
Publ. Math. Debrecen

58 / 4 (2001), 717–733

Additive derivations and Jordan derivations
on algebras of unbounded operators

By W. TIMMERMANN (Dresden)

Abstract. Let A ⊂ L+(D) be a standard algebra of unbounded operators on a
dense domain D in a Hilbert space H. We prove that for a large class of domains D
every additive derivations (Jordan derivation resp.) D has the form D(A) = TA− AT
for some T ∈ L+(D). A similar result is valid for Jordan ∗-derivations on every standard
algebra of unbounded operators. These are generalizations of results valid for standard
algebras of bounded operators.

1. Introduction and preliminaries

Several types of derivations play an important role in ring theory and
in the theory of abstract as well as of operator algebras. Strange enough
nowaday there seems to be only spurious interplay between ring theorists
and operator algebraists. This is a pity because there are several results in
abstract ring theory with interesting applications to certain classes of oper-
ator algebras. We are concerned here with derivations and corresponding
applications to algebras of bounded operators on Hilbert or Banach spaces.
The aim of the paper is to give some generalizations to algebras of un-
bounded operators. Looking for applications of abstract algebraic results
concerning derivations to operator algebras one is faced with a variety of
different notions related to derivations. For example, since an algebra can
be considered as a ring one has to distinguish between ring and algebra
derivations. Another class are the Jordan or Jordan ∗-derivations and so
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on. To fix our notation let us start with some definitions which are for-
mulated only for algebras (or ∗-algebras). In this paper F stands for the
scalar field R or C.

Definition 1.1. Let A be an algebra over F and A1 ⊂ A a subalgebra.
A mapping D : A1 → A is called multiplicative derivation if D fulfils the
Leibniz rule

(1) D(ab) = D(a)b + aD(b) for all a, b ∈ A1;

additive derivation or ring derivation if D is additive and fulfils (1); deriva-
tion if D is linear and fulfils (1); inner derivation if there is a c ∈ A1 such
that D(a) = [c, a] = ca− ac for all a ∈ A1. If we deal with ∗-subalgebras
of ∗-algebras and D(a∗) = D(a)∗, then we call D a ∗-derivation (∗-ring
derivation and so on).

Now let us repeat the definition for several kinds of Jordan derivations.

Definition 1.2. Let A be an algebra over F and A1 ⊂ A a subalgebra.
A mapping J : A1 → A is called additive Jordan derivation if J is additive
and fulfils

(2) J(a2) = J(a)a + aJ(a) for all a ∈ A1;

(linear) Jordan derivation if J is linear and satifies (2); inner Jordan
derivation if there is a b ∈ A1 such that J(a) = ba − ab (i.e. J is already
a derivation).

If A1 ⊂ A is a ∗-subalgebra of a ∗-algebra, J : A1 → A is called linear
(additive) Jordan ∗-derivation if J is real-linear (additive) and J(a2) =
aJ(a) + J(a)a∗; inner Jordan ∗-derivation if there is a b ∈ A1 such that
J(a) = ab− ba∗ (i.e. J is automatically real-linear).

In an obvious manner there are defined local Jordan (∗)-derivations
and locally inner (∗)-derivations.

Remarks 1.3. i) The so-called Jordan product inA is defined by a◦b =
ab + ba. J is a Jordan derivation (additive Jordan derivation) if and only
if J is linear (additive) and J(a ◦ b) = J(a) ◦ b + a ◦ J(b).

ii) A Jordan ∗-derivation is not a Jordan derivation with an additional
property. J is a Jordan derivation only on the symmetric elements.
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iii) Every derivation is a Jordan derivation, but there are only few
Jordan derivations which are not derivations.

Next let us fix our notation concerning operator algebras (for algebras
of unbounded operators cf. also [10]). Let X be a Banach space, then B(X ),
F(X ) denote the algebra of all bounded linear operators on X , the two-
sided ideal in B(X) consisting of all finite rank operators resp. A standard
operator algebra on X is a subalgebra A ⊂ B(X ) containing F(X ) (it
seems that this notion was first introduced by Chernoff [4]). If X = H
is a Hilbert space the notations B(H), F(H) have an obvious meaning. It
should be noted that we have in this case operator ∗-algebras with respect
to the involution T → T ∗.

Let D be a dense linear manifold in a Hilbert space H with scalar
product 〈 , 〉 (which is supposed to be antilinear in the first and linear in the
second component). The set of all linear operators L+(D) = {A : AD ⊂ D,
A∗D ⊂ D} is a ∗-algebra with respect to the natural operations and the
involution A → A+ = A∗ | D. An O∗-algebra A(D) is a ∗-subalgebra of
L+(D) containing the identity operator I.

By F(D) we denote the (two-sided ∗-) ideal in L+(D) consisting of
all finite rank operators in L+(D). A standard operator algebra A on D
is a ∗-subalgebra of L+(D) containing F(D) (A must not contain I).

The graph topology tA on D induced by A(D) is generated by the
directed family of seminorms ϕ → ‖ϕ‖A = ‖Aϕ‖, ∀ A ∈ A(D), ϕ ∈ D. In
case A(D) = L+(D) this topology is simply denoted by t.

There are two important classes of domains D: (D, t) is an (F)-space
(Fréchet-space) or a (QF)-space (short for quasi-Fréchet space), that means
for every bounded subset M ⊂ (D, t) there is a subspace E ⊂ D which
is an (F)-space in the induced topology and which contains M. Clearly,
every (F)-space is a (QF)-space.

Let us collect some properties of F(D) which will be used in the sequel
and which can be easily proved.

i) F(D) is a prime algebra in the sense that

(∗) if for some A,B ∈ F(D) : AF(D)B = {0}, then A = 0 or B = 0.

ii) The implication (∗) is also valid for A,B ∈ L+(D).
iii) If for some X ∈ L+(D): AX + XB = 0 for all A,B ∈ F(D) or

CX + XC+ = 0 or CX −XC+ = 0 for all C ∈ F(D) then X = 0.
iv) F(D) is a local matrix algebra, i.e. for every finite collection

F1, . . . , Fk ∈ F(D) there is a subalgebra B ⊂ F(D) such that all Fi ∈ B
and B is isomorphic to some full matrix algebra Mn(F).
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2. Additive derivations and Jordan derivations

One of the main goals in the theory of derivations consists in answering
the following question:

Given some kind of derivations on an algebra (or a ring) A, which
algebraic and/or topological properties of A imply additional properties
of the derivation? For example, under which conditions:

– derivations are automatically continuous,
– multiplicative derivations are additive (cf. e.g. [5]),
– additive derivations are linear,
– additive (or linear) derivations are inner or spatial?

Many results from ring theory as well as from the theory of operator
algebras are scattered in the literature. In this section we are dealing with
the structure of additive derivations on operator algebras. Let us recall
the following result of S̆emrl [12].

Theorem 2.1. Let A ⊂ B(X ) be a standard operator algebra on

an infinite dimensional Banach space X . Then every additive derivation

D : A → B(X ) is spatial, i.e. there exists an operator T ∈ B(X ) such that

D(A) = TA−AT for all A ∈ A.

If X is finite dimensional, additive derivations have a more compli-
cated structure (cf. Lemma 2.2).

The main problem in showing Theorem 2.1 consists in the following.
It is almost standard to prove the existence of an additive T : X → X such
that D(A) = TA−AT . Next one shows that T fulfils

(3) T (tA) = tT (A) + f(t)A for all t ∈ F

with some additive derivation f : F → F. This f is the crucial point in
all considerations, because it must be shown that f is zero. Let us recall
some properties of such ring derivations f (cf. [1], [9]):

– f(t) = 0 for all algebraic t;
– any non-trivial f is (of course) discontinuous;
– any discontinuous additive f : F→ F is unbounded on every neigh-

bourhood of zero.
In discussing with P. S̆emrl some extensions of Theorem 2.1 to algebras

of unbounded operators, he remarked that the first step of the proof of
Theorem 1 can be singled out in a more general context. Moreover the
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obtained result can be used to prove Theorem 2.6. To proceed let us
introduce some terminology. Let L(V) denote the algebra of all linear
operators on a vector space V over F. We say that a subalgebra A ⊂ L(V)
separates the points of V via rank one operators, if for every nonzero
ϕ ∈ V there exists a linear functional F : V → F such that F (ϕ) 6= 0 and
ϕ⊗F ∈ A . Here ϕ⊗F denotes the rank one operator (ϕ⊗F )(ψ) = F (ψ)ϕ,
∀ψ ∈ V. If V = D is a pre-Hilbert space and ϕ,ψ ∈ D we denote by ϕ⊗ψ
the rank one operator (ϕ⊗ ψ)χ = 〈ψ, χ〉ϕ.

Lemma 2.2 (S̆emrl, private comm.). Let V be a vector space over F
and assume that A ⊂ L(V) is a subalgebra which separates the points of V
via rank one operators. Assume further that there exists a nonzero linear
functional F0 : V → F such that ϕ ⊗ F0 ∈ A for all ϕ ∈ V. Let D : A →
L(V) be a ring derivation. Then there exists a ring derivation f : F → F
and an additive mapping T : V → V satisfying T (tϕ) = tT (ϕ) + f(t)ϕ for
all ϕ ∈ V, t ∈ F such that D(A) = TA−AT for all A ∈ A.

Proof. The assertion is trivially true if dim V = 1. So, assume
that dim V > 1. Choose ψ ∈ V such that F0(ψ) = 1 and define a map
T : V → V by Tϕ = D(ϕ⊗F0)ψ, ϕ ∈ V. Then T is additive and for every
X ∈ A we have

D(Xϕ⊗ F0) = XD(ϕ⊗ F0) + D(X)(ϕ⊗ F0).

Applying both sides of this equation to ψ it follows that

D(X)ϕ = TXϕ−XTϕ,

hence D(X) = TX −XT . Now let ϕ ∈ V be an arbitrary nonzero vector.
According to our assumption we can find a rank one idempotent P ∈ A
such that Pϕ = ϕ. Since D(P ) is linear it follows that

TP (tϕ)− PT (tϕ) = t(TPϕ− PTϕ)

for every t ∈ F. This implies P (T (tϕ) − tTϕ) = T (tϕ) − tTϕ. Applying
the fact that P is an idempotent of rank one whose range is spanned by
the vector ϕ we conclude that there exists an additive map fϕ : F → F
such that T (tϕ) = tTϕ + fϕ(t)ϕ for all t ∈ F.

Let ϕ, χ ∈ V be linearly independent. Comparing T (t(ϕ + χ)) with
T (tϕ) + T (tχ) one can see that fϕ = fϕ+χ = fχ. It follows easily that
fϕ = f is independent of ϕ. Moreover, it follows from tsTϕ + f(ts)ϕ =
T ((ts)ϕ) = T (t(sϕ)) = tT (sϕ) + f(t)sϕ = tsTϕ + tf(s)ϕ + f(t)sϕ that f
is a ring derivation. This completes the proof. ¤
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Remarks 2.3. i) The converse is trivially true, namely if f : F→ F is
a ring derivation, T : V → V is additive and so that T (tϕ) = tT (ϕ)+f(t)ϕ,
then TX −XT is linear for all X ∈ L(V) and D(X) = TX −XT is a ring
derivation.

ii) There are many algebras fulfilling these assumptions, e.g. all stan-
dard operator algebras (bounded as well as unbounded ones), but also
non-standard operator algebras. An example can be obtained as follows:
identify the elements of B(H) (or of L+(D)) with infinite matrices, take
the subalgebra A consisting of all matrices with nonzero elements only in
a finite number of columns. Of course A is not a ∗-algebra.

Our aim is to prove a generalization of Theorem 2.1. The crucial point
is the proof that f in the representation (3) is identical zero. This can be
done along the same line as in [12]. To do this, we suppose that D has the
following property:

(B)

There exists an infinite orthonormal system (ϕn) in D with
the following two properties:

i) there is a sequence (tn), tn 6=0, tn ∈F such that
∑

tnϕn ∈D,

ii) for all (sn), sn ∈ F and |sn| ≤ |tn|,
∑

snϕn belongs also to D.

Let us remark that this property is clearly fulfilled in the case that D = H
is an infinite dimensional Hilbert space. In a Banach space (ϕn) must
be replaced by an appropriate basic sequence. In our context of algebras
of unbounded operators this property holds if (D, t) is an (F)-space or a
(QF)-space which contains at least one bounded set M which spans an
infinite dimensional (F)-subspace of (D, t).

Theorem 2.4. Let D ⊂ H be a dense domain with property (B).
Further let A ⊂ L+(D) be a standard operator algebra and D : A →
L+(D) an additive derivation. Then there is a T ∈ L+(D) such that

D(X) = TX −XT for all X ∈ A, i.e. D is a spatial derivation.

Proof. By Lemma 2.2 there are an additive mapping T : D → D
and a ring derivation f : F→ F so that

(4) D(A) = TA−AT, T (tψ) = tTψ + f(t)ψ, ∀ψ ∈ D, t ∈ F.
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Let (ϕn) be the orthonormal system from (B) and extend it to a Hamel
basis {ϕα, α ∈ J} of D. Define an additive mapping T1 : D → D by

T1

(∑
α

tαϕα

)
=

∑
α

f(tα)ϕα.

Put T2ϕ = Tϕ−T1ϕ for all ϕ ∈ D. Since f is a ring derivation, T2 is linear
and consequently D is of the form D(A) = T1A− AT1 + T2A− AT2 with
a linear mapping T2 : D → D. T1 fulfils T1(tϕn) = f(t)ϕn for all t ∈ F,
n ∈ N. In particular:

(5) T1(sϕn) = 0 for all n and all algebraic numbers s ∈ F.
Define the one-dimensional orthoprojections Pn = ϕn ⊗ϕn. Since Pn ∈ A
it follows D(Pn) ∈ L+(D) and D(Pn) is a bounded operator because it is
at most two-dimensional. Let (tn) ⊂ F so that tn 6= 0 and

∑
n

tnϕn ∈ D
(which is possible due to (B)). Put

A =
(∑

n

tnϕn

)
⊗ ϕ1,

which defines an operator from A. The same way as in [12] we obtain:

D(PnA)ϕ1 = (f(tn)− tn〈ϕ1, T2ϕ1〉)ϕn + tnT2ϕn(6)
and

PnD(A)ϕ1 = PnT1

(∑

i

tiϕi

)
+ PnT2

(∑

i

tiϕi

)
− tn〈ϕ1, T2ϕ1〉ϕn.(7)

Therefore

D(Pn)Aϕ1 = D(Pn)
∑

i

tiϕi =
∑

i

tiD(Pn)ϕi.(8)

Put εn = max{1, ‖T2ϕn‖}, n ∈ N. Choose a sequence (sn) of algebraic
numbers so that 0 < |sn| < min{|tn|, ε−1

n 2−n}. Put

B =

(
k∑

i=1

siϕi

)
⊗ ϕ1.

Then (5)–(8) and D(PnB) = PnD(B) + D(Pn)B imply

k∑

i=1

siD(Pn)ϕi = D(Pn)Bϕ1 = D(PnB)ϕ1 − PnD(B)ϕ1
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= {f(sn)− sn〈ϕ1, T2ϕ1〉}ϕn + α(k, n)snT2ϕn

− PnT1

(
k∑

i=1

siϕi

)
− PnT2

(
k∑

i=1

siϕi

)
+ sn〈ϕ1, T2ϕ1〉ϕn

= α(k, n)snT2ϕn − PnT2

(
k∑

i=1

siϕi

)

where α(k, n) = 1 if n ≤ k, α(n, k) = 0 otherwise. This implies the
estimation

∥∥∥∥∥
k∑

i=1

siD(Pn)ϕi

∥∥∥∥∥ ≤ |sn| ‖T2ϕn‖+
k∑

i=1

|si| ‖T2ϕi‖(9)

≤ 2−n +
k∑

i=1

2−i < 2.

Consequently we have for all pairs k, n:

(10)

∥∥∥∥∥
k∑

i=1

siD(Pn)ϕi

∥∥∥∥∥ < 2

and

‖skD(Pn)ϕk‖ =

∥∥∥∥∥
k∑

i=1

siD(Pn)ϕi −
k−1∑

i=1

siD(Pn)ϕi

∥∥∥∥∥ ≤ 2 + 2 = 4.

Hence

(11) ‖D(Pn)ϕk‖ ≤ 4
|sk| .

Assume now that f is not identical zero. Then f must be unbounded on
every neighborhood of sn, n ∈ N. Therefore we can find a sequence of
numbers (pn) ⊂ F with the following properties:

(12) |pn| ≤ |tn|, |pn − sn| < 2−n−1|sn|

and

(13) |f(pn)| > |〈ϕ1, T2ϕ1〉|+ ‖T2ϕn‖+ 4 + n.
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Now we define the following one-dimensional operator (which leads us to

the desired contradiction): C =
( ∞∑

i=1

piϕi

)
⊗ ϕ1. For all n ∈ N we have

trivially

(14) ‖PnD(C)ϕ1‖ ≤ ‖D(C)ϕ1‖.

On the other hand, D(PnC) = PnD(C) + D(Pn)C implies

‖PnD(C)ϕ1‖ ≥ ‖D(PnC)ϕ1‖ − ‖D(Pn)Cϕ1‖.

Using (6) and (8) we get

‖PnD(C)ϕ1‖ ≥ |f(pn)| − |pn| |〈ϕ1, T2ϕ1〉| − |pn| ‖T2ϕn‖

−
∥∥∥∥∥
∞∑

i=1

piD(Pn)ϕi

∥∥∥∥∥ ≥ |f(pn)| − |〈ϕ1, T2ϕ1〉| − ‖T2ϕn‖

−
∥∥∥∥∥
∞∑

i=1

(pi − si)D(Pn)ϕi

∥∥∥∥∥−
∥∥∥∥∥
∞∑

i=1

siD(Pn)ϕi

∥∥∥∥∥ .

Applying (10)–(13) we get

‖PnD(C)ϕ1‖ ≥ 4 + n−
∞∑

i=1

2−i−1 · 4− 2 = n, ∀n ∈ N.

But this clearly contradicts (14). Hence f is a trivial ring derivation on F,
and consequently T1 is equal to zero. This implies that D is of the form

D(A) = TX −XT, X ∈ A

with a linear mapping T : D → D.
To complete the proof it remains to show T ∈ L+(D). This is quite

standard, cf. e.g. [10], but let us repeat the proof for the sake of com-
pleteness. Recall that T was defined by Tϕ = D(ϕ ⊗ ψ)ψ for some fixed
ψ ∈ D, cf. the proof of Lemma 2.2. Moreover we know that T is linear.
Put X = ψ ⊗ ψ, then:

〈Tψ, ψ〉 = 〈D(ψ ⊗ ψ)ψ, ψ〉(15)

= 〈T (ψ ⊗ ψ)ψ, ψ〉 − 〈(ψ ⊗ ψ)Tψ, ψ〉 = 0.
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If we define S by Sϕ = (D(ψ ⊗ ϕ)+)ψ, ϕ ∈ D we get a linear operator
which maps D into D and fulfils (taking into account (15)):

〈Sϕ, χ〉 = 〈(D(ψ ⊗ ϕ)+)ψ, χ〉 = 〈ψ,D(ψ ⊗ ϕ)χ〉
= 〈ψ, T (ψ ⊗ ϕ)χ〉 − 〈ψ, (ψ ⊗ ϕ)Tχ〉 = −〈ϕ, Tχ〉

This implies T ∈ L+(D) and T+ = −S. ¤

Remark that it is not necessary to refer explicitly to Lemma 2.2.
Theorem 2.4 can be applied to get a result about the structure of additive
Jordan derivations. This is a generalization of [13] to unbounded operator
algebras. The proof is the same as in [13].

Corollary 2.5. Let the assumptions of Theorem 2.4 be fulfilled and

let A ⊂ L+(D) be a standard operator algebra. Suppose J : A → L+(D)
is an additive Jordan derivation. Then there is a T ∈ L+(D) such that

J(A) = TA−AT , A ∈ A, i.e. J is a (linear) spatial derivation.

Proof. Remark that F(D) is a prime ring, i.e. XF(D)Y = {0},
X, Y ∈ F(D) implies X = 0 or Y = 0. Moreover, J maps F(D) into itself.
This can be seen as follows. Every F ∈ F(D) is a linear combination of
idempotent operators of rank one. Let P be such an operator, λ = µ2 ∈ F,
then J(λP ) = J(µ2P 2) = µ[PJ(P ) + J(µP )P ] has rank at most two.
Hence J : F(D) → F(D). A classical result of Herstein [6] implies that J

restricted to F(D) is an additive derivation, i.e. J(AB) = J(A)B +AJ(B)
for all A,B ∈ F(D). By Theorem 2.4 there is a T ∈ L+(D) such that

(16) J(A) = TA−AT, A ∈ F(D).

Now let A ∈ A, B ∈ F(D). From the definition of a Jordan derivation it
follows that J((A + B)2) = (A + B)J(A + B) + J(A + B)(A + B), hence
J(AB + BA) = AJ(B) + BJ(A) + J(A)B + J(B)A. Since (AB + BA) ∈
F(D) we can apply (16) to get

B[TA−AT − J(A)] + [TA−AT − J(A)]B = 0, B ∈ F(D).

But this implies J(A) = TA−AT , A ∈ A. ¤

Let d ⊂ l2 denote the vector space of all sequences x = (xi) with only
finitely many nonzero elements. Clearly, d does not have property (B). The
starting point in the discussion with P. S̆emrl was the question whether or
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not the conclusion of Theorem 2.4 is valid for standard operator algebras
A ⊂ L+(d). The following Theorem is included here with kind permission
of P. S̆emrl (private communication). Remark that every X ∈ L+(d) can
be identified with a matrix (xij) having only finitely many elements in
each row and column, while the elements of F(d) can be identified with
matrices having nonzero elements only in a block of finite size in the upper
left corner.

Theorem 2.6. Let A be a standard operator algebra on d and D :
A → L+(d) a multiplicative derivation. Then there exist a ring derivation

f : F→ F and a T ∈ L+(d) such that

(17) D(X) = D((xij)) = (f(xij)) + TX −XT, X ∈ A.

Proof. Denote the restriction of D to F(d) by E. Since any finite
rank operator X can be written as X = Y Z with finite rank operators
Y , Z, we conclude that D(X) is also of finite rank, i.e. E : F(d) →
F(d) is a multiplicative derivation. Therefore we can apply a result of
Daif [5] to conclude that E is a ring derivation. By Lemma 2.2 there are
a ring derivation f : F → F and an additive mapping T0 : d → d with
T0(tx) = tT0(x) + f(t)x, x ∈ d, t ∈ F such that E(X) = T0X − XT0

for all X ∈ F(d). Let us define an additive mapping T1 : d → d by
T1(x1, x2, . . . , xn, 0, 0, . . . ) = (f(x1), f(x2), . . . , f(xn), 0, 0, . . . ). Then T =
T0−T1 is linear and E(X) = T1X−XT1+TX−XT . A direct computation
shows that T1X − XT1 = T1(xij) − (xij)T1 = (f(xij)). It follows that
TX −XT ∈ F(d) for every X ∈ F(d). But this implies that T ∈ L+(d).
Hence E has the desired form.

Now let X = (xij) ∈ A arbitrary. Then for every Y = (yij) ∈ F(d)
we have Y D(X) = D(Y X)−D(Y )X. Applying the fact that Y X and Y

are of finite rank one can easily verify that

Y D(X) = Y ((f(xij)) + TX −XT ).

Accordingly, D(X)− (f(xij))− TX + XT annihilates F(d) and therefore
is identical zero, i.e. (17) is valid. ¤
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3. Jordan ∗-derivations

The structure of Jordan ∗-derivations was considered by several au-
thors and with increasing generality. Let us mention some of those results
which are relevant in our context.

Bres̆ar and Vukman proved in [2] among other things the following
theorem:

Every Jordan ∗-derivation on a complex algebra with unit is inner.
If one tries to drop the assumption about the existence of the unit one must
restrict the class of algebras. Moreover, real algebras are more difficult to
handle than complex algebras. As a further step S̆emrl proved in [11]
that every Jordan ∗-derivation on B(H), where H is a real Hilbert space
with dimension greater than 1 is inner. Bres̆ar and Zalar gave in [3]
another proof of this result. Moreover, they pointed out the connection
with double centralizers (see below).

Finally, S̆emrl has shown the following general result in [13]:

Theorem 3.1. Let H be a real or complex Hilbert space, dimH > 1,

and let A be a standard operator algebra on H. Suppose that J : A →
B(H) is an additive Jordan ∗-derivation. Then there exists a unique linear

operator T ∈ B(H) such that J(A) = AT − TA∗ for all A ∈ A.

The aim of this section is to generalize this theorem to unbounded
standard operator algebras. We include the proof for sake of completeness
but emphasize that it is with minor modifications the original proof of
S̆emrl. In the second part of this section we discuss the relationship with
double centralizers.

Theorem 3.2. Let A ⊂ L+(D) be a standard operator algebra and

J : A → L+(D) an additive Jordan ∗-derivation. Then there is a unique

T ∈ L+(D) such that J(A) = AT − TA+.

Proof. We repeat the proof given in [13] for bounded standard op-
erator algebras and indicate the necessary changes. Denote the restriction
of J to F(D) by J1 and define a map Φ : F(D) → L+(D ⊕D) by

(18) Φ(A) =
(

A J1(A)
0 A+

)
.

Using J1(A2) = AJ1(A) + J1(A)A+ it is easily to see that Φ is a Jordan
homomorphism, i.e. Φ is additive and Φ(A2) = Φ(A)2. Since F(D) is a
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local matrix algebra we can apply a result of Jacobson and Rickart [7]
stating that Φ = F +G where F : F(D) → L+(D⊕D) is a ring homomor-
phism and G : F(D) → L+(D ⊕D) is a ring antihomomorphism (i.e. G is
additive and G(AB) = G(B) G(A)). Since

ImΦ ⊂
{(

X Y

0 W

)
∈ L+(D ⊕D) : X, Y, W ∈ L+(D)

}

the maps F , G have the following form:

(19) F (A) =
(

F1(A) F2(A)
0 F3(A)

)
, G(A) =

(
G1(A) G2(A)

0 G3(A)

)

where F1, F3 are additive homomorphisms, G1, G3 are additive antiho-
momorphisms on F(D) and the equations F1(A) + G1(A) = A, F3(A) +
G3(A) = A+ hold for all A ∈ F(D). Now choose an idempotent P ∈ F(D)
of rank one. The equation F1(P ) + G1(P ) = P implies either F1(P ) = 0
or G1(P ) = 0, i.e. at least one of F1 and G1 has a nonzero kernel. But
the kernels of homomorphisms or antihomomorphisms are ideals and the
only nonzero ideal of F(D) is F(D) itself, we have F1 = 0 or G1 = 0. This
implies G1 = 0 and F1(A) = A for all A ∈ F(D). Remark that F1 = 0
would imply G1(A) = A, a contradiction since G1 is an antihomomor-
phism. Similarly it can be shown that F3 = 0 and G3(A) = A+ for all
A ∈ F(D). Thus

F (A) =
(

A F2(A)
0 0

)
, G(A) =

(
0 G2(A)
0 A+

)

and F2, G2 are additive mappings satisfying

F2(AB) = AF2(B)(20)

and

G2(AB) = G2(B)A+(21)

for all A,B ∈ F(D). This follows immediately from the properties of F ,
G. From F2 + G2 = J1, J1(A2) = AJ1(A) + J1(A)A+, (20) and (21) we
obtain

F2(A2) + G2(A2) = A(F2(A) + G2(A)) + (F2(A) + G2(A))A+

= AF2(A) + G2(A)A+,
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hence
AG2(A) + F2(A)A+ = 0.

Replacing A by A + B this implies

(22)
F2(A)B+ + F2(B)A+ + AG2(B) + BG2(A) = 0

for all A,B ∈ F(D).

Now we replace B by CB, C ∈ F(D) arbitrary and obtain

C
[
F2(B)A+ + BG2(A)

]
+

[
F2(A)B+ + AG2(B)

]
C+ = 0.

This together with (22) implies

(23) F2(A)B+ + AG2(B) = 0 for all A,B ∈ F(D).

From (20) we conclude that F2 is a linear map on F(D). This can be
seen as follows. Let P = P 2 ∈ F(D). Then F2(P ) = F2(P 2) = PF2(P ),
thus F2(λP ) = F2(λPP ) = λPF2(P ) = λF2(P ). The assertion follows
now from the additivity of F2 and the fact that every A ∈ F(D) is a
linear combination of idempotents from F(D). For every ϕ ∈ D we put
Lϕ = {ϕ⊗ψ = 〈ψ, ·〉ϕ : ψ ∈ D} ⊂ F(D). Then (20) implies F2(Lϕ) ⊂ Lϕ.
Thus for every nonzero ϕ ∈ D there is a linear map Sϕ : D → D such that
F2(ϕ⊗ψ) = ϕ⊗ (Sϕψ). It is rather standard (cf. [13] or [8]) to show that
Sϕ is independent of ϕ. Hence there is a linear operator S : D → D such
that

(24) F2(ϕ⊗ ψ) = ϕ⊗ (Sψ) = 〈Sψ, ·〉ϕ.

Let G′2 be the mapping defined by G′2(A) = (G2(A))+. Equation (21)
implies G′2(AB) = AG′2(B). Thus there is a linear operator T : D → D
such that

(25) G2(ϕ⊗ ψ) = −(Tψ)⊗ ϕ = −〈ϕ, ·〉Tψ.

Substituting in (23) A = 〈ψ, ·〉ϕ, B = 〈χ, ·〉% we obtain

F2(〈ψ, ·〉ϕ) · 〈%, ·〉χ = −〈ψ, ·〉ϕ ·G2(〈χ, ·〉%).

Using (24) and (25) this implies

〈Sψ, χ〉 · 〈%, ·〉ϕ = 〈ψ, Tχ〉 · 〈%, ·〉ϕ, for all ϕ, ψ, χ, % ∈ D.
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Hence 〈Sψ, χ〉 = 〈ψ, Tχ〉 for all ψ, χ ∈ D. This means S = T+, T = S+

and S, T ∈ L+(D). Moreover the equations

F2(〈ψ, ·〉ϕ) = 〈ψ, ·〉ϕ · T and G2(〈ψ, ·〉ϕ) = −T (〈ψ, ·〉ϕ)+

yield

F2(A) = AT, G2(A) = −TA+ for all A ∈ F(D).

Using J1 = F2 + G2 we obtain

(26) J1(A) = AT − TA+, for all A ∈ F(D).

The extension of (26) to A ∈ A is standard. First replace A by A + B in
J(A2) = AJ(A) + J(A)A+ to get

J(AB)+J(BA) = AJ(B)+BJ(A)+J(A)B++J(B)A+ for all A,B ∈ A.

Applying (26) to this equation, it follows that

B(J(A)−AT + TA+) + (J(A)−AT + TA+)B+ = 0,

for all A ∈ A, B ∈ F(D).

This means (26) is valid for all A ∈ A. ¤

Now we comment on another approach to additive Jordan ∗-deriva-
tions used by Bres̆ar and Zalar [3]. Let us recall some definitions. Let
A be an algebra. A linear (additive) mapping L : A → A is called an
(additive) left centralizer of A if L(xy) = L(x)y for all x, y ∈ A. Analo-
gously, an (additive) right centralizer of A is a linear (additive) mapping
R : A → A such that R(xy) = xR(y). An (additive) double centralizer
of A is a pair (L,R), where L is a left and R is a right centralizer such
that

(27) xL(y) = R(x)y.

In [3] there was proved the following theorem.
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Theorem 3.3. Let A be a complex ∗-algebra such that Ax = 0 or
xA = 0, x ∈ A implies x = 0. If J is a Jordan ∗-derivation on A then there
exists a unique double centralizer (L,R) such that J(x) = L(x∗) − S(x)
for all x ∈ A.

Let us remark the following. If under the assumptions of the theorem
above L,R are additive left resp. right centralizers and (L, R) is a double
centralizer, than L, R are automatically linear. This implies that J is real
linear.

Since a standard operator algebra satisfies the assumptions of The-
orem 3.3, this theorem gives a representation of Jordan ∗-derivations on
such algebras via double centralizers. The next proposition describes the
structure of double centralizers on unbounded standard operator algebras
(in the same manner as in the bounded case).

Proposition 3.4. Let (L,R) be a double centralizer on a standard
operator algebra A on D. Then there is a unique T ∈ L+(D) such that
L(A) = TA, R(A) = AT .

Proof. Let ϕ,ψ ∈ D be arbitrary. Then

(28) L(A · 〈ϕ, ·〉ψ) = 〈ϕ, ·〉L(A)ψ.

Define T by T (Aψ) = L(A)ψ, ψ ∈ D. Since F(D) ⊂ A this is a linear
operator T : D → D. To see that the definition of T is correct suppose
ψ1, ψ2 ∈ D, A1, A2 ∈ A so that A1ψ1 = A2ψ2. For arbitrary ϕ ∈ D we
have 〈ϕ, ·〉A1ψ1 = 〈ϕ, ·〉A2ψ2 and L(A1 · 〈ϕ, ·〉ψ1) = L(A2 · 〈ϕ, ·〉ψ2). Thus
(28) implies L(A1)ψ1 = L(A2)ψ2, i.e. T is correctly defined. Next define
a linear operator S : D → D by S(A+ϕ) = R(A)+ϕ, ϕ ∈ D. The defini-
tion of T implies AL(B)ϕ = ATBϕ, hence 〈AL(B)ϕ,ψ〉 = 〈ATBϕ, ψ〉 =
〈R(A)Bϕ,ψ〉 = 〈Bϕ,R(A)+ψ〉 = 〈Bϕ, SA+ψ〉 = 〈TBϕ, A+ψ〉 for all
ϕ,ψ ∈ D, A, B ∈ A. Using F(D) ⊂ A this means:

〈Tχ, %〉 = 〈χ, S%〉 for all χ, % ∈ D.

Hence S, T ∈ L+(D)y, S = T+ and L(A) = TA, R(A) = AS+ = AT for
all A ∈ A. We omit the easy proof of the uniqueness of T . ¤

Together with Theorem 3.3 we get a shorter proof of Theorem 3.2 in
the complex case, namely J(A) = L(A+)−R(A) = TA+−AT (or setting
T1 = −T :J(A) = AT1 − T1A

+). Remark that Proposition 3.4 becomes
trivial if A contains the unit operator, because then we put T = L(I).
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FACHRICHTUNG MATHEMATIK
INSTITUT FÜR ANALYSIS
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