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Dedicated to Professor Lajos Tamássy on his 70th birthday

In 1986 R. K. Tavakol and N. van den Berg [9] were concerned with
the constructive-axiomatic development of the theory of gravity given by
Ehlers, Pirani and Schild (EPS) which allows a transparent relation
to be established between the geometrical structures of the space-time
and the observable physical phenomena. They showed that retaining the
conformal and the projective structures of space-time does not necessarily
reduce its underlying geometry to a Riemannian one, and gave an exam-
ple of a physically motivated non-Riemannian space-time in wich all EPS
conditions hold identically. Recently Ian W. Roxburgh [8] considered
Finsler spaces satisfying the Tavakol–van den Bergh conditions (T–vdB).
Both papers are concerned with Finsler spaces having the same geodesic
structure as the associated Riemannian space.

The purpose of the first section of the present paper is to show that
the T–vdB is likely to reduce its underlying geometry to a Riemannian one
sometimes, because the second condition (a2) is too restrictive. It seems to
the author that the physical purpose of the metrical generalization will be
fairly achieved by introducing the projective change of metric, instead of
(a2). The remaining sections are concerned with the theory of projective
changes on the basis of A. Rapcsák’s valuable paper [7], which found the
conditions for Finsler metrics to be projective to a given Finsler metric.

§1. The Tavakol–van den Bergh condition

Let Fn = (Mn, L(x, y)) be an n–dimensional Finsler space on a differ-
entiable manifold Mn with the fundamental metric function L(x, y) where
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x = (xi) is a local coordinate system and y = (yi) is sometimes written as
ẋ. The Tavakol–van den Bergh conditions for Fn are given as follows:

(a1) Fn is equipped with L(x, y) given by

(1.1) L2(x, y) = e2c(x,y)aij(x)yiyj ,

where c(x, y) is a positively homogeneous function in y of degree zero and
aij(x) is a (quasi–)Riemannian fundamental tensor.

(a2) Fn is furnished with a connection such that

(1.2) Gj
i
k = {j

i
k} ,

where Gj
i
k are coefficients of the Berwald connection and {j

i
k} are the

Christoffel symbols constructed from aij(x).

Remark 1. The condition (a1) does not imply gij = e2c(x,y)aij , where
gij are components ∂̇i∂̇j(L2/2) of the fundamental tensor of Fn, because
the function c is not assumed to be a function of x alone. The tensor
gij above does not give a Finsler metric, but a generalized metric, and
the space (Mn, gij) has been considered by some geometricians [4], [5] and
[10]. It is, however, obvious that L defined by (1.1) is certainly a Finslerian
fundamental function because of the homogeneity of c(x, y).

gij = e2c(x,y)aij(x) . . . a generalized metric,

L2 = e2c(x,y)aij(x)yiyi . . . a Finsler metric.

Remark 2. If we put α =
√

aij(x)yiyj , then (a1) is written as L =
ec(x,y)α, so that the Finsler metric L may be seen as conformal to the
Riemannian α. But (a1) never specializes L in the true geometrical sense.
In fact, let L(x, y) and L̄(x, y) be two arbitrary Finsler metric functions on
the same manifold Mn. Then we get the function ec(x,y) = L̄(x, y)/L(x, y)
which is obviously positively homogeneous of degree zero in y, and we have
L̄ = ec(x,y)L. In particular, if Mn admits a Finsler metric L(x, y), then
Mn admits also a Riemannian metric, as is well-known. Therefore any
Finsler metric L(x, y) may be written as (1.1) without any condition.

Remark 3. In the associated Riemannian space (Mn, α) we have the
Levi–Civita connection {j

i
k}(x), from which we get a Finsler connection

AΓ = ({j
i
k}(x), yr{r

i
j}(x), 0) (Example 9.1 of [2]). On the other hand,

we get in Fn the Berwald connection BΓ = (Gj
i
k, Gi

j , 0) determined from
L(x, y). Then the condition (a2) asserts that these connections coincide
with each other.
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Theorem A (Tavakol–van den Bergh [9]). A necessary and suffi-
cient condition for a Finsler space Fn = (Mn, L(x, y)) to satisfy assump-
tions (a1) and (a2) is for the function c(x, y) to satisfy

(1.3) c;i = ∂ic− ∂̇rc{i
r
s}ys = 0 .

Remark 4. In (1.3) ( ; ) stands for the h–covariant derivative of c(x, y)
with respect to the connection AΓ above. Cf. [2], Definition 9.5 and (9.18).

We shall first show Theorem A, based on the following theorem:

Theorem B (Okada [6]). The Berwald connection BΓ=(Gj
i
k, Gi

j ,
0) of a Finsler space is uniquely determined from the fundamental function
L(x, y) by the following four axioms:

(1) L–metrical: L;i = 0,
(2) (h)h–torsion T j

i
k = Gj

i
k −Gk

i
j = 0,

(3) deflection tensor Di
j = yrGr

i
j −Gi

j = 0,

(4) (v)hv–torsion P i
jk = ∂̇kGi

j −Gk
i
j = 0.

Remark 5. In (1) above L;i = ∂iL − (∂̇rL)Gr
i stands for the h–

covariant derivative of L with respect to BΓ, similarly to (1.3), because
the connection AΓ in (Mn, α) is nothing but the Berwald connection in
the space.

Then, if we treat the Berwald connection BΓ of a Finsler space
Fn = (Mn, L(x, y)) and put ec(x,y) = L̄/L for another Finsler space F̄n =
(Mn, L̄(x, y)), then BΓ is also the Berwald connection of the latter, if and
only if BΓ satisfies the axiom (1): L̄;i = 0 for L̄, because the remaining
three axioms are satisfied automatically in F̄n. From L̄;i = ecc;iL we
obviously get Theorem A.

We shall consider the integrability condition of (1.3). We have one of
the Bianchi identities of BΓ as follows:

(1.4) Xi
;j;k −Xi

;k ;j = XrHr
i
jk −Xi

.rR
r
jk ,

for Finslerian vector field Xi(x, y), where Hr
i
jk is the h–curvature tensor

and Rr
jk = ysHs

r
jk is the (v)hv–torsion tensor of BΓ. In (1.4) we denote

by ( ; , · ) the h– and v–covariant derivatives with respect to BΓ; the latter
being only the partial derivative by yi.

Applying (1.4) to the scalar c(x, y), (a2) implies

(1.5) crR
r
jk = 0 ,

where and throughout the following we shall use cr and crs to denote c·r
and c·r·s respectively.
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Further the Euler theorem on homogeneous functions implies on cr

(1.6) cry
r = 0 .

Therefore we have the three equations (1.3), (1.5) and (1.6) for c(x, y)
satisfying the Tavakol–van den Bergh conditions.

Example 1. Tavakol–van den Bergh [9] showed an interesting ex-
ample satisfying (a1) and (a2). They dealt with the Finslerian gij corre-
sponding to a plane wave:

L2(X, Y, u, v, Ẋ, Ẏ , u̇, v̇) = α(u)Ẋ2 + β(u)Ẏ 2 − 2u̇v̇ .

Here we shall make some comments to derive their result. Putting (xi) =
(X,Y, u, v), the surviving Christoffel symbols are

{14
1} = α′/2, {24

2} = β′/2, {11
3} = α′/2α, {22

3} = β′/2β .

The surviving components of the curvature tensor Rh
i
jk:

R1
4
13 = αR3

1
13 = α′′/2− (α′)2/4α ,

R2
4
23 = βR3

2
23 = β′′/2− (β′)2/4β .

Then (1.3) are written in the form

(1.7)

(1) ∂c/∂X − c1(α′/2α)y3 − c4(α′/2)y1 = 0 ,

(2) ∂c/∂Y − c2(β′/2β)y3 − c4(β′/2)y2 = 0 ,

(3) ∂c/∂u− c1(α′/2α)y1 − c2(β′/2β)y2 = 0 ,

(4) ∂c/∂v = 0 .

Next (1.5), assuming that both α′′/2−(α′)2/4α and β′′/2−(β′)2/4β
do not vanish, are written as

(1.8) c1y
3 + c4αy1 = 0, c2y

3 + c4βy2 = 0 .

If we put P = −c4/y3, then (1.8) are equivalent to c1 = Pαy1, c2 = Pβy2

and c4 = −Py3, so that (1.6) gives

(1.9) c3 = −P{α(y1)2 + β(y2)2 − y3y4}/y3 .

As a consequence it is seen that (1.7) reduce to

(1.7’)
∂c/∂X = ∂c/∂Y = ∂c/∂v = 0 ,

∂c/∂u = P{α′(y1)2 + β′(y2)2}/2 .

Thus we have c = c(u, yi).
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Now, if we consider the function s(u, yi) = L2/(y3)2, then we have

(∂s/∂u, ∂s/∂yi) = {2/P (y3)2}(∂c/∂u, ∂c/∂yi) ,

and, in consequence, c is a function of s [9]. Let us remark that s(u, yi) is
a positively homogeneous function of degree zero in y.

Example 2. We shall consider the well-known Schwarzschild space–
time equipped with the Riemannian metric

(1.10) L2(x, y) = Rṫ2 − ṙ2/R− r2θ̇2 − (r sin θ)2ϕ̇2 ,

where R = 1−2m/r with a positive constant m. Putting (xi) = (t, r, θ, ϕ),
we have the surviving Christoffel symbols:

{11
2} = m/Rr2, {12

1} = mR/r2, {22
2} = −m/Rr2 ,

{32
3} = −Rr, {42

4} = −Rr sin2 θ, {23
3} = 1/r ,

{24
4} = 1/r, {43

4} = − sin θ cos θ, {34
4} = cos θ/ sin θ .

The surviving components of the curvature tensor Ri
h
jk are

R2
1
12 = 2R2

3
23 = 2R2

4
24 = −2m/Rr3 ,

R1
2
12 = −2R1

3
13 = −2R1

4
14 = −2mR/r3 ,

R3
4
34 = 2R3

2
23 = 2R3

1
13 = 2m/r ,

R4
3
34 = −2R4

1
14 = −2R4

2
24 = −2m sin2 θ/r .

Then, putting Sij = chRh
ij , we have

(1.11)

S12 = −(2m/r3)(c1y
2/R + Rc2y

1) ,

S13 = (m/r)(c1y
3 + Rc3y

1/r2) ,

S14 = (m/r)(sin2 θc1y
4 + Rc4y

1/r2) ,

S23 = (m/r)(c2y
3 − c3y

2/Rr2) ,

S24 = (m/r)(sin2 θc2y
4 − c4y

2/Rr2) ,

S34 = (2m/r)(c4y
3 − sin2 θc3y

4) .

The three equations S12 = S13 = S14 = 0 of (1.5) lead us to

c2 = −c1y
2/R2y1, c3 = −c1r

2y3/Ry1, c4 = −c1r
2 sin2 θy4/Ry1

and the last three, S23 = S24 = S34 = 0, are only consequences of the
above. The equation (1.6) is immediately written in the form c1L

2/Ry1 =
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0, so that ci must be equal to zero and (1.3) implies c =constant. Conse-
quently the Finsler metric must reduce to the Schwarzschild metric.

Now we shall pay attention to the system of two equations (1.5) and
(1.6). They may be regarded as n(n− 1)/2 + 1 homogeneous linear equa-
tions for cr, r = 1, . . . , n, and in consequence, the rank of the matrix
consisting of the coefficients Rr

jk and yr must be less than n, if there is a
possibibility to get a non-trivial solution ci .

Therefore it may be said that T-vdB is likely to reduce its underlying
geometry to a Riemannian one in almost all cases.

Theorem 1. The Finsler space Fn = (Mn, L2=e2c(x,y)aij(x)yiyj) sat-
isfying the T–vdB condition reduces to

(1) a Riemannian space homothetic to the associated Riemannian
space Rn = (Mn, aij(x)yiyj), if Rn is of non-zero constant curvature, or
it is two–dimensional with non-zero Gauss curvature,

(2) a locally Minkowski space, if Rn is locally flat.

Proof of (1). The function c must be constant, as shown by the
following theorem ([2], Theorem 26.5):

Theorem C (Matsumoto–Tamássy). Assume that a Finsler space
Fn with the fundamental function L(x, y) be of non-zero scalar curvature.
If a scalar field S(x, y) on Fn positively homogeneous of degree r in y is
h–covariant constant, then S is necessarily equal to sLr with a constant s.

Our c(x, y) has r = 0 and (1.3) shows that it is h–covariant constant,
so that c is necessarily constant.

Proof of (2). From the assumption of local flatness it follows that
there exists a covering by coordinate neighborhoods in each of which the
components aij are all constant, so that the equation (1.3) reduces to
∂c/∂xi = 0 and we have c = c(y). Therefore the fundamental function L
of Fn is a function of y alone, that is, Fn is locally Minkowski.

§2. Rapcsák’s fundamental theorem

We consider the Berwald connection BΓ = Gj
i
k, Gi

j , 0) of a Finsler
space Fn = (Mn, L(x, y)). Let gij(x, y) be the fundamental tensor ∂̇i∂̇jF ,
F = L2/2. The connection coefficients are given by Gi

j = ∂̇jG
i and

Gj
i
k = ∂̇kGi

j , where Gi = girG
r are defined as

Gi = (yr∂̇i∂rF − ∂iF )/2 = {yr(∂̇iL∂rL + L∂̇i∂rL)− L∂iL}/2 .

Thus, if we introduce the operator Γi for a scalar field S(x, y) as

(2.1) Γi(S) = {yr(∂̇iS∂rS + S∂̇i∂rS)− S∂iS}/2 ,
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then we have Γi(L) = Gi for the fundamental function L.
Denoting by ( ; . · ) the h– and v–covariant derivatives in BΓ, we have

S;i = ∂iS − Gr
i∂̇rS and S·i = ∂̇iS. We shall also use the simple symbols

Si = S·i and Sij = S·i·j . Substituting ∂iS = S;i + SrG
r
i in (2.1) and

introducing the operator ∆i as

(2.2) ∆i(S) = S;i − S;r·iyr,

we obtain the expression of Γi(S) as follows:

(2.1′) 2Γi(S) = S;0Si − S∆i(S) + 2(SSir + SiSr)Gr.

We shall further define the operator ∆ij = ∂̇j∆i:

(2.3) ∆ij(S) = S;i·j − S;j·i − S;r·i·jyr.

We have for BΓ the following commutation formulae of covariant differen-
tiations:

S;i·j − S·j ;i = 0, Si;j·k − Si·k ;j = −SrGi
r
jk ,

where the hv–curvature tensor Gi
r
jk of BΓ is symmetric in the subscripts

and satisfies Gi
r
jkyk = 0. Thus we have in (2.3) S;r·i·jyr = Si;r·jyr =

Sij;ry
r. Consequently we have ∆ij(S) of the form

(2.3′′) ∆ij(S) = Sj;i − Si;j − Sij ;ry
r.

Now we are concerned with two Finsler spaces Fn = (Mn, L) and
F̄n = (Mn, L̄) on the same underlying manifold Mn. From ∆i(L̄) = Ḡi

in F̄n and (2.1′) we get

2Ḡi = L̄;0 l̄i − L̄∆i(L̄) + 2(h̄ir + l̄i l̄r)Gr,

where l̄i = L̄·i and h̄ir = L̄L̄·i·r are the normalized supporting element
and the angular metric tensor of F̄n respectively, so that h̄ir + l̄i l̄r is equal
to the fundamental tensor ḡir of F̄n. Then, transvecting the above by ḡij ,
we obtain the general relation between Gj and Ḡj :

(2.4) 2Ḡj = 2Gj + L̄;0y
j/L̄− L̄ḡij∆i(L̄) .

Proposition 1. We have the relation (2.4) between the quantities Gj

and Ḡj of Finsler spaces Fn and F̄n on the same underlying manifold.

We shall consider a change L → L̄ of the metrics. The change is called
projective, if any geodesic of Fn = (Mn, L) coincides with a geodesic of
F̄n = (Mn, L̄) as a set of points and vice versa. Then Fn is said to be
projective to F̄n [1], [7]. As is well-known, the necessary and sufficient con-
dition for a projective change is that there exists a positively homogeneous
function P (x, y) of degree one in y satisfying

(2.5) Ḡi = Gi + Pyi.



162 Makoto Matsumoto

P (x, y) is called the projective factor. Therefore we have to examine the
last term of (2.4) for a projective change.

From (2.5) we have

(2.6) Ḡi
j = Gi

j + Pjy
i + Pδi

j , Pj = P·j ,

and the metricity condition L̄;̄i = 0 in F̄n is written in the form

∂iL̄− l̄r(Gr
i + Piy

r + Pδr
j ) = L̄;i − (L̄P )·i = 0 ,

from L̄·i = l̄i, l̄ry
r = L̄ and L̄;i = ∂iL̄ − L̄·iGr

i. Consequently we see
∆i(L̄) = (L̄P )·i − (L̄P )·r·iyr which is equal to zero from the homogeneity
of (L̄P )·i .

Conversely, ∆i(L̄) = 0 leads us to the form (2.5) from (2.4), where we
have P = L̄;0/2L̄.

We shall show other forms of the condition ∆i(L̄) = 0. From (2.3′)
we have

∆ij(L̄) = l̄j;i − l̄i;j − l̄ij;ry
r,

where we put l̄ij = l̄i·j . In the above the term l̄j;i− l̄i;j is skew-symmetric,
while l̄ij;ry

r is symmetric, so that the condition ∆i(L̄) = 0 implies

(2.7) (1) l̄j;i − l̄i;j = 0, (2) l̄ij;ry
r = 0 .

It is, however, shown that (2) is a consequence of (1). In fact, it follows
from the commutation formula that (1) may be written as L̄;i·j − L̄;j·i = 0
and

l̄ij;ry
r = l̄i·j;ryr = (l̄i;r·j + l̄sGi

s
rj)yr = L̄;r·i·jyr = L̄;i·r·jyr,

which is equal to zero from the homogeneity of L̄;i·j , so that we have (2).
Conversely, from L̄;i·j − L̄;j·i = 0 we immediately get ∆i(L̄) = 0 by

transvecting by yj .
Therefore we obtain the following fundamental theorem on projective

change of metrics:

Theorem D (Rapcsák [7]). A Finsler space Fn = (Mn, L) is pro-
jective to a Finsler space F̄n = (Mn, L̄), if and only if L̄ satisfies one of
the following three conditions:

(1) ∆i(L̄) = L̄;i − L̄;r·iyr = 0 ,

(2) l̄j;i − l̄i;j = 0, (3) L̄;i·j − L̄;j·i = 0 .

Then the projective factor P is given by P = L̄;0/2L̄.
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Remark 6. In the three conditions above only the nonlinear con-
nection (Gi

j) of BΓ appears. It is common to the Cartan connection
CΓ = (Γ∗j

i
k, Gi

j , Cj
i
k). [2].

Applying (1) and (3) of Theorem D to the form L̄ = ec(x,y)L of L̄, we
get

Theorem 2. A Finsler space Fn = (Mn, L) is projective to a Finsler
space F̄n = (Mn, L̄ = ec(x,y)L), if and only if c(x, y) satisfies one of the
following two conditions:

(1) L(c;i − c;r·iyr) = c;0(Lci + li) ,

(2) Lc;i·j + c;i(Lcj + lj)− (i/j) = 0 .

Then the projective factor P is given by P = c;0/2.

Thus the condition (1.3) of the T–vdB is eased into (1) or (2) above.
Throughout the following, as in (2) above, the symbol (i/j) stands for the
term(s) obtained from the preceding term(s) by interchanging the indices
i, j.

§3. Generalization of the integrability condition

The integrability condition (1.5) of (1.3) is directly given by the Ricci
identity (1.4), but it is not easy to write the corresponding condition for
the equations of Theorem D. We can, however, derive interesting equations
from them.

First we consider the equation (1) of Theorem D. We get L̄;i;j −
L̄;r·i;jyr = 0, which gives

(3.1) L̄;i;j − L̄;r·i;jyr − (i/j) = 0 .

It follows from (1.4) that

L̄;r·i;j = L̄·i;r;j = l̄i;r;j = l̄i;j;r − l̄hHi
h
rj − l̄ihRh

rj .

Thus (3.1) may be written in the form

(3.1′) − l̄rR
r
ij − (l̄i;j − l̄j;i);0+

+ l̄h(Hi
h
0j −Hj

h
0i) + (l̄ihRh

0j − l̄jhRh
0i) = 0 .

It is well-known [2] that the h–curvature tensor Hi
h
jk satisfies the

identities

(3.2)
(1) H0

h
ij = Rh

ij , (2) Hk
h
ij = Rh

ij·k ,

(3) Hi
h
jk + (i, j, k) = 0 ,
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where (i, j, k) denotes the two terms obtained from the preceding term(s)
by cyclic permutation of i, j, k. Then (1) and (3) imply

(3.3) Rh
jk = Hj

h
0k −Hk

h
0j .

Therefore (2) of Theorem D and (3.3) show that (3.1′) can finally be
written in the form

(3.4) l̄hiR
h
0j − (i/j) = 0 .

On the other hand, following Rapcsák [7], we have from (2) of Theo-
rem D

(l̄j;i − l̄i;j);k + (i, j, k) = −(l̄i;j;k − l̄i;k;j)− (i, j, k) = 0 .

Thus (1.4) and (3) of (3.2) lead us to

(3.5) l̄hiR
h

jk + (i, j, k) = 0 .

We get (3.4) and (3.5) for the projective change, but it is easy to
show that these are equivalent to each other. In fact, the transvection of
(3.5) by yk implies (3.4) and the differentation of (3.4) by yk implies (3.5)
because of (3.2). Consequently we obtain

Proposition [7]. If a Finsler space Fn = (Mn, L) is projective to a
Finsler space F̄n = (Mn, L̄), then the angular metric tensor h̄ij = L̄l̄ij of
F̄n must satisfy one of the equations

(1) h̄hiR
h
0j − (i/j) = 0, (2) h̄hiR

h
jk + (i, j, k) = 0 .

Now we shall return to the metric L̄ = ec(x,y)L. Then we have

l̄ij = ec{lij + licj + ljci + L(cij + cicj)}.
Since we have lhRh

ij = 0 and hhiR
h

jk = R0ijk, the equations (1) and (2)
above are written respectively in the form

{Lchi + ch(Lci + li)}Rh
0j − (i/j) = 0 ,

{Lchi + ch(Lci + li)}Rh
jk + (i, j, k) = 0 .

Putting Sij = chRh
ij , as in Example 2, we have

Sij·k = chkRh
ij + chHk

h
ij ,

(S0j)·i = chiR
h
0j + chRh

ij + chHi
h
0j .

Therefore, paying attention to (3.3), we can conclude as follows:



The Tavakol–van den Bergh conditions in the theories . . . 165

Theorem 3. If a Finsler space Fn = (Mn, L) is projective to a Finsler
space F̄n = (Mn, ec(x,y)L), then Sij = chRh

ij must satisfy one of the
equations

(1) (Lci + li)S0j + L(S0j)·i − (i/j) = 3Sij ,

(2) (Lci + li)Sjk + LSjk·i + (i, j, k) = 0 .

Consequently the integrability condition (1.5), that is, Sij = 0 is eased
into (1) or (2) above, though they are not the integrability condition.

Example 3. We again consider the Schwarzschild space–time which
was dealt with in Example 2. If we put

Sijk = Sij·k + (i, j, k), Tijk = (Lci + li)Sjk + (i, j, k) ,

and further

(3.6) K12 = c1y
2/R + Rc2y

1, K34 = c4y
3 − sin2 θc3y

4,

then we have from (1.11)

S123 = −(3m/r3)K12·3, S124 = −(3m/r3)K12·4,

S134 = (3m/r)K34·1, S234 = (3m/r)K34·2.

Next, if we pay attention to

l1 = (R/L)y1, l2 = −y2/LR, l3 = −(r2/L)y3,

l4 = −(r2 sin2 θ/L)y4,

we have from (1.11)

T123 = −(3m/r3)(Lc3 + l3)K12, T124 = −(3m/r3)(Lc4 + l4)K12,

T134 = (3m/r)(Lc1 + l1)K34, T234 = (3m/r)(Lc2 + l2)K34.

Therefore the equation (2) of Theorem 3 states

(3.7)
(c + log L)·iK12 + K12·i = 0, i = 3, 4,

(c + log L)·jK34·j + K34·j = 0, j = 1, 2.

Consequently we can conclude as follows:

Proposition 2. If a Finsler space F 4 = (M4, ec(x,y)L) is projective to
the Schwarzschild space–time (M4, L), then the function c(x, y) must be
such that
(1) ecL(c1ṙ/R + Rc2ṫ) is independent of (θ̇, ϕ̇),
(2) ecL(c4θ̇ − sin2 θc3ϕ̇) is independent of (ṫ, ṙ),
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(3) c1ṫ + c2ṙ + c3θ̇ + c4ϕ̇ = 0,

where R = 1− 2m/r.

Thus the condition ci = 0, obtained from (1.5) and (1.6), is eased into
(1), (2) and (3) above, if, instead of (a2), we consider the projectivity.

§4. Projective β–change

We shall apply Rapcsák’s fundamental Theorem D to a β–change
L → L̄ = f(L, β), where β is a differential 1–form β = bi(x)yi and f(u1, u2)
is a positively homogeneous function of degree one in (u1, u2).

Denoting fa = ∂f/∂ua and fab = ∂fa/∂ub, a, b = 1, 2, we have

L̄;i = f2β;i, L̄;i·j = (f21lj + f22bj)β;i + f2bj;i .

Since the homogeneity implies f21L + f22β = 0, we have

L̄;i·j = f22β;i(bj − βlj/L) + f2bj;i .

Thus (3) of Theorem D leads us to

Theorem E [3]. A β–change L → L̄ = f(L, β), β = bi(x)yi, is pro-
jective, if and only if f(L, β) satisfies

(4.1) 2f2Fij = f22(β;iBj − β;jBi) ,

where we put Fij = (bi;j − bj;i)/2 and Bi = bi − βli/L.

We shall apply Theorem E to the projective change L = α → L̄ =
ec(α,β)α, treated in Theorem 2, where L is a Riemannian metric α =
(aij(x)yiyj)1/2 and c(α, β) is assumed to be a positively homogeneous
function of degree zero in α and β. In this case we have li = ∂α/∂yi =
airy

r/α. Putting yi = airy
r and cβ = ∂c/∂β, (4.1) is written in the form

(4.2) 2cβfij = (cββ + c2
β){β;i(bj − βyj/α2)− (i/j)} .

Transvecting (4.2) by yi, we have

(4.3) 2cβF0j = β;0(cββ + c2
β)(bj − βyj/α2) ,

which corresponds to (1) of Theorem D. Then assuming β;0 6= 0 and cβ 6= 0,
(4.2) may be written in the form

β;0Fij = β;iF0j − β;jF0i .

This is a quadratic polynomial in yi, because β;i = bh;iy
h and F0i = Fhiy

h.
Thus it is equivalent to

(4.4) (bh;k + bk;h)Fij = bh;iFkj + bk;iFhj − (i/j) .

Consequently we obtain
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Proposition 4. The change α → ec(α,β)α is projective, if and only if
β = bi(x)yi and c(α, β) satisfy (4.2) or (4.3). In this case we have (4.4),
provided that β;0 6= 0 and cβ 6= 0.

Example 4. If β and c(α, β) satisfy

(1) Fij = 0, (2) cββ + c2
β = 0 ,

then (4.2) obviously holds and the Finsler metric ec(α,β)α is projective to
the Riemannian metric α. (1), a condition for β, shows ∂jbi − ∂ibj = 0,
so that bi(x) is locally a gradient vector field. (2), a condition for c(α, β),
is written as cββ/cβ + cβ = 0, which is integrated to obtain log(cβ) + c =
log A(α) and further ec(α,β) = A(α)β + B(α), where A(α) and B(α) are
functions of α alone, positively homogeneous of degree−1 and 0 respec-
tively, so we have A(α) = k2/α and B(α) = k1 with constants k1 and k2.
Consequently we obtain a special (α, β)–metric [2]:

ec(α,β)α = k1α + k2β ,

which is of the Randers type.

Example 5. If we assume c(α, β) = α−rβr, r 6= 0, then (4.3) is written
in the form
(4.5) 2α2βF0j = β;0(r − 1 + rα−rβr)(α2bj − βyj) .

(1) Assume that r is an odd number. Then αr is irrational in yi.
Hence (4.5) must imply β;0 = 0 and we get F0j = 0. β;0 = bi;jy

iyj = 0
shows bi;j + bj;i = 0. F0j = (bi;j − bj:i)yi/2 = 0 shows bi;j − bj;i = 0.
Therefore we get bi;j = 0 and then (4.5) holds.

(2) Assume that r is a positive even number. Then (4.5) is rewritten
in the form
(4.6) 2αr+2βF0j = β;0{(r − 1)αr + rβr}(α2bj − βyj) .

In this polynomial in yi, we observe that only the term β;0(rβr)(−βyj)
does not contain α2, so that we must have zj = zjr(x)yr satisfying (i)
β;0yj = α2zj . Further only the term β;0(r − 1)αr(α2bj) does not contain
β, so that we must have uj = ujr(x)yr satisfying (ii) β;0bj = βuj . Then,
substituting from (i) and (ii), (4.6) is written as

2αrF0j = {(r − 1)αr + rβr}(uj − zj) ,

which obviously implies uj − zj = 0 and F0j = 0. The former shows
β;0(α2bj − βyj) = 0, so that we have β;0 = 0.

(3) Assume that r is a negative even number −s. Then (4.5) is written
in the form
(4.7) 2α2βs+1F0j = −β;0{(s + 1)βs + sαs}(α2bj − βyj) .
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Similarly to (2), we easily get β;0 = 0 and F0j = 0.

As a conclusion, if we assume c(α, β) = α−rβr with a non–zero integer
r, then we must have bi;j = 0. Compare with Roxburgh’s paper [8].
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