Power integral bases in a parametric family of sextic fields

By PÉTER OLAJOS (Debrecen)

Abstract

The purpose of the paper is to investigate power integral bases in a parametric family of totally complex sextic fields. These fields are composits of a complex quadratic subfield and a totally real cubic subfield. GaÁL [2] studied a similar family of fields. Using his method we show that the fields of the family in question do not admit power integral bases if the parameters are not very small. Moreover, using direct computations we also deal with those fields in the family which correspond to small parameters and are not covered by the main theorem.

1. Introduction

Let K be an algebraic number field of degree n with ring of integers \mathbb{Z}_{K}, integral basis $\left\{1, \omega_{2}, \ldots, \omega_{n}\right\}$ and discriminant D_{K}. The element $\alpha=x_{1}+\omega_{2} x_{2}+\cdots+\omega_{n} x_{n}$ generates a power integral basis in K if $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ is an integral basis. We have

$$
D_{K / \mathbb{Q}}\left(\omega_{2} x_{2}+\cdots+\omega_{n} x_{n}\right)=I\left(x_{2}, \ldots, x_{n}\right)^{2} \cdot D_{K}
$$

where $I\left(x_{2}, \ldots, x_{n}\right)$ is the index form corresponding to the above integral basis. As it is well known (cf. [5]) α generates a power integral basis if and only if

$$
\begin{equation*}
I\left(x_{2}, \ldots, x_{n}\right)= \pm 1 . \tag{1}
\end{equation*}
$$

It is a classical problem in algebraic number theory to decide if a number field admits power integral bases. This question is satisfactory solved for
lower degree number fields, cf. GaÁl and Schulte [11], GaÁl, Pethő and Pohst [7], [8] for cubic and quartic fields. There is a general algorithm for quintic fields by GaÁL and GYőRy [6] which already requires several hours of CPU time.

For higher degree number fields this problem is very complicated because of the high degree the large number of variables of equation (1), and the resolution of this equation is only hopeful if K has proper subfields, because in this case the index form is reducible.

Hence for sextic fields till now only some special classes were investigated by Gấl [3], GaÁl and Pohst [9], [10]. A very interesting case was studied in [2], when the field K is the composite of its complex quadratic and real cubic subfields. In this case the index form equation can be reduced to some cubic Thue inequalities, which enables one to describe power integral bases even in an infinite parametric family of such fields.

We are going to apply the method of [2] in a new parametric family of fields. For sufficiently large values of the parameters we shall show that there exist no power integral bases. Moreover, by extending the algorithm of [2] we shall use direct computations to study the existence of power integral bases also for the small values of the parameters, not covered by the main theorem.

2. Auxiliary results

Let ϑ be a totally real cubic algebraic integer and let m be a squarefree positive integer. Let us consider the sextic field $K=\mathbb{Q}(\vartheta, i \sqrt{m})$, with discriminant D_{K} and ring of integers \mathbb{Z}_{K}. Let $M=\mathbb{Q}(i \sqrt{m})$ and $L=\mathbb{Q}(\vartheta)$ be the subfields of K. Set

$$
\omega= \begin{cases}(1+i \sqrt{m}) / 2, & \text { if }-m \equiv 1(\bmod 4), \tag{2}\\ i \sqrt{m}, & \text { if }-m \equiv 2,3(\bmod 4) .\end{cases}
$$

We represent any $\alpha \in \mathbb{Z}_{K}$ in the form

$$
\begin{equation*}
\alpha=\frac{x_{0}+x_{1} \vartheta+x_{2} \vartheta^{2}+y_{0} \omega+y_{1} \omega \vartheta+y_{2} \omega \vartheta^{2}}{g} \tag{3}
\end{equation*}
$$

with $x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2} \in \mathbb{Z}$ and with a fixed common denominator $g \in \mathbb{Z}$. Set $\mathcal{O}=\mathbb{Z}\left[1, \vartheta, \vartheta^{2}, \omega, \omega \vartheta, \omega \vartheta^{2}\right]$ and denote by $D_{\mathcal{O}}$ the discriminant of this
order. We are going to consider the existence of power integral basis, and more generally the existence of elements of a given index, in the order \mathcal{O} which often coincides with \mathbb{Z}_{K}. We have

$$
\frac{g^{6} \sqrt{\left|D_{K}\right|}}{\sqrt{\left|D_{\mathcal{O}}\right|}} \in \mathbb{Z}
$$

Let I_{0} be a given, non-zero positive integer and consider the solutions $\alpha \in \mathbb{Z}_{K}$ of

$$
\begin{equation*}
I(\alpha)=I_{0} . \tag{4}
\end{equation*}
$$

Set

$$
I_{1}=\frac{g^{15} I_{0} \sqrt{\left|D_{K}\right|}}{\sqrt{\left|D_{\mathcal{O}}\right|}} \in \mathbb{Z}
$$

Denote by $\vartheta_{i}(1 \leq i \leq 3)$ the conjugates of ϑ over M and set $\rho=$ $-\vartheta_{2}-\vartheta_{3}$.

Lemma 1 (cf. [2], Theorem 2.1). If $\alpha \in \mathbb{Z}_{K}$ is a solution of equation (4), and $x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2} \in \mathbb{Z}$ are the coefficients of α in the representation (3), then

$$
\begin{array}{r}
N_{K / M}\left(\left(x_{1}+\omega y_{1}\right)-\rho\left(x_{2}+\omega y_{2}\right)\right)=\mu \\
N_{L / Q}\left(y_{0}+y_{1} \vartheta+y_{2} \vartheta^{2}\right)=d \tag{6}
\end{array}
$$

where $\mu \in \mathbb{Z}_{M}, d \in \mathbb{Z}$, such that $d \cdot N_{M / Q}(\mu)$ divides I_{1}.
Under our assumptions on the field K, denote by $\rho=\rho_{1}, \rho_{2}, \rho_{3}$ the conjugates of ρ over L and let $X=x_{1}+\omega y_{1}, Y=x_{2}+\omega y_{2}$ be an arbitrary, but fixed solution of (5). Choose the indices $\{r, s, t\}=\{1,2,3\}$ according to

$$
\begin{equation*}
\left|X-\rho_{r} Y\right| \leq\left|X-\rho_{s} Y\right| \leq\left|X-\rho_{t} Y\right| . \tag{7}
\end{equation*}
$$

Set

$$
\begin{gathered}
c_{m}= \begin{cases}2, & \text { if }-m \equiv 1(\bmod 4) \\
1, & \text { if }-m \equiv 2,3(\bmod 4)\end{cases} \\
c_{1}=9 c_{m}^{3}|\mu|, \quad c_{2}=\min \left(\left|\rho_{r}-\rho_{s}\right|,\left|\rho_{r}-\rho_{t}\right|\right), \quad c_{3}=\left|\rho_{r}-\rho_{s}\right| \cdot\left|\rho_{r}-\rho_{t}\right| \\
c_{4}=\max \left\{\frac{2|\mu|^{1 / 3}}{c_{2}}, \frac{4 c_{m}|\mu|}{c_{3} \sqrt{m}}\right\}, \quad c_{5}=\left(\frac{8|\mu|}{c_{2} c_{3}}\right)^{1 / 3} .
\end{gathered}
$$

Finally put

$$
F(x, y)=\prod_{j=1}^{3}\left(x-\rho_{j} y\right) \in \mathbb{Z}[x, y] .
$$

Under these assumptions we have the following theorem:
Lemma 2 (cf. [2], Theorem 2.2). Let $X=x_{1}+\omega y_{1}, Y=x_{2}+\omega y_{2} \in$ \mathbb{Z}_{M} be a solution of (5) according to (7). Suppose $|Y|>c_{4}$. We have

$$
x_{1} y_{2}=x_{2} y_{1} .
$$

Further, in case $-m \equiv 1(\bmod 4)$:

$$
\begin{cases}\text { if }\left|2 x_{2}+y_{2}\right| \geq 2 c_{5}, & \text { then }\left|F\left(2 x_{1}+y_{1}, 2 x_{2}+y_{2}\right)\right| \leq c_{1} \\ \text { if }\left|y_{2}\right| \geq 2 c_{5} / \sqrt{m}, & \text { then }\left|F\left(y_{1}, y_{2}\right)\right| \leq c_{1} /(\sqrt{m})^{3},\end{cases}
$$

and in case $-m \equiv 2,3(\bmod 4)$:

$$
\begin{cases}\text { if }\left|x_{2}\right| \geq 2 c_{5}, & \text { then }\left|F\left(x_{1}, x_{2}\right)\right| \leq c_{1}, \\ \text { if }\left|y_{2}\right| \geq c_{5} / \sqrt{m}, & \text { then }\left|F\left(y_{1}, y_{2}\right)\right| \leq c_{1} /(\sqrt{m})^{3} .\end{cases}
$$

Remark. In [2] we considered the fields $K=\mathbb{Q}(\vartheta, i \sqrt{m})$, where ϑ is a root of $f(x)=x^{3}-a x^{2}-(a+3) x-1$ and m is a square-free positive integer. By Theorem 3.1 of [2] if $a \geq 3$ and $m \geq m_{0}$, then there is no power integral basis in the order \mathcal{O} of K .

3. Results

Let

$$
\begin{equation*}
f_{n}(x)=x^{3}-n x^{2}-(n+1) x-1 \tag{8}
\end{equation*}
$$

where $n \in \mathbb{N}$. If $n \geq 3$, then $f_{n}(x)$ is totally real. Let $\vartheta=\vartheta_{n}$ be a root of $f_{n}(x)$ and let m be a square-free positive integer. Consider the twoparametric family $K=\mathbb{Q}(\vartheta, i \sqrt{m})$ of totally complex sextic fields. Define ω as in (2) and set $\mathcal{O}=\mathbb{Z}\left[1, \vartheta, \vartheta^{2}, \omega, \omega \vartheta, \omega \vartheta^{2}\right]$ with discriminant $D_{\mathcal{O}}$ as before. We also use $L=\mathbb{Q}(\vartheta)$ and $M=\mathbb{Q}(i \sqrt{m})$. Put

$$
m_{0}= \begin{cases}36, & \text { if }-m \equiv 1(\bmod 4) \\ 9, & \text { if }-m \equiv 2,3(\bmod 4) .\end{cases}
$$

Theorem 1. Assume that $n \geq 7$ and $m \geq m_{0}$. Then the order \mathcal{O} has no power integral basis.

The proof of this theorem uses arguments similar to [2], but we will consider the small parameters, as well. It means that we will deal with the cases, which do not satisfy $n \geq 7$ or $m \geq m_{0}(n)$. Note that if $n \leq 2$, then (8) is not totally real, so we have to deal additionally only with the cases, when $n=3,4,5,6$. Using similar tools as in the proof of Theorem 1 , we can show that for $m \geq m_{0}(n)$ the order \mathcal{O} admits no power integral basis.

Theorem 2. Set

$$
\begin{aligned}
& m_{0}(3)= \begin{cases}143, & \text { if }-m \equiv 1(\bmod 4), \\
36, & \text { if }-m \equiv 2,3(\bmod 4) .\end{cases} \\
& m_{0}(4)= \begin{cases}59, & \text { if }-m \equiv 1(\bmod 4), \\
15, & \text { if }-m \equiv 2,3(\bmod 4) .\end{cases} \\
& m_{0}(5)= \begin{cases}42, & \text { if }-m \equiv 1(\bmod 4), \\
11, & \text { if }-m \equiv 2,3(\bmod 4) .\end{cases} \\
& m_{0}(6)= \begin{cases}36, & \text { if }-m \equiv 1(\bmod 4), \\
9, & \text { if }-m \equiv 2,3(\bmod 4) .\end{cases}
\end{aligned}
$$

For $n=3,4,5,6, m \geq m_{0}(n)$, the order \mathcal{O} has no power integral basis.
Further, for $n=3,4,5,6$ by performing direct computation for the small values of m we get:

Theorem 3. If $n=3,4,5,6$ and $2 \leq m_{0}<m_{0}(n)$, then \mathcal{O} has no power integral basis.

In the proof of our statements we shall use the result of Mignotte and Tzanakis [12] on the solutions of the Thue equations corresponding to the family (8). Note that in [12] the equation is solved only for sufficiently large parameters, but later on the result was extended to the range $n \geq 3$ (private communication).

Lemma 3 (cf. [12], Theorem). If $n \geq 3$, then all solutions of the equation

$$
N_{L / Q}(x-\vartheta y)= \pm 1 \quad(x, y \in \mathbb{Z})
$$

are $(x, y)=(\pm 1,0),(0, \pm 1),(\pm 1, \mp 1),(\pm 1, \mp n),(\pm(n+1), \pm 1)$.
Proof of Theorem 1. In our situation we apply Lemma 1 and Lemma 2 with $I_{0}=I_{1}=1$. Denote by $\vartheta=\vartheta_{1}<\vartheta_{2}<\vartheta_{3}$ the roots of (8) and put $\rho=-\vartheta_{2}-\vartheta_{3}$ that is $\rho_{j}=\vartheta_{j}-n$ for $1 \leq j \leq 3$. We have

$$
\begin{aligned}
& \frac{-n}{n+1} \leq \vartheta_{1} \leq \frac{-(n-1)}{n} \\
& \frac{-1}{n-1} \leq \vartheta_{2} \leq \frac{-1}{n} \\
& n+1 \leq \vartheta_{3} \leq n+2 .
\end{aligned}
$$

The above inequalities imply:

$$
\begin{aligned}
& \rho_{2}-\rho_{1}=\vartheta_{2}-\vartheta_{1} \geq 1-\left(\frac{1}{n-1}+\frac{1}{n}\right) \\
& \rho_{3}-\rho_{2}=\vartheta_{3}-\vartheta_{2} \geq n+1+\frac{1}{n} \\
& c_{2} \geq 1-\left(\frac{1}{n-1}+\frac{1}{n}\right) \\
& c_{3} \geq(n+1)\left(1-\left(\frac{1}{n-1}+\frac{1}{n}\right)\right) \\
& c_{4} \leq \max \left\{\frac{2}{c_{2}}, \frac{4 c_{m}}{c_{3} \sqrt{m}}\right\} \leq \max \left\{\frac{2}{c_{2}} ; \frac{8}{c_{3}}\right\} \\
& c_{5} \leq\left(\frac{8}{c_{2} c_{3}}\right)^{1 / 3}
\end{aligned}
$$

In case $n \geq 7$, we have $c_{4}<3$ and $c_{5}<1.3$.
Arrange the conjugates of any $\gamma \in K$ so that $\gamma^{(j+3)}$ is the conjugate of $\gamma^{(j)}$ over $M(j=1,2,3), \vartheta^{(j)}=\vartheta^{(j+3)}=\vartheta_{j}$ and $\omega^{(j)}=\omega, \omega^{(j+3)}=\bar{\omega}$ (conjugate of ω over $M)(j=1,2,3)$.

Set

$$
\begin{aligned}
\beta & =g \cdot \alpha, \\
\beta^{(j)} & =x_{0}+x_{1} \vartheta^{(j)}+x_{2} \vartheta^{(j)^{2}}+y_{0} \omega^{(j)}+y_{1} \omega^{(j)} \vartheta^{(j)}+y_{2} \omega^{(j)} \vartheta^{(j)^{2}},
\end{aligned}
$$

$$
\beta_{j k}=\beta^{(j)}-\beta^{(k)}, \quad 1 \leq j, k \leq 6 .
$$

The proof of Theorem 2.1 of [2] implies that the expressions

$$
\begin{align*}
d_{1} & =\left|\beta_{14} \beta_{25} \beta_{36}\right|, \\
d_{2} & =\left|\beta_{12} \beta_{23} \beta_{31} \beta_{45} \beta_{56} \beta_{64}\right|, \\
d_{3} & =\beta_{15} \beta_{16} \beta_{24} \beta_{26} \beta_{34} \beta_{35} \tag{9}
\end{align*}
$$

attain integer values with $d_{1} \cdot d_{2} \cdot d_{3}= \pm I_{1}$. In our case $I_{1}=1$, hence $d_{1}=d_{2}=1$ (cf. equations (5), (6)) and $d_{3}= \pm 1$.
A. Consider now the solutions with $|Y| \leq c_{4}$. In view of $m \geq m_{0}$ it implies $y_{2}=0$ and $\left|x_{2}\right| \leq 2$ both for $-m \equiv 1(\bmod 4)$ and for $-m \equiv 2,3(\bmod 4)$. For $y_{2}=0$ equation (6) reduces to

$$
N_{L / Q}\left(y_{0}+y_{1} \vartheta\right)= \pm 1,
$$

whence by Lemma 3 we have $\left(y_{0}, y_{1}\right)=(\pm 1,0),(0, \pm 1),(\pm 1, \mp 1),(\pm 1, \mp n)$, $(\pm(n+1), \pm 1)$.
A1. For $y_{0}= \pm 1, y_{1}=0$ equation (5) becomes

$$
N_{K / M}\left(x_{1}-\rho x_{2}\right)= \pm 1
$$

Using again, Lemma 3 we obtain

$$
\left(x_{1}, x_{2}\right)=(\pm 1,0),(\mp n, \pm 1),(\pm(n+1), \mp 1),\left(\pm\left(n^{2}+1\right), \mp n\right),(\pm 1, \pm 1) .
$$

For these values we tested the third factor (9). Using symmetric polynomials we calculated coefficients of the third factor, and substituted the above five pairs of $\left(x_{1}, x_{2}\right)$.
a11. In case $-m \equiv 1(\bmod 4)$:

1. For $y_{0}= \pm 1, x_{1}= \pm 1, x_{2}=0$ we have

$$
\begin{aligned}
d_{3}= & -m^{3}-6 m^{2}-9 m+23+\left(-6 m^{2}-18 m+6\right) n \\
& +\left(-2 m^{2}-15 m+5\right) n^{2}+(-2-6 m) n^{3}+(-m-1) n^{4} .
\end{aligned}
$$

2. For $y_{0}= \pm 1, x_{1}=\mp n, x_{2}= \pm 1$ we have

$$
\begin{aligned}
d_{3}= & -m^{3}-2 m^{2}-m+23+\left(2 m^{2}+2 m+6\right) n+\left(-2 m^{2}-3 m+5\right) n^{2} \\
& +(2 m-2) n^{3}+(-m-1) n^{4} .
\end{aligned}
$$

3. For $y_{0}= \pm 1, x_{1}= \pm(n+1), x_{2}=\mp 1$ we have

$$
\begin{aligned}
d_{3}= & -m^{3}+10 m^{2}-25 m+23+\left(-2 m^{2}+10 m+6\right) n \\
& +\left(-2 m^{2}+9 m+5\right) n^{2}+(-2 m-2) n^{3}+(-m-1) n^{4} .
\end{aligned}
$$

4. For $y_{0}= \pm 1, x_{1}= \pm\left(n^{2}+1\right), x_{2}=\mp n$ we have

$$
\begin{aligned}
d_{3}= & -m^{3}-6 m^{2}-9 m+23+\left(12 m^{2}+36 m+6\right) n \\
& +\left(-2 m^{2}-42 m+5\right) n^{2}+\left(4 m^{2}+24 m-2\right) n^{3} \\
& +\left(-2 m^{2}-31 m-1\right) n^{4}+16 m n^{5}-6 m n^{6}+4 m n^{7}-m n^{8} .
\end{aligned}
$$

5. For $y_{0}= \pm 1, x_{1}= \pm 1, x_{2}= \pm 1$ we have

$$
\begin{aligned}
d_{3}= & -m^{3}-26 m^{2}-169 m+23+\left(-36 m^{2}-468 m+6\right) n \\
& +\left(-26 m^{2}-662 m+5\right) n^{2}+\left(-12 m^{2}-624 m-2\right) n^{3} \\
& +\left(-2 m^{2}-411 m-1\right) n^{4}-192 m n^{5}-62 m n^{6}-12 m n^{7}-m n^{8} .
\end{aligned}
$$

a12. In case $-m \equiv 2,3(\bmod 4)$:

1. For $y_{0}= \pm 1, x_{1}= \pm 1, x_{2}=0$ we have

$$
\begin{aligned}
d_{3}= & -64 m^{3}-96 m^{2}-36 m+23+\left(-96 m^{2}-72 m+6\right) n \\
& +\left(-32 m^{2}-60 m+5\right) n^{2}+(-2-24 m) n^{3}+(-4 m-1) n^{4} .
\end{aligned}
$$

2. For $y_{0}= \pm 1, x_{1}=\mp n, x_{2}= \pm 1$ we have

$$
\begin{aligned}
d_{3}= & -64 m^{3}-32 m^{2}-4 m+23+\left(32 m^{2}+8 m+6\right) n \\
& +\left(-32 m^{2}-12 m+5\right) n^{2}+(8 m-2) n^{3}+(-4 m-1) n^{4} .
\end{aligned}
$$

3. For $y_{0}= \pm 1, x_{1}= \pm(n+1), x_{2}=\mp 1$ we have

$$
\begin{aligned}
d_{3}= & -64 m^{3}+160 m^{2}-100 m+23+\left(-32 m^{2}+40 m+6\right) n \\
& +\left(-32 m^{2}+60 m+5\right) n^{2}+(-8 m-2) n^{3}+(-4 m-1) n^{4} .
\end{aligned}
$$

4. For $y_{0}= \pm 1, x_{1}= \pm\left(n^{2}+1\right), x_{2}=\mp n$ we have

$$
\begin{aligned}
d_{3}= & -64 m^{3}-96 m^{2}-36 m+23+\left(192 m^{2}+144 m+6\right) n \\
& +\left(-32 m^{2}-168 m+5\right) n^{2}+\left(64 m^{2}+96 m-2\right) n^{3} \\
& +\left(-32 m^{2}-124 m-1\right) n^{4}+64 m n^{5}-24 m n^{6}+16 m n^{7}-4 m n^{8} .
\end{aligned}
$$

5. For $y_{0}= \pm 1, x_{1}= \pm 1, x_{2}= \pm 1$ we have

$$
\begin{aligned}
d_{3}= & -64 m^{3}-416 m^{2}-676 m+23+\left(-576 m^{2}-1872 m+6\right) n \\
& +\left(-416 m^{2}-2648 m+5\right) n^{2}+\left(-192 m^{2}-2496 m-2\right) n^{3} \\
& +\left(-32 m^{2}-1644 m-1\right) n^{4}-768 m n^{5}-248 m n^{6}-48 m n^{7}-4 m n^{8} .
\end{aligned}
$$

None of them can attain the values ± 1.
A2. For $y_{1}=\varepsilon= \pm 1, \pm n, y_{2}=0$ equation (5) gets the form

$$
N_{K / M}\left(\left(x_{1}+\varepsilon \omega\right)-\rho x_{2}\right)=\mu,
$$

where $x_{1} \in \mathbb{Z} ; x_{2}=0, \pm 1, \pm 2 ;|\mu|=1$. This equation can be written in the form

$$
\prod_{i=1}^{3}\left(\left(x_{1}+\varepsilon \omega\right)-\rho_{i} x_{2}\right)=\mu
$$

Set $\gamma_{i}=x_{1}+\varepsilon \omega-\rho_{i} x_{2}(i=1,2,3)$. Then

$$
\operatorname{Im}\left(\gamma_{i}\right)=\operatorname{Im}(\varepsilon \omega)= \begin{cases}\frac{\varepsilon \sqrt{m}}{2}, & \text { if }-m \equiv 1(\bmod 4) \\ \varepsilon \sqrt{m}, & \text { if }-m \equiv 2,3(\bmod 4)\end{cases}
$$

In view of $m \geq 9$ it implies $\frac{\sqrt{m}}{2}>1$, so $\left|\operatorname{Im}\left(\gamma_{i}\right)\right|>1$. Because of above condition $\left|\gamma_{i}\right| \geq\left|\operatorname{Im}\left(\gamma_{i}\right)\right|>1(i=1,2,3)$, thus $\left|\gamma_{1} \gamma_{2} \gamma_{3}\right|>1$ contradicting $\gamma_{1} \gamma_{2} \gamma_{3} \neq \mu$, if $|\mu|=1$. We have no solutions in these cases, either.
B. We still have to check the solutions with $|Y|>c_{4}$. In case $-m \equiv 1$ $(\bmod 4)$ by Lemma 2 either $\left|y_{2}\right|<\frac{2 c_{5}}{\sqrt{m}}<1$, that is $y_{2}=0$, or in the opposite case if $\left|y_{2}\right| \geq \frac{2 c_{5}}{\sqrt{m}}>0$, then

$$
\left|F\left(y_{1}, y_{2}\right)\right| \leq \frac{c_{1}}{\sqrt{m}^{3}}=\frac{9 c_{m}^{3}}{\sqrt{m}^{3}} \leq \frac{72}{6^{3}}<1
$$

implying $y_{1}=y_{2}=0$ (for $m \geq m_{0}$) and contradiction with $\left|y_{2}\right|>2$. Hence $y_{2}=0$. We get the same result for $-m \equiv 2,3(\bmod 4)$ with $2 c_{5} / \sqrt{m}$ replaced by c_{5} / \sqrt{m}. Now equation (6) reduces to

$$
N_{L / Q}\left(y_{0}+\vartheta y_{1}\right)= \pm 1
$$

whence by Lemma 3 we conclude

$$
\left(y_{0}, y_{1}\right)=(\pm 1,0) ;(0, \pm 1) ;(\pm 1, \mp 1),(\pm 1, \mp n),(\pm(n+1), \pm 1) .
$$

$B 1$. The case $y_{0}= \pm 1, y_{1}=0$ was already considered in $A 1$.
B2. If $y_{1}=\varepsilon= \pm 1, \pm n, y_{2}=0$, then by Lemma 2 we get $x_{2}=0$. Then equation (5) becomes

$$
N_{K / M}\left(x_{1}+\varepsilon \omega\right)= \pm 1 .
$$

It means that $\left|x_{1}+\varepsilon \omega\right|=1$. Both for $\left.-m \equiv 1(\bmod 4)\right)$ and for $-m \equiv 2,3$ $(\bmod 4)$ we obtained the same result, namely the above equation has no solution over \mathbb{Z}. Theorem 1 is proved.

4. Small values of parameters

The proof of Theorem 2, the cases $n=3,4,5,6, m \geq m_{0}(n)$ is similar to the proof of Theorem 1. This requires a simple but tedious calculation and considering several cases. We omit the details of the proof of Theorem 2. Consider now a coordinate system displaying the points $(m, n) \in \mathbb{Z}^{2}$. Note that for $n=3,4,5,6, n \geq 7$ we display the values of $m_{0}(n)$ which is different for $-m \equiv 1(\bmod 4)$ and $-m \equiv 2,3(\bmod 4)$.

The shaded part of this diagram shows the pairs (m, n) covered by Theorems 1, 2.

It is a very interesting problem to examine the cases, when $n \geq 3$ and $m<m_{0}(n)$. Also in this case we apply Lemma 2.

In case $|Y|>c_{4}$ we have to solve the Thue inequalities of Lemma 2. This can be done by KASH [1]. This way we get a couple of possible vectors $\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in \mathbb{Z}^{4}$. For fixed y_{1}, y_{2} the corresponding value of y_{0} can be found from equation (6) which is then a cubic polynomial equation in y_{0}.

In case $|Y| \leq c_{4}$ we can determine the possible values of $\left(x_{2}, y_{2}\right)$ by this condition. For fixed $Y=x_{2}+\omega y_{2}$ equation (5) in Lemma 1 is a cubic polynomial equation in $X=x_{1}+\omega y_{1}$, which can be solved by MAPLE. We were looking for the solutions of X, in which x_{1} and y_{1} are integers. The value of y_{0} we can get from equation (6) similarly as above.

Finally, the possible tuples $\left(x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right)$ were tested if the corresponding $\alpha \in \mathcal{O}$ satisfies

$$
I(\alpha)=1 .
$$

This test eliminated all possible solutions.

5. Computational experiences

The computation involved in our results were performed in Maple, except for solving Thue equations which was done by Kash. Note that the "thue" procedure of Maple is only supposed to find small (and not all) solutions of Thue inequalities, but unfortunately in some cases it failed to find even the small ones.

The total CPU time (used mainly for the proof of Theorem 3) was about 5 hours on an IBM compatible 233MHZ Pentium II PC.

References

[1] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger, KANT V4, J. Symbolic Comp. 24 (1997), 267-283.
[2] I. GAÁL, Computing elements of given index in totally complex cyclic sextic fields, J. Symbolic Comp. 20 (1995), 61-69.
[3] I. GAÁL, Computing all power integral bases in orders of totally real cyclic sextic number fields, Math. Comp. 65 (1996), 801-822.
[4] I. Gá́l, Power integral bases in composits of number fields, Canad. Math. Bulletin 41 (1998), 158-165.
[5] I. GAÁL, Power integral bases in algebraic number fields, Ann. Univ. Sci. Budapest., Sect. Comp. 18 (1999), 61-87.
[6] I. GAÁl and K. Győry, On the resolution of index form equations in quintic fields, Acta Arith. 89 (1999), 379-396.
[7] I. Gá́l, A. Ретнő and M. Pohst, On the resolution of index form equations in quartic number fields, J. Symbolic Computation 16 (1993), 563-584.
[8] I. Gấl, A. Pethő and M. Pohst, Simultaneous representation of integers by a pair of ternary quadratic forms - with an application to index form equations in quartic number fields, J. Number Theory 57 (1996), 90-104.
[9] I. Gấl and M. Pohst, On the resolution of index form equations in sextic fields with an imaginary quadratic subfield, J. Symbolic Computation 22 (1996), 425-434.
[10] I. GaÁl and M. Pohst, Power integral bases in a parametric family of totally real quintics, Math. Comp. 66 (1997), 1689-1696.
[11] I. GaÁl and N. Schulte, Computing all power integral bases of cubic number fields, Math. Comp. 53 (1989), 689-696.
[12] M. Mignotte and N. Tzanakis, On a family of cubics, J. Number Theory 39 (1991), 41-49.

PÉTER OLAJOS
INSTITUTE OF MATHEMATICS AND INFORMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN P. O. BOX 12
HUNGARY
E-mail: olaj@tigris.klte.hu
(Received June 20, 2000; revised November 6, 2000)

