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A generalization of Lucas’ congruence
for q-binomial coefficients

By TIANXIN CAI (Hangzhou)

Abstract. In this paper, we generalize the Lucas’ congruence for q-binomial co-
efficients.

1. Introduction

The famous Lucas’ property for binomial coefficients is

(1)
(

n

r

)
≡

∏

i≥0

(
ni

ri

)
(mod p),

where and throughout this paper p is a prime, n, r are integers, their ex-
pansions in base p are given by n =

∑
i≥0 nip

i and r =
∑

i≥0 rip
i, with

0 ≤ ni, ri ≤ p − 1 (only a finite number of the ni’s are non-zero). This
relation has been generalized to many unidimensional or bidimensional se-
quences, such as Apéry numbers. Also, many authors have studied the
values of these sequences modulo a prime power, see [1]–[8]. In this pa-
per, we investigate whether identity (1) holds when replacing the binomial
coefficient

(
n
r

)
by the Gaussian binomial coefficient, i.e., the q-binomial
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coefficient
(
n
r

)
q

defined by the following formula,

(
n

r

)

q

=





qn − 1
qr − 1

qn−1 − 1
qr−1 − 1

. . .
qn−r+1 − 1

q − 1
, if 0 < r ≤ n,

1, if r = 0,

0, if r < 0 or r > n.

However, for
(
n
r

)
q
, (1) is not always true. For example, if q 6≡ 1 (mod p),

(q, p) = 1, taking n = p ordp(q)− 1, r = 1, it is easy to verify that
(

n

1

)

q

6≡
(

ordp(q)− 1
0

)

q

(
p− 1

1

)

q

(mod p),

where ordp(q) is the order of q modulo p, i.e., the smallest positive integer
f such that

qf ≡ 1 (mod p).

Although (1) fails in general for q-binomial coefficients, Fray [2] proved
an interesting result: let d = ordp(q), n = n0 + d

∑
i≥1 aip

i, r = r0 +
d

∑
i≥1 bip

i, with 0 ≤ n0, r0 < d, 0 ≤ ai, bi ≤ p, i ≥ 1, then

(
n

r

)

q

≡
(

n0

r0

)

q

∏

i≥1

(
ai

bi

)
(mod p).

In this paper, we first obtain the following

Theorem 1. If q 6= 1, n = n0 + n1p, r = r0 + r1p, 0 ≤ n0, r0 ≤ p− 1,

n1, r1 ≥ 0, then

(2)
(

n

r

)

q

/ (
n1

r1

)

qp

≡
(

n0

r0

)

q

(
mod

qp − 1
q − 1

)
.

In particular, let q → 1, (2) become (1), i.e., Lucas’ property (1) is a direct

consequence of Theorem 1.

Proof. It is obvious that (2) is true if n1 < r1. Let n1 ≥ r1, if
r0 > n0, then

(3)
(

n0

r0

)

q

= 0.
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On the other hand, one has

(
n

r

)

q

=
∏

1≤i≤r

qn−i+1 − 1
qi − 1

(4)

=

∏
0≤j≤r1

(q(n1−j)p − 1)∏
1≤j≤r1

(qjp − 1)

∏
n−i+1 6≡0 (mod p)(q

n−i+1 − 1)∏
i 6≡0 (mod p)(qi − 1)

.

The first fraction in (4) is equal to

(5)
(

n1

r1

)

qp

(q(n1−r1)p − 1) ≡ 0
(
mod

qp − 1
q − 1

)
.

From the well-known property of the greatest common divisor:
(qs − 1, qt − 1) = q(s,t) − 1, it follows that

( ∏

1≤i≤r
i 6≡0 (mod p)

(qi − 1),
qp − 1
q − 1

)
= 1.

Combining (4) and (5),

(6)
(

n

r

)

q

/ (
n1

r1

)

qp

≡ 0
(
mod

qp − 1
q − 1

)
.

Here we used the following property of divisibility for integers: if c | a,
(c, P ) = 1, a ≡ 0 (mod P ), then a

c ≡ 0 (mod P ). Comparing (3) with
(6), we deduce (2). If r0 ≤ n0, then

(
n

r

)

q

/ (
n1

r1

)

qp

=
∏

1≤i≤r
n−i+16≡0 (mod p)

(qn−i+1−1)
/ ∏

1≤i≤r
i 6≡0 (mod p)

(qi − 1)(7)

≡
r0∏

i=1

qn0−i+1−1
qi−1

p−1∏

i=1

(qi−1)r1

(qi−1)r1
=

(
n0

r0

)

q

(
mod

qp − 1
q − 1

)
.

Here in (7) we used the following property of divisiblity for integers: if
b | a, d | c, a ≡ c (mod P ), b ≡ d (mod P ), (b, P ) = 1, then a

b ≡ c
d

(mod P ). Therefore (2) is true. ¤
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Next, we want to generalize (2) to modulo (qpb − 1)/(q − 1) for any
integer b ≥ 1, in order to do this, we recall the following remarkable
observation of Kummer in 1885: for any prime p and positive integers
n ≥ r ≥ 0, the exact power of p that divides the binomial coefficient

(
n
r

)
is given by the number of “carries” when adding r and n − r in base p.
Therefore, if n and r are expanded in base p as the beginning of this paper,
then p -

(
n
r

)
means ni ≥ ri for each i ≥ 0.

Theorem 2. Define n′j to be the least non-negative residue of

n (mod pj), j ≥ 1, if p does not divide
(
n
r

)
, then for any positive integer b,

(8)
(

n

r

)

q

≡
(

n′b
r′b

)

q

(
[n/p]
[r/p]

)

qp

/ (
[n′b/p]
[r′b/p]

)

qp

(
mod

qpb − 1
q − 1

)

in particular, if b = 1, (8) becomes (2).

Proof. Let n = n′b + n′′b pb, r = r′b + r′′b pb, and n′′b , r′′b ≥ 0, then

(
n

r

)

q

=
∏

1≤i≤r

qn−i+1 − 1
qi − 1

=
∏

1≤i≤pb

0≤j≤r′′b −1

q(n′′b−j−1)pb+i − 1
qjpb+i − 1

(9)

×
∏

1≤i≤n′b
(qn′′b pb+i − 1)

∏
1≤i≤r′b

(qr′′b pb+i − 1)
∏

1≤i≤n′b−r′b
(q(n′′b−r′′b )pb+i − 1)

,(10)

if r′′b = 0, the right product in (9) is 1; if r′′b > 0, the product could be split
into two parts, i.e., over i ≡ 0 (mod p) and i 6≡ 0 (mod p), respectively,
the second part is congruent to 1 modulo (qpb − 1)/(q − 1), here again we
use the property of divisiblity for integers, hence the product is congruent
to

(11)
(

n′′b pb−1

r′′b pb−1

)

qp

(
mod

qpb − 1
q − 1

)
.

Noting that (11) is also true for r′′b = 0; the fraction in (10) could be
denoted by

∏
=

∏
1 /

∏
2

∏
3, and

(12)
∏

1
=

∏

1≤i≤n′b

qn′′b pb+i − 1
qi − 1

∏

1≤i≤n′b

(qi − 1),
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the first product on the right of (12) could be split into two parts, over
i ≡ 0 (mod p) and i 6≡ 0 (mod p), respectively. The first part is equal to(

[n/p]
[n′b/p]

)
qp

, as for the second part, since the numerator is congruent to the

denominator modulo (qpb − 1)/(q − 1), hence

(13)
∏

1

/ (
[n/p]
[n′b/p]

)

qp

≡
∏

1≤i≤n′b

(qi − 1)
(
mod

qpb − 1
q − 1

)
.

Similarly we could deal with
∏

2 and
∏

3, i.e.,

∏
2

/ (
[r/p]
[r′b/p]

)

qp

≡
∏

1≤i≤r′b

(qi − 1)
(
mod

qpb − 1
q − 1

)
,(14)

∏
3

/ (
[(n− r)/p]

[(n′b − r′b)/p]

)

qp

≡
∏

1≤i≤n′b−r′b

(qi − 1)
(
mod

qpb − 1
q − 1

)
.(15)

Combining (13), (14) and (15), we have

∏
≡

(
[n/p]
[n′b]

)
qp(

[r/p]
[r′b]

)
qp

(
[(n−r)/p]

[(n′b−r′b)/p]

)
qp

∏
1≤i≤n′b

(qi − 1)
∏

1≤i≤r′b
(qi−1)

∏
1≤i≤n′b−r′b

(qi−1)
(16)

=
(

[n/p]
[r/p]

)

qp

(
n′b
r′b

)

q

/ (
[n′b/p]
[r′b/p]

)

qp

(
[(n−n′b)/p]
[(r−r′b)/p]

)

qp

(
mod

qpb−1
q−1

)
,

from (11) and (16), we deduce (8). ¤
We have three immediate consequences:

Corollary 1. If p does not divide
(
n
r

)
, then for any integer b ≥ 1.

(
n

r

)
=

(
n′b
r′b

)(
[n/p]
[r/p]

) / (
[n′b/p]
[r′b/p]

)
(mod pb).

This is a result of Andrew Granville [4, Proposition 2].

Corollary 2. If p does not divide
(
n
r

)
and n ≡ r (mod pb), then

(
n

r

)

q

≡
(

[n/p]
[r/p]

)

qp

(
mod

qpb − 1
q − 1

)
.
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Corollary 3. If p does not divide
(
n
r

)
and n ≡ r (mod pk) where

k ≥ b− 1, then

(
n

r

)

q

≡
(

[n/pk+1−b]
[r/pk+1−b]

)

qp

(
mod

qpb − 1
q − 1

)
.
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