Hardy spaces and conjugate functions

For a set $\boldsymbol{X} \neq \emptyset$ let \boldsymbol{X}^{d} be its Cartesian product taken with itself d-times, moreover, let $\mathbb{T}:=[-\pi, \pi)$ and λ be the Lebesgue measure. We briefly write L_{p} instead of the $L_{p}\left(\mathbb{T}^{d}, \lambda\right)$ space while the norm (or quasinorm) of this space is defined by $\|f\|_{p}:=\left(\int_{\mathbb{T}^{d}}|f|^{p} d \lambda\right)^{1 / p}(0<p \leq \infty)$.

For $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$ and $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{T}^{d}$ set $n \cdot x:=$ $\sum_{i=1}^{d} n_{i} x_{i}$. Let f be a distribution on $C^{\infty}\left(\mathbb{T}^{d}\right)$. The nth Fourier coefficient is defined by $\hat{f}(n):=f\left(e^{-i n \cdot x}\right)$ where $\imath=\sqrt{-1}$ and $n \in \mathbb{Z}^{d}$. In the special case when f is an integrable function then

$$
\hat{f}(n)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} f(x) e^{-\imath n \cdot x} d x
$$

For a distribution f and $z_{i}:=r_{i} e^{2 x_{i}}\left(0<r_{i}<1\right)$ let

$$
u(z)=u\left(r_{1} e^{2 x_{1}}, \ldots, r_{d} e^{\imath x_{d}}\right):=\left(f * P_{r_{1}} \times \cdots \times P_{r_{d}}\right)(x) \quad\left(x \in \mathbb{T}^{d}\right)
$$

where $*$ denotes the convolution and

$$
P_{r}(y):=\sum_{k=-\infty}^{\infty} r^{|k|} e^{\imath k y}=\frac{1-r^{2}}{1+r^{2}-2 r \cos y} \quad(y \in \mathbb{T})
$$

is the Poisson kernel. It is easy to show that $u(z)$ is a multi-harmonic function.

Let $0<\alpha<1$ be an arbitrary number. We denote by $\Omega_{\alpha}(x)(x \in \mathbb{T})$ the region bounded by two tangents to the circle $|z|=\alpha$ from $e^{2 x}$ and the longer arc of the circle included between the points of tangency. The non-tangential maximal function is defined by

$$
u_{\alpha}^{*}(x):=\sup _{z_{i} \in \Omega_{\alpha_{i}}\left(x_{i}\right)}|u(z)| \quad\left(0<\alpha_{i}<1 ; i=1, \ldots, d\right) .
$$

The Hardy space $H_{p}(\mathbb{T} \times \cdots \times \mathbb{T})=H_{p}(0<p \leq \infty)$ consists of all distributions f for which $u_{\alpha}^{*} \in L_{p}$ and set

$$
\|f\|_{H_{p}}:=\left\|u_{1 / 2, \ldots, 1 / 2}^{*}\right\|_{p}
$$

The equivalence $\left\|u_{\alpha}^{*}\right\|_{p} \sim\|f\|_{H_{p}}\left(0<p \leq \infty, 0<\alpha_{i}<1\right)$ was proved in Fefferman, Stein [4] and Gundy, Stein [7].

For a distribution

$$
f \sim \sum_{n \in \mathbb{Z}^{d}} \hat{f}(n) e^{i n \cdot x}
$$

the conjugate distributions are defined by

$$
\tilde{f}^{\left(j_{1}, \ldots, j_{d}\right)} \sim \sum_{n \in \mathbb{Z}^{d}}\left(\prod_{i=1}^{d}\left(-\imath \operatorname{sign} n_{i}\right)^{j_{i}}\right) \hat{f}(n) e^{\imath n \cdot x} \quad\left(j_{i}=0,1\right)
$$

Note that $\tilde{f}^{(0, \ldots, 0)}:=f$. GUNDY and STEIN [6], [7] verified that if $f \in H_{p}$ $(0<p<\infty)$ then all conjugate distributions are also in H_{p} and

$$
\begin{equation*}
\|f\|_{H_{p}}=\left\|\tilde{f}^{\left(j_{1}, \ldots, j_{d}\right)}\right\|_{H_{p}} \quad\left(j_{i}=0,1\right) \tag{1}
\end{equation*}
$$

Furthermore (see also Chang and Fefferman [2], Frazier [5], DuREN [3]),

$$
\begin{equation*}
\|f\|_{H_{p}} \sim \sum_{i=1}^{d} \sum_{j_{i}=0}^{1}\left\|\tilde{f}^{\left(j_{1}, \ldots, j_{d}\right)}\right\|_{p} \tag{2}
\end{equation*}
$$

where \sim denotes the equivalences of the spaces and norms.
For a distribution f with Fourier series

$$
f \sim \sum_{n \in \mathbb{Z}^{d}} \hat{f}(n) e^{\imath n \cdot x} \quad \text { let } \quad P f \sim \sum_{n \in \mathbb{N}^{d}} \hat{f}(n) e^{\imath n \cdot x}
$$

be the Riesz projection. Then $f \in H_{p}$ if and only if $P f \in L_{p}$ and

$$
\begin{equation*}
\|f\|_{H_{p}} \sim\|P f\|_{p} \quad(0<p<\infty) \tag{3}
\end{equation*}
$$

(see Gundy and Stein [6], [7]). Moreover, it is known that $H_{p} \sim L_{p}$ $(1<p<\infty)$.

In this paper the constants C are absolute constants and the constants C_{p} are depending only on p and may denote different constants in different contexts.

Jawerth and Torchinsky [8] proved the following theorem.

Theorem A. For every distribution $f \in H_{p}$

$$
\left(\sum_{i=1}^{d} \sum_{\left|n_{i}\right|=0}^{\infty} \frac{|\hat{f}(n)|^{p}}{\prod_{i=1}^{d}\left|n_{i} \vee 1\right|^{2-p}}\right)^{1 / p} \leq C_{p}\|f\|_{H_{p}} \quad(0<p \leq 2)
$$

Denote by $s_{n} f$ the nth partial sum of the Fourier series of a distribution f, namely,

$$
s_{n} f(x):=\sum_{i=1}^{d} \sum_{k_{i}=-n_{i}}^{n_{i}} \hat{f}(k) e^{\imath k \cdot x} .
$$

For $n \in \mathbb{N}^{d}$ and a distribution f the Cesàro mean of order n of the Fourier series of f is given by

$$
\sigma_{n} f:=\frac{1}{\prod_{i=1}^{d}\left(n_{i}+1\right)} \sum_{i=1}^{d} \sum_{k_{i}=0}^{n_{i}} s_{k} f=f *\left(K_{n_{1}} \times \cdots \times K_{n_{d}}\right)
$$

where

$$
K_{m}(t):=\sum_{|j|=0}^{m}\left(1-\frac{|j|}{m+1}\right) e^{\imath j t} \quad(m \in \mathbb{N})
$$

is the one-dimensional Fejér kernel of order m. It is shown in ZygMUND [14] that $K_{m} \geq 0$ and

$$
\begin{equation*}
\int_{\mathbb{T}} K_{m}(t) d t=\pi \quad(m \in \mathbb{N}) \tag{4}
\end{equation*}
$$

The following result is due to the author [13].
Theorem B. If $f \in H_{p}$, then

$$
\left\|\sup _{n \in \mathbb{N}^{d}}\left|\sigma_{n} f\right|\right\|_{p} \leq C_{p}\|f\|_{H_{p}} \quad(1 / 2<p<\infty) .
$$

3. Strong convergence results

A sequence $\left(\lambda_{k} ; k \in \mathbb{Z}^{d}\right)$ is said to be a multiplier and the multiplier operator is defined by

$$
M_{\lambda} f(x):=\sum_{k \in \mathbb{Z}^{d}} \lambda_{k} \hat{f}(k) e^{\imath k \cdot x}
$$

Let $\left(\lambda_{k} ; k \in \mathbb{Z}^{d}\right)$ be an even sequence of real numbers, i.e. $\lambda_{\epsilon_{1} k_{1}, \ldots, \epsilon_{d} k_{d}}=$ λ_{k} for all $\epsilon_{i}=-1,1$ and $k \in \mathbb{Z}^{d}$. Suppose that there exists $K \in \mathbb{N}^{d}$ such that $\lambda_{k}=0$ if $k_{j} \geq K_{j}$ for some $j=1, \ldots, d$. Let

$$
\Delta^{1} \lambda_{k}:=\sum_{\epsilon_{1}, \ldots, \epsilon_{d} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{k}} \lambda_{k_{1}+\epsilon_{1}, \ldots, k_{d}+\epsilon_{d}}
$$

be the first and

$$
\Delta^{2} \lambda_{k}:=\sum_{\epsilon_{1}, \ldots, \epsilon_{d} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{k}} \Delta^{1} \lambda_{k_{1}+\epsilon_{1}, \ldots, k_{d}+\epsilon_{d}}
$$

be the second difference of $\left(\lambda_{k}\right)$.
Lemma 1. Suppose that $\left(\lambda_{k}\right)$ is an even multiplier and there exists $K \in \mathbb{N}^{d}$ such that $\lambda_{k}=0$ if $k_{j} \geq K_{j}$ for some $j=1, \ldots, d$. If $\Lambda:=$ $\sum_{k \in \mathbb{N}^{d}}\left(\prod_{i=1}^{d}\left(k_{i}+1\right)\right)\left|\Delta^{2} \lambda_{k}\right|<\infty$ then

$$
\left\|M_{\lambda} f\right\|_{H_{p}} \leq C_{p} \Lambda\|f\|_{H_{p}} \quad\left(f \in H_{p}\right)
$$

for every $1 / 2<p<\infty$.
Proof. Applying Abel rearrangement twice and Theorem B we get that

$$
\left\|M_{\lambda} f\right\|_{p}=\left\|\sum_{k \in \mathbb{N}^{d}}\left(\prod_{i=1}^{d}\left(k_{i}+1\right)\right) \Delta^{2} \lambda_{k} \sigma_{k} f\right\|_{p} \leq C_{p} \Lambda\|f\|_{H_{p}} \quad(1 / 2<p<\infty)
$$

This together with (1) implies that

$$
\left\|\left(M_{\lambda} f\right)^{\sim\left(j_{1}, \ldots, j_{d}\right)}\right\|_{p}=\left\|M_{\lambda} \tilde{f}^{\left(j_{1}, \ldots, j_{d}\right)}\right\|_{p} \leq C_{p} \Lambda\left\|\tilde{f}^{\left(j_{1}, \ldots, j_{d}\right)}\right\|_{H_{p}}=C_{p} \Lambda\|f\|_{H_{p}}
$$

for $j_{i}=0,1$ and $1 / 2<p<\infty$. The equivalence (2) proves now the lemma.

Let us consider the function

$$
v(t):= \begin{cases}1 & \text { if }|t|<1 \\ 2-|t| & \text { if } 1 \leq|t| \leq 2 \\ 0 & \text { if }|t|>2\end{cases}
$$

and the multiplier operator $V_{2 N}$ defined by

$$
V_{2 N} f(x):=\sum_{k \in \mathbb{N}^{d}}\left(\prod_{i=1}^{d} v\left(\frac{k_{i}}{N_{i}}\right)\right) \hat{f}(k) e^{\imath k \cdot x} .
$$

Lemma 2. If $1 / 2<p<\infty$ then

$$
\left\|V_{2 N} f\right\|_{H_{p}} \leq C_{p}\|f\|_{H_{p}} \quad\left(f \in H_{p}\right)
$$

Proof. Let $\lambda_{k}:=\prod_{i=1}^{d} v\left(\frac{k_{i}}{N_{i}}\right)$. It is easy to see that $\Delta^{2} \lambda_{k}=\prod_{i=1}^{d} \times$ $\Delta^{2} v\left(\frac{k_{i}}{N_{i}}\right)$ and so we have

$$
\sum_{k \in \mathbb{N}^{d}}\left(\prod_{i=1}^{d}\left(k_{i}+1\right)\right)\left|\Delta^{2} \lambda_{k}\right|=3^{d}
$$

which proves the result.
Now we extend the well known Bernstein's inequality from one- to multi-parameter trigonometric polynomials.

Lemma 3. Let f be a trigonometric polynomial in the i-th variable of order N_{i}. If $I \subset\{1, \ldots, d\}$, then for every $1 \leq p<\infty$

$$
\left\|\left(\prod_{i \in I} \partial_{i}\right) f\right\|_{p} \leq C\left(\prod_{i \in I} N_{i}\right)\|f\|_{p}
$$

Proof. Let us define

$$
\phi_{N_{i}, i \in I}(y):=\prod_{i \in I}\left(K_{N_{i}-1}\left(y_{i}\right)\left(e^{\imath N_{i} y_{i}}+e^{-\imath N_{i} y_{i}}\right)\right) \quad\left(y=\left(y_{i}, i \in I\right)\right) .
$$

Then by (4), $\left\|\phi_{N_{i}, i \in I}\right\|_{1}=C$ and

$$
\phi_{N_{i}, i \in I}(y)=\sum_{i \in I} \sum_{\left|k_{i}\right|=0}^{N_{i}-1}\left(\prod_{i \in I}\left(1-\frac{\left|k_{i}\right|}{N_{i}}\right)\left(e^{\imath\left(k_{i}+N_{i}\right) y_{i}}+e^{\imath\left(k_{i}-N_{i}\right) y_{i}}\right)\right) .
$$

It is easy to see that $\hat{\phi}_{N_{i}, i \in I}(k)=\prod_{i \in I} \frac{k_{i}}{N_{i}}$ for $-N_{i} \leq k_{i} \leq N_{i}$. Then

$$
\phi_{N_{i}, i \in I} * f=-\frac{\left(\prod_{i \in I} \partial_{i}\right) f}{\prod_{i \in I} N_{i}}
$$

proves the lemma.

Our main result is the following
Theorem 1. If $f \in H_{p}$ and $1 / 2<p \leq 1$ then

$$
\sup _{N_{i} \geq 2}\left(\frac{1}{\prod_{i=1}^{d} \log N_{i}}\right)^{[p]} \sum_{i=1}^{d} \sum_{k_{i}=1}^{N_{i}} \frac{\left\|s_{k} f\right\|_{H_{p}}^{p}}{\prod_{i=1}^{d} k_{i}^{2-p}} \leq C_{p}\|f\|_{H_{p}}^{p}
$$

where $[p]$ denotes the integer part of p.
Proof. To avoid some technical difficulties, we prove the theorem for two parameters, only. By (3), it is enough to show that

$$
\sup _{N, M \geq 2}\left(\frac{1}{\log N \log M}\right)^{[p]} \sum_{k=1}^{N} \sum_{l=1}^{M} \frac{\left\|s_{k, l}(P f)\right\|_{p}^{p}}{(k l)^{2-p}} \leq C_{p}\|P f\|_{p}^{p}
$$

whenever $f \in H_{p}$ and $1 / 2<p \leq 1$.
It is easy to see that

$$
\sum_{k=1}^{N} \sum_{l=1}^{M} \frac{\left\|s_{k, l}(P f)\right\|_{p}^{p}}{(k l)^{2-p}} \leq \sum_{k=1}^{2 N} \sum_{l=1}^{2 M} \frac{\left\|s_{k, l}\left(V_{2 N, 2 M}(P f)\right)\right\|_{p}^{p}}{(k l)^{2-p}}
$$

For fixed x and y, the (k, l)-th Fourier coefficient of

$$
\sum_{k=1}^{2 N} \sum_{l=1}^{2 M} s_{k, l}\left(V_{2 N, 2 M}(P f)\right)(x, y) e^{\imath k t} e^{\imath l u}
$$

is $s_{k, l}\left(V_{2 N, 2 M}(P f)\right)(x, y)$. Then we can apply Theorem A and (3) to obtain

$$
\begin{gathered}
\sum_{k=1}^{2 N} \sum_{l=1}^{2 M} \frac{\left|s_{k, l}\left(V_{2 N, 2 M}(P f)\right)(x, y)\right|^{p}}{(k l)^{2-p}} \\
\leq C_{p} \int_{\mathbb{T}} \int_{\mathbb{T}}\left|\sum_{k=1}^{2 N} \sum_{l=1}^{2 M} s_{k, l}\left(V_{2 N, 2 M}(P f)\right)(x, y) e^{\imath k t} e^{\imath l u}\right|^{p} d t d u .
\end{gathered}
$$

Using the notation

$$
a_{n, m}:=v\left(\frac{n}{N}\right) v\left(\frac{m}{M}\right) \hat{f}(n, m) e^{\imath n x} e^{\imath m y}
$$

we have

$$
\begin{aligned}
& \sum_{k=1}^{2 N} \sum_{l=1}^{2 M} s_{k, l}\left(V_{2 N, 2 M}(P f)\right)(x, y) e^{\imath k t} e^{\imath l u}=\sum_{k=1}^{2 N} \sum_{l=1}^{2 M} \sum_{n=1}^{k} \sum_{m=1}^{l} a_{n, m} e^{\imath k t} e^{\imath l u} \\
&= \sum_{n=1}^{2 N} \sum_{m=1}^{2 M} a_{n, m} \frac{e^{\imath(2 N+1) t}-1}{e^{\imath t}-1} \frac{e^{\imath(2 M+1) u}-1}{e^{\imath u}-1} \\
& \quad+\sum_{n=1}^{2 N} \sum_{m=1}^{2 M} a_{n, m} \frac{e^{\imath(2 N+1) t}-1}{e^{\imath t}-1} \frac{1-e^{\imath m u}}{e^{\imath u}-1} \\
& \quad+\sum_{n=1}^{2 N} \sum_{m=1}^{2 M} a_{n, m} \frac{1-e^{\imath n t}}{e^{\imath t}-1} \frac{e^{\imath(2 M+1) u}-1}{e^{\imath u}-1} \\
& \quad+\sum_{n=1}^{2 N} \sum_{m=1}^{2 M} a_{n, m} \frac{1-e^{\imath n t}}{e^{\imath t}-1} \frac{1-e^{\imath m u}}{e^{\imath u}-1} \\
&=(A)+(B)+(C)+(D) .
\end{aligned}
$$

Recall that for the Dirichlet kernel

$$
D_{N}(t):=\frac{1}{2} e^{-\imath N t} \frac{e^{\imath(2 N+1) t}-1}{e^{\imath t}-1}
$$

we have

$$
\left\|D_{N}\right\|_{1} \sim \log N \quad \text { and } \quad\left|D_{N}(t)\right| \leq \frac{C}{t} \quad(N \in \mathbb{N})
$$

(see e.g. Torchinsky [11]). Applying this, Lemma 2 and (3) we conclude that

$$
\begin{aligned}
& \int_{\mathbb{T}^{4}}|(A)|^{p} d t d u d x d y=\int_{\mathbb{T}^{2}}\left|\frac{e^{\imath(2 N+1) t}-1}{e^{\imath t}-1}\right|^{p}\left|\frac{e^{\imath(2 M+1) u}-1}{e^{\imath u}-1}\right|^{p} d t d u \\
& \quad \times\left\|V_{2 N, 2 M}(P f)\right\|_{p}^{p} \leq \begin{cases}C \log N \log M\|P f\|_{1} & \text { if } p=1, \\
C_{p}\|P f\|_{p}^{p} & \text { if } 1 / 2<p<1 .\end{cases}
\end{aligned}
$$

For the second term we obtain

$$
\begin{gathered}
\int_{\mathbb{T}^{4}}|(B)|^{p} d t d u d x d y=\int_{\mathbb{T}}\left|\frac{e^{\imath(2 N+1) t}-1}{e^{2 t}-1}\right|^{p} d t \\
\times \int_{\mathbb{T}}\left|\frac{1}{e^{u u}-1}\right|^{p} \int_{\mathbb{T}^{2}}\left|V_{2 N, 2 M}(P f)(x, y)-V_{2 N, 2 M}(P f)(x, y+u)\right|^{p} d x d y d u
\end{gathered}
$$

which can be estimated by $C_{p}\|P f\|_{p}^{p}$ if $1 / 2<p<1$ and, moreover, if $p=1$ then by

$$
\begin{aligned}
& C \log N \int_{|u|<1 / M} \frac{1}{|u|} \int_{\mathbb{T}^{2}}\left|\int_{0}^{u} \partial_{2} V_{2 N, 2 M}(P f)(x, y+w) d w\right| d x d y d u \\
& \quad+C \log N \int_{|u| \geq 1 / M} \frac{1}{|u|}\left\|V_{2 N, 2 M}(P f)\right\|_{1} d u=:\left(B_{1}\right)+\left(B_{2}\right) .
\end{aligned}
$$

It is easy to see that $\left(B_{2}\right) \leq C \log N \log M\|P f\|_{1}$. By Lemma 3,

$$
\left(B_{1}\right) \leq C \log N\left\|V_{2 N, 2 M}(P f)\right\|_{1} \leq C \log N\|P f\|_{1} .
$$

The estimation of (C) is similar. Let us consider (D).

$$
\begin{aligned}
\int_{\mathbb{T}^{4}}|(D)|^{p} d t d u d x d y= & \left.\int_{\mathbb{T}^{2}}\left|\frac{1}{e^{\imath t}-1}\right|^{p}\left|\frac{1}{e^{\imath u}-1}\right|^{p} \int_{\mathbb{T}^{2}} \right\rvert\, V_{2 N, 2 M}(P f)(x, y) \\
& -V_{2 N, 2 M}(P f)(x, y+u)-V_{2 N, 2 M}(P f)(x+t, y) \\
& +\left.V_{2 N, 2 M}(P f)(x+t, y+u)\right|^{p} d x d y d t d u .
\end{aligned}
$$

This can be estimated by $C_{p}\|P f\|_{p}^{p}$ if $1 / 2<p<1$. In case $p=1$ we split the integral with respect to t and u into the integrals over the sets $\{|t|<1 / N,|u|<1 / M\},\{|t|<1 / N,|u| \geq 1 / M\},\{|t| \geq 1 / N,|u|<1 / M\}$ and $\{|t| \geq 1 / N,|u| \geq 1 / M\}$ and we denote these integrals by $\left(D_{1}\right),\left(D_{2}\right)$, $\left(D_{3}\right)$ and $\left(D_{4}\right)$, respectively. Applying Bernstein's inequality we obtain

$$
\begin{gathered}
\left(D_{1}\right) \leq C \int_{|t|<1 / N} \int_{|u|<1 / M} \frac{1}{|t u|} \\
\times \int_{\mathbb{T}^{2}}\left|\int_{0}^{t} \int_{0}^{u} \partial_{1} \partial_{2} V_{2 N, 2 M}(P f)(x+v, y+w) d v d w\right| d x d y d t d u \leq C\|P f\|_{1} .
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
\left(D_{2}\right) \leq & \left.C \int_{|t|<1 / N} \int_{|u| \geq 1 / M} \frac{1}{|t u|} \int_{\mathbb{T}^{2}} \right\rvert\, \int_{0}^{t} \partial_{1} V_{2 N, 2 M}(P f)(x+v, y) \\
& -\partial_{1} V_{2 N, 2 M}(P f)(x+v, y+u) d v \mid d x d y d t d u \leq C \log M\|P f\|_{1} .
\end{aligned}
$$

$\left(D_{3}\right)$ can be estimated in the same way. For $\left(D_{4}\right)$ we have simply

$$
\left(D_{4}\right) \leq C \log N \log M\|P f\|_{1},
$$

which finishes the proof of Theorem 1.
The set of the trigonometric polynomials is dense in H_{p}, so by the usual density argument we can easily verify the next consequence (cf. Weisz [12]).

Corollary 1. If $f \in H_{p}$ and $1 / 2<p \leq 1$ then

$$
\lim _{N \rightarrow \infty}\left(\frac{1}{\prod_{i=1}^{d} \log N_{i}}\right)^{[p]} \sum_{i=1}^{d} \sum_{k_{i}=1}^{N_{i}} \frac{\left\|s_{k} f-f\right\|_{H_{p}}^{p}}{\prod_{i=1}^{d} k_{i}^{2-p}}=0 .
$$

Since $\|\cdot\|_{p} \leq\|\cdot\|_{H_{p}}$, we get

$$
\lim _{N \rightarrow \infty} \frac{1}{\prod_{i=1}^{d} \log N_{i}} \sum_{i=1}^{d} \sum_{k_{i}=1}^{N_{i}} \frac{\left\|s_{k} f-f\right\|_{1}}{\prod_{i=1}^{d} k_{i}}=0
$$

whenever $f \in H_{1}$, which was proved by Smith [10] in the one-parameter case.

We now give the dual inequality to Theorem 1 , which is a Marcin-kiewicz-Zygmund type inequality for the $B M O$ space, where $B M O$ is the dual of H_{1}. Since the proof is similar to that of Theorem 3 in Weisz [12], we omit it.

Theorem 2. If $g^{k}\left(k \in \mathbb{N}^{d}\right)$ are uniformly bounded in $B M O$ then

$$
\sup _{N_{i} \geq 2}\left\|\frac{1}{\prod_{i=1}^{d} \log N_{i}} \sum_{i=1}^{d} \sum_{k_{i}=1}^{N_{i}} \frac{s_{k} g^{k}}{\prod_{i=1}^{d} k_{i}}\right\|_{B M O} \leq C \sup _{k \in \mathbb{N}^{d}}\left\|g^{k}\right\|_{B M O} .
$$

Note that the corresponding results for multi-parameter Walsh-Fourier series are still unknown.

References

[1] E. S. Belinskir, Strong summability of Fourier series of the periodic functions from $H^{p}(0<p \leq 1)$, Constr. Approx. 12 (1996), 187-195.
[2] S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and H^{p}-theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43.
[3] P. Duren, Theory of H^{p} spaces, Academic Press, New York, 1970.
[4] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-194.
[5] A. P. Frazier, The dual space of H^{p} of the polydisc for $0<p<1$, Duke Math. J. 39 (1972), 369-379.
[6] R. F. Gundy, Maximal function characterization of H^{p} for the bidisc, Lecture Notes in Math., vol. 781, Springer, Berlin, Heidelberg, New York, 1982, 51-58.
[7] R. F. Gundy and E. M. Stein, H^{p} theory for the poly-disc, Proc. Nat. Acad. Sci. USA 76 (1979), 1026-1029.
[8] B. Jawerth and A. Torchinsky, A note on real interpolation of Hardy spaces in the polydisk, Proc. Amer. Math. Soc. 96 (1986), 227-232.
[9] P. Simon, Strong convergence of certain means with respect to the Walsh-Fourier series, Acta Math. Hung. 49 (1987), 425-431.
[10] B. Smith, A strong convergence theorem for $H^{1}(\mathbb{T})$, Lecture Notes in Math., vol. 995, Springer, Berlin, Heidelberg, New York, 1984, 169-173.
[11] A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, New York, 1986.
[12] F. Weisz, Strong convergence theorems for two-parameter Walsh- and trigonomet-ric-Fourier series, Studia Math. 117 (1996), 173-194.
[13] F. Weisz F, (C, α) means of several-parameter Walsh- and trigonometric-Fourier series, East J. Approx. 6 (2000), 129-156.
[14] A. Zygmund, Trigonometric series, Cambridge Press, London, 1959.

FERENC WEISZ
DEPARTMENT OF NUMERICAL ANALYSIS
EÖTVÖS L. UNIVERSITY
PÁZMÁNY P. SÉTÁNY 1/D.
H-1117 BUDAPEST
HUNGARY
E-mail: weisz@ludens.elte.hu
(Received February 14, 2000; file received November 10, 2000)

