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Power integral bases
in a parametric family of sextic fields

By PÉTER OLAJOS (Debrecen)

Abstract. The purpose of the paper is to investigate power integral bases in
a parametric family of totally complex sextic fields. These fields are composits of a
complex quadratic subfield and a totally real cubic subfield. Ga�al [2] studied a similar
family of fields. Using his method we show that the fields of the family in question do
not admit power integral bases if the parameters are not very small. Moreover, using
direct computations we also deal with those fields in the family which correspond to
small parameters and are not covered by the main theorem.

1. Introduction

Let K be an algebraic number field of degree n with ring of inte-
gers ZK , integral basis {1, ω2, . . . , ωn} and discriminant DK . The element
α = x1 + ω2x2 + · · · + ωnxn generates a power integral basis in K if
{1, α, . . . , αn−1} is an integral basis. We have

DK/Q(ω2x2 + · · ·+ ωnxn) = I(x2, . . . , xn)2 ·DK

where I(x2, . . . , xn) is the index form corresponding to the above integral
basis. As it is well known (cf. [5]) α generates a power integral basis if and
only if

(1) I(x2, . . . , xn) = ±1.

It is a classical problem in algebraic number theory to decide if a number
field admits power integral bases. This question is satisfactory solved for
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lower degree number fields, cf. Gaál and Schulte [11], Gaál, Pethő

and Pohst [7], [8] for cubic and quartic fields. There is a general algorithm
for quintic fields by Gaál and Győry [6] which already requires several
hours of CPU time.

For higher degree number fields this problem is very complicated be-
cause of the high degree the large number of variables of equation (1), and
the resolution of this equation is only hopeful if K has proper subfields,
because in this case the index form is reducible.

Hence for sextic fields till now only some special classes were investi-
gated by Gaál [3], Gaál and Pohst [9], [10]. A very interesting case was
studied in [2], when the field K is the composite of its complex quadratic
and real cubic subfields. In this case the index form equation can be
reduced to some cubic Thue inequalities, which enables one to describe
power integral bases even in an infinite parametric family of such fields.

We are going to apply the method of [2] in a new parametric family
of fields. For sufficiently large values of the parameters we shall show that
there exist no power integral bases. Moreover, by extending the algorithm
of [2] we shall use direct computations to study the existence of power
integral bases also for the small values of the parameters, not covered by
the main theorem.

2. Auxiliary results

Let ϑ be a totally real cubic algebraic integer and let m be a square-
free positive integer. Let us consider the sextic field K = Q(ϑ, i

√
m ),

with discriminant DK and ring of integers ZK . Let M = Q(i
√

m ) and
L = Q(ϑ) be the subfields of K. Set

(2) ω =
{

(1 + i
√

m )/2, if −m ≡ 1 (mod 4),

i
√

m, if −m ≡ 2, 3 (mod 4).

We represent any α ∈ ZK in the form

(3) α =
x0 + x1ϑ + x2ϑ

2 + y0ω + y1ωϑ + y2ωϑ2

g

with x0, x1, x2, y0, y1, y2 ∈ Z and with a fixed common denominator g ∈ Z.
Set O = Z[1, ϑ, ϑ2, ω, ωϑ, ωϑ2] and denote by DO the discriminant of this
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order. We are going to consider the existence of power integral basis, and
more generally the existence of elements of a given index, in the order O
which often coincides with ZK . We have

g6
√
|DK |√
|DO|

∈ Z.

Let I0 be a given, non-zero positive integer and consider the solutions
α ∈ ZK of

(4) I(α) = I0.

Set

I1 =
g15I0

√
|DK |√

|DO|
∈ Z.

Denote by ϑi (1 ≤ i ≤ 3) the conjugates of ϑ over M and set ρ =
−ϑ2 − ϑ3.

Lemma 1 (cf. [2], Theorem 2.1). If α ∈ ZK is a solution of equation
(4), and x0, x1, x2, y0, y1, y2 ∈ Z are the coefficients of α in the representa-
tion (3), then

NK/M ((x1 + ωy1)− ρ(x2 + ωy2)) = µ(5)

NL/Q(y0 + y1ϑ + y2ϑ
2) = d(6)

where µ ∈ ZM , d ∈ Z, such that d ·NM/Q(µ) divides I1.

Under our assumptions on the field K, denote by ρ = ρ1, ρ2, ρ3 the
conjugates of ρ over L and let X = x1+ωy1, Y = x2+ωy2 be an arbitrary,
but fixed solution of (5). Choose the indices {r, s, t} = {1, 2, 3} according
to

(7) |X − ρrY | ≤ |X − ρsY | ≤ |X − ρtY |.
Set

cm =
{ 2, if −m ≡ 1 (mod 4)

1, if −m ≡ 2, 3 (mod 4)

c1 = 9c3
m|µ|, c2 = min(|ρr − ρs|, |ρr − ρt|), c3 = |ρr − ρs| · |ρr − ρt|

c4 = max

{
2|µ|1/3

c2
,

4cm|µ|
c3
√

m

}
, c5 =

(
8|µ|
c2c3

)1/3

.
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Finally put

F (x, y) =
3∏

j=1

(x− ρjy) ∈ Z[x, y].

Under these assumptions we have the following theorem:

Lemma 2 (cf. [2], Theorem 2.2). Let X = x1 + ωy1, Y = x2 + ωy2 ∈
ZM be a solution of (5) according to (7). Suppose |Y | > c4. We have

x1y2 = x2y1.

Further, in case −m ≡ 1 (mod 4):
{

if |2x2 + y2| ≥ 2c5, then |F (2x1 + y1, 2x2 + y2)| ≤ c1

if |y2| ≥ 2c5/
√

m, then |F (y1, y2)| ≤ c1/(
√

m )3,

and in case −m ≡ 2, 3 (mod 4):
{

if |x2| ≥ 2c5, then |F (x1, x2)| ≤ c1,

if |y2| ≥ c5/
√

m, then |F (y1, y2)| ≤ c1/(
√

m )3.

Remark. In [2] we considered the fields K = Q(ϑ, i
√

m ), where ϑ is
a root of f(x) = x3 − ax2 − (a + 3)x − 1 and m is a square-free positive
integer. By Theorem 3.1 of [2] if a ≥ 3 and m ≥ m0, then there is no
power integral basis in the order O of K.

3. Results

Let

(8) fn(x) = x3 − nx2 − (n + 1)x− 1

where n ∈ N. If n ≥ 3, then fn(x) is totally real. Let ϑ = ϑn be a root
of fn(x) and let m be a square-free positive integer. Consider the two-
parametric family K = Q(ϑ, i

√
m ) of totally complex sextic fields. Define

ω as in (2) and set O = Z[1, ϑ, ϑ2, ω, ωϑ, ωϑ2] with discriminant DO as
before. We also use L = Q(ϑ) and M = Q(i

√
m ). Put

m0 =
{

36, if −m ≡ 1 (mod 4),

9, if −m ≡ 2, 3 (mod 4).
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Theorem 1. Assume that n ≥ 7 and m ≥ m0. Then the order O has

no power integral basis.

The proof of this theorem uses arguments similar to [2], but we will
consider the small parameters, as well. It means that we will deal with the
cases, which do not satisfy n ≥ 7 or m ≥ m0(n). Note that if n ≤ 2, then
(8) is not totally real, so we have to deal additionally only with the cases,
when n = 3, 4, 5, 6. Using similar tools as in the proof of Theorem 1, we
can show that for m ≥ m0(n) the order O admits no power integral basis.

Theorem 2. Set

m0(3) =
{ 143, if −m ≡ 1 (mod 4),

36, if −m ≡ 2, 3 (mod 4).

m0(4) =
{

59, if −m ≡ 1 (mod 4),

15, if −m ≡ 2, 3 (mod 4).

m0(5) =
{

42, if −m ≡ 1 (mod 4),

11, if −m ≡ 2, 3 (mod 4).

m0(6) =
{ 36, if −m ≡ 1 (mod 4),

9, if −m ≡ 2, 3 (mod 4).

For n = 3, 4, 5, 6, m ≥ m0(n), the order O has no power integral basis.

Further, for n = 3, 4, 5, 6 by performing direct computation for the
small values of m we get:

Theorem 3. If n = 3, 4, 5, 6 and 2 ≤ m0 < m0(n), then O has no

power integral basis.

In the proof of our statements we shall use the result of Mignotte and
Tzanakis [12] on the solutions of the Thue equations corresponding to
the family (8). Note that in [12] the equation is solved only for sufficiently
large parameters, but later on the result was extended to the range n ≥ 3
(private communication).

Lemma 3 (cf. [12], Theorem). If n ≥ 3, then all solutions of the

equation

NL/Q(x− ϑy) = ±1 (x, y ∈ Z)
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are (x, y) = (±1, 0), (0,±1), (±1,∓1), (±1,∓n), (±(n + 1),±1).

Proof of Theorem 1. In our situation we apply Lemma 1 and Lem-
ma 2 with I0 = I1 = 1. Denote by ϑ = ϑ1 < ϑ2 < ϑ3 the roots of (8) and
put ρ = −ϑ2 − ϑ3 that is ρj = ϑj − n for 1 ≤ j ≤ 3. We have

−n

n + 1
≤ ϑ1 ≤ −(n− 1)

n

−1
n− 1

≤ ϑ2 ≤ −1
n

n + 1 ≤ ϑ3 ≤ n + 2.

The above inequalities imply:

ρ2 − ρ1 = ϑ2 − ϑ1 ≥ 1−
(

1
n− 1

+
1
n

)

ρ3 − ρ2 = ϑ3 − ϑ2 ≥ n + 1 +
1
n

c2 ≥ 1−
(

1
n− 1

+
1
n

)

c3 ≥ (n + 1)
(

1−
(

1
n− 1

+
1
n

))

c4 ≤ max
{

2
c2

,
4cm

c3
√

m

}
≤ max

{
2
c2

;
8
c3

}

c5 ≤
(

8
c2c3

)1/3

In case n ≥ 7, we have c4 < 3 and c5 < 1.3.
Arrange the conjugates of any γ ∈ K so that γ(j+3) is the conjugate

of γ(j) over M (j = 1, 2, 3), ϑ(j) = ϑ(j+3) = ϑj and ω(j) = ω, ω(j+3) = ω̄

(conjugate of ω over M) (j = 1, 2, 3).
Set

β = g · α,

β(j) = x0 + x1ϑ
(j) + x2ϑ

(j)2 + y0ω
(j) + y1ω

(j)ϑ(j) + y2ω
(j)ϑ(j)2,



Power integral bases in a parametric family of sextic fields 785

βjk = β(j) − β(k), 1 ≤ j, k ≤ 6.

The proof of Theorem 2.1 of [2] implies that the expressions

d1 = |β14β25β36|,
d2 = |β12β23β31β45β56β64|,
d3 = β15β16β24β26β34β35(9)

attain integer values with d1 · d2 · d3 = ±I1. In our case I1 = 1, hence
d1 = d2 = 1 (cf. equations (5), (6)) and d3 = ±1.

A. Consider now the solutions with |Y | ≤ c4. In view of m ≥ m0 it implies
y2 = 0 and |x2| ≤ 2 both for −m ≡ 1 (mod 4) and for −m ≡ 2, 3 (mod 4).
For y2 = 0 equation (6) reduces to

NL/Q(y0 + y1ϑ) = ±1,

whence by Lemma 3 we have (y0, y1) = (±1, 0), (0,±1), (±1,∓1), (±1,∓n),
(±(n + 1),±1).
A1. For y0 = ±1, y1 = 0 equation (5) becomes

NK/M (x1 − ρx2) = ±1.

Using again, Lemma 3 we obtain

(x1, x2) = (±1, 0), (∓n,±1), (±(n + 1),∓1), (±(n2 + 1),∓n), (±1,±1).

For these values we tested the third factor (9). Using symmetric poly-
nomials we calculated coefficients of the third factor, and substituted the
above five pairs of (x1, x2).
a11. In case −m ≡ 1 (mod 4):
1. For y0 = ±1, x1 = ±1, x2 = 0 we have

d3 = −m3 − 6m2 − 9m + 23 + (−6m2 − 18m + 6)n

+ (−2m2 − 15m + 5)n2 + (−2− 6m)n3 + (−m− 1)n4.

2. For y0 = ±1, x1 = ∓n, x2 = ±1 we have

d3 = −m3 − 2m2 −m + 23 + (2m2 + 2m + 6)n + (−2m2 − 3m + 5)n2

+ (2m− 2)n3 + (−m− 1)n4.
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3. For y0 = ±1, x1 = ±(n + 1), x2 = ∓1 we have

d3 = −m3 + 10m2 − 25m + 23 + (−2m2 + 10m + 6)n

+ (−2m2 + 9m + 5)n2 + (−2m− 2)n3 + (−m− 1)n4.

4. For y0 = ±1, x1 = ±(n2 + 1), x2 = ∓n we have

d3 = −m3 − 6m2 − 9m + 23 + (12m2 + 36m + 6)n

+ (−2m2 − 42m + 5)n2 + (4m2 + 24m− 2)n3

+ (−2m2 − 31m− 1)n4 + 16mn5 − 6mn6 + 4mn7 −mn8.

5. For y0 = ±1, x1 = ±1, x2 = ±1 we have

d3 = −m3 − 26m2 − 169m + 23 + (−36m2 − 468m + 6)n

+ (−26m2 − 662m + 5)n2 + (−12m2 − 624m− 2)n3

+ (−2m2 − 411m− 1)n4 − 192mn5 − 62mn6 − 12mn7 −mn8.

a12. In case −m ≡ 2, 3 (mod 4):

1. For y0 = ±1, x1 = ±1, x2 = 0 we have

d3 = −64m3 − 96m2 − 36m + 23 + (−96m2 − 72m + 6)n

+ (−32m2 − 60m + 5)n2 + (−2− 24m)n3 + (−4m− 1)n4.

2. For y0 = ±1, x1 = ∓n, x2 = ±1 we have

d3 = −64m3 − 32m2 − 4m + 23 + (32m2 + 8m + 6)n

+ (−32m2 − 12m + 5)n2 + (8m− 2)n3 + (−4m− 1)n4.

3. For y0 = ±1, x1 = ±(n + 1), x2 = ∓1 we have

d3 = −64m3 + 160m2 − 100m + 23 + (−32m2 + 40m + 6)n

+ (−32m2 + 60m + 5)n2 + (−8m− 2)n3 + (−4m− 1)n4.

4. For y0 = ±1, x1 = ±(n2 + 1), x2 = ∓n we have

d3 = −64m3 − 96m2 − 36m + 23 + (192m2 + 144m + 6)n

+ (−32m2 − 168m + 5)n2 + (64m2 + 96m− 2)n3

+ (−32m2 − 124m− 1)n4 + 64mn5 − 24mn6 + 16mn7 − 4mn8.
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5. For y0 = ±1, x1 = ±1, x2 = ±1 we have

d3 = −64m3 − 416m2 − 676m + 23 + (−576m2 − 1872m + 6)n

+ (−416m2 − 2648m + 5)n2 + (−192m2 − 2496m− 2)n3

+ (−32m2 − 1644m− 1)n4 − 768mn5 − 248mn6 − 48mn7 − 4mn8.

None of them can attain the values ±1.

A2. For y1 = ε = ±1,±n, y2 = 0 equation (5) gets the form

NK/M ((x1 + εω)− ρx2) = µ,

where x1 ∈ Z ; x2 = 0,±1,±2; |µ| = 1. This equation can be written in
the form

3∏

i=1

(
(x1 + εω)− ρix2

)
= µ.

Set γi = x1 + εω − ρix2 (i = 1, 2, 3). Then

Im(γi) = Im(εω) =





ε
√

m

2
, if −m ≡ 1 (mod 4)

ε
√

m, if −m ≡ 2, 3 (mod 4).

In view of m ≥ 9 it implies
√

m
2 > 1, so | Im(γi)| > 1. Because of above

condition |γi| ≥ | Im(γi)| > 1 (i = 1, 2, 3), thus |γ1γ2γ3| > 1 contradicting
γ1γ2γ3 6= µ, if |µ| = 1. We have no solutions in these cases, either.

B. We still have to check the solutions with |Y | > c4. In case −m ≡ 1
(mod 4) by Lemma 2 either |y2| < 2c5√

m
< 1, that is y2 = 0, or in the

opposite case if |y2| ≥ 2c5√
m

> 0, then

|F (y1, y2)| ≤ c1√
m

3 =
9c3

m√
m

3 ≤
72
63

< 1

implying y1 = y2 = 0 (for m ≥ m0) and contradiction with |y2| > 2. Hence
y2 = 0. We get the same result for −m ≡ 2, 3 (mod 4) with 2c5/

√
m

replaced by c5/
√

m. Now equation (6) reduces to

NL/Q(y0 + ϑy1) = ±1
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whence by Lemma 3 we conclude

(y0, y1) = (±1, 0); (0,±1); (±1,∓1), (±1,∓n), (±(n + 1),±1).

B1. The case y0 = ±1, y1 = 0 was already considered in A1.
B2. If y1 = ε = ±1,±n, y2 = 0, then by Lemma 2 we get x2 = 0. Then
equation (5) becomes

NK/M (x1 + εω) = ±1.

It means that |x1 +εω| = 1. Both for −m ≡ 1 (mod 4)) and for −m ≡ 2, 3
(mod 4) we obtained the same result, namely the above equation has no
solution over Z. Theorem 1 is proved. ¤

4. Small values of parameters

The proof of Theorem 2, the cases n = 3, 4, 5, 6, m ≥ m0(n) is similar
to the proof of Theorem 1. This requires a simple but tedious calcu-
lation and considering several cases. We omit the details of the proof
of Theorem 2. Consider now a coordinate system displaying the points
(m,n) ∈ Z2. Note that for n = 3, 4, 5, 6, n ≥ 7 we display the values of
m0(n) which is different for −m ≡ 1 (mod 4) and −m ≡ 2, 3 (mod 4).

The shaded part of this diagram shows the pairs (m,n) covered by
Theorems 1, 2.

It is a very interesting problem to examine the cases, when n ≥ 3 and
m < m0(n). Also in this case we apply Lemma 2.

In case |Y | > c4 we have to solve the Thue inequalities of Lemma 2.
This can be done by KASH [1]. This way we get a couple of possible
vectors (x1, x2, y1, y2) ∈ Z4. For fixed y1, y2 the corresponding value of y0

can be found from equation (6) which is then a cubic polynomial equation
in y0.

In case |Y | ≤ c4 we can determine the possible values of (x2, y2) by
this condition. For fixed Y = x2 +ωy2 equation (5) in Lemma 1 is a cubic
polynomial equation in X = x1 + ωy1, which can be solved by MAPLE.
We were looking for the solutions of X, in which x1 and y1 are integers.
The value of y0 we can get from equation (6) similarly as above.

Finally, the possible tuples (x1, x2, y0, y1, y2) were tested if the corre-
sponding α ∈ O satisfies

I(α) = 1.

This test eliminated all possible solutions.
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5. Computational experiences

The computation involved in our results were performed in Maple,
except for solving Thue equations which was done by Kash. Note that the
“thue” procedure of Maple is only supposed to find small (and not all)
solutions of Thue inequalities, but unfortunately in some cases it failed to
find even the small ones.

The total CPU time (used mainly for the proof of Theorem 3) was
about 5 hours on an IBM compatible 233MHZ Pentium II PC.
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