Framed (2M+3)-dimensional manifolds endowed with a vertical cyclic connection structure

By FILIP DEFEVER (Leuven) RADU ROSCA (Paris)

Abstract

Geometrical and structural properties are proved for a class of framed manifolds which are equiped with a vertical cyclic connection structure.

1. Introduction

Framed manifolds and f-structures have been initiated by K. Yano and M. Kon and have subsequently been studied intensively, see for example [1], [19], [22], [18]. We recall that if $M\left(\phi, \Omega, \xi_{r}, \eta^{r}, g\right)$ is a $(2 m+q)$ dimensional manifold of this kind, then the ξ_{r}, for $(r=2 m+1, \ldots, 2 m+q)$, are the Reeb vector fields (in the large sense) of the f-structure, and $\eta^{r}=\xi_{r}{ }^{\text {b }}$ their corresponding covectors. One has the following structure equations:

$$
\begin{equation*}
\phi^{2}=-\mathrm{Id}+\sum \eta^{r} \otimes \xi_{r}, \quad \phi \xi_{r}=0, \quad \eta^{r} \circ \phi=0, \quad \eta^{s}\left(\xi_{r}\right)=\delta_{r}^{s}, \tag{1}
\end{equation*}
$$

where ϕ is a (1.1) tensor field. With respect to g, one has the following relation

$$
g\left(\phi Z, Z^{\prime}\right)+g\left(Z, \phi Z^{\prime}\right)=0, \quad Z, Z^{\prime} \in \Xi(M)
$$

(i.e. ϕ is skew-symmetric with respect to g). The 2 -form Ω of rank $2 m$ has

[^0]the following properties
\[

$$
\begin{equation*}
\Omega\left(Z, Z^{\prime}\right)=g\left(\phi Z, Z^{\prime}\right), \quad \Omega^{m} \wedge \eta^{2 m+1} \wedge \cdots \wedge \eta^{2 m+q} \neq 0 \tag{2}
\end{equation*}
$$

\]

and is called the fundamental form of the framed manifold.
In the present paper we assume that $r \in\{2 m+1,2 m+2,2 m+3\}$ and for the indices a and b we have the following range $a, b \in\{1, \ldots, 2 m\}$. Under these conditions and with reference to [18], we call $\theta_{b}^{a}, \theta_{a}^{r}$, and θ_{s}^{r} the horizontal, the transversal, and the vertical connection forms respectively. We will assume here that the θ_{a}^{r} vanish and that the θ_{s}^{r} are defined by a cyclic permutation of the Reeb covectors η^{r}, which means that

$$
\begin{equation*}
\theta_{s}^{r}=f_{s} \eta^{r}-f_{r} \eta^{s}, \quad \forall \widehat{r, s, t} \tag{3}
\end{equation*}
$$

where the f_{r} are scalar fields, called the principal scalars on M. In the sequel we will call

$$
\begin{equation*}
\eta=f_{r} \eta^{r}, \quad \text { and } \quad \eta^{\sharp}=\sum f_{r} \xi_{r}, \tag{4}
\end{equation*}
$$

the principal pfaffian and the principal vector field of M respectively. Further, let $D_{p}^{\top}=\left\{e_{a}\right\}$ and $D_{p}{ }^{\perp}=\left\{\xi_{r}\right\}$ be the horizontal, respectively vertical, distribution on M.
In a first step, the following properties are proved.
(i) The manifold M under consideration may be viewed as the local Riemannian product $M=M^{\top} \times M^{\perp}$, where M^{\top} is a $2 m$-dimensional submanifold tangent to D_{p}^{\top} and M^{\perp} is a 3-dimensional submanifold tangent to $D_{p}{ }^{\perp}$, and the immersion $x: M^{\top} \rightarrow M$ is totally geodesic;
(ii) the Ricci tensor field \mathcal{R} of M^{\perp} is expressed by

$$
\mathcal{R}(\xi, Z)=-4\|\xi\|^{2} g(\xi, Z), \quad Z \in \Xi(M)
$$

(iii) ξ is harmonic and if V is any vertical vector which has the property to be a skew-symmetric Killing vector field having ξ as generative, then V is an exterior concurrent vector field and by Bochner's theorem $g(V, \xi)$ is closed;
(iv) the principal scalars f_{r} define an isoparametric system [20];
(v) the gradients $d f_{r}^{\sharp}=\operatorname{grad} f_{r}$, define a commutative group.

In a second step, and making use of E. Cartan's structure equations involving the curvature 2-forms, one finds that the vertical curvature 2-forms Θ_{r}^{s} satisfy

$$
\begin{aligned}
& \Theta_{r}^{s}=\left(\left(\|\xi\|^{2}-\frac{f_{t}^{2}}{2}\right) \eta^{r}+f_{r} f_{t} \eta^{t}\right) \wedge \eta^{s}-\left(\left(\|\xi\|^{2}-\frac{f_{t}^{2}}{2}\right) \eta^{s}+f_{s} f_{t} \eta^{t}\right) \wedge \eta^{r}, \\
& \forall \widehat{r, s, t}
\end{aligned}
$$

and consequently, following [19] the above equations prove that M^{\perp} is a conformally flat submanifold of M.

Finally, the structure 2 -form Ω of M is presymplectic. Then, if X is any horizontal vector field and ${ }^{b} X\left(=-i_{X} \Omega\right)$ means the symplectic isomorphism, and in addition the 1 -form ${ }^{b} X$ is ϕ-closed, it follows that Ω is invariant by X. In consequence of this, X is a 2 -covariant recurrent vector field, which in the case under consideration is expressed by

$$
\nabla^{2} X=\frac{d \lambda}{\lambda} \otimes \nabla X, \quad \lambda \in \Lambda^{0} M
$$

2. Preliminaries

Let (M, g) be a Riemannian C^{∞}-manifold and let ∇ be the covariant differential operator with respect to the metric tensor g. We assume that M is oriented and ∇ is the Levi-Civita connection of g. Let $\Gamma T M$ be the set of sections of the tangent bundle, and

$$
b: T M \xrightarrow{b} T^{*} M \quad \text { and } \quad \sharp: T M \stackrel{\sharp}{\Perp} T^{*} M
$$

the isomorphisms defined by g (i.e. ${ }^{b}$ is the index lowering operator, and $\#$ is the index raising operator).

Following [14], we denote by

$$
A^{q}(M, T M)=\Gamma \operatorname{Hom}\left(\Lambda^{q} T M, T M\right),
$$

the set of vector valued q-forms ($q<\operatorname{dim} M$), and we write for the covariant derivative operator with respect to ∇

$$
\begin{equation*}
d^{\nabla}: A^{q}(M, T M) \rightarrow A^{q+1}(M, T M) . \tag{5}
\end{equation*}
$$

It should be noticed that in general $d^{\nabla^{2}}=d^{\nabla} \circ d^{\nabla} \neq 0$, unlike $d^{2}=$ $d \circ d=0$. If $p \in M$ then the vector valued 1-form $d p \in A^{1}(M, T M)$ is the canonical vector valued 1 -form of M, and is also called the soldering form of M [4]. Since ∇ is symmetric one has that $d^{\nabla}(d p)=0$.

A vector field Z which satisfies

$$
\begin{equation*}
d^{\nabla}(\nabla Z)=\nabla^{2} Z=\pi \wedge d p \in A^{2}(M, T M), \quad \pi \in \Lambda^{1} M \tag{6}
\end{equation*}
$$

is defined to be an exterior concurrent vector field [16] (see also [13]). The 1 -form π in (6) is called the concurrence form and is defined by

$$
\begin{equation*}
\pi=\lambda Z^{b}, \quad \lambda \in \Lambda^{0} M \tag{7}
\end{equation*}
$$

In this case, if \mathcal{R} is the Ricci tensor of ∇, one has

$$
\begin{equation*}
\mathcal{R}(Z, V)=\varepsilon(n-1) \lambda g(Z, V) \tag{8}
\end{equation*}
$$

$(\varepsilon= \pm 1, V \in \Xi(M), n=\operatorname{dim} M)$.
A function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is isoparametric $[20]$ if $\|\nabla f\|^{2}$ and $\operatorname{div}(\nabla f)$ are functions of $f(\nabla f=\operatorname{grad} f)$.

Let $\mathcal{O}=\left\{e_{A} \mid A=1, \ldots n\right\}$ be a local field of orthonormal frames over M and let $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{A}\right\}$ be its associated coframe. Then E. Cartan's structure equations can be written in indexless manner as

$$
\begin{align*}
\nabla e & =\theta \otimes e \tag{9}\\
d \omega & =-\theta \wedge \omega \tag{10}\\
d \theta & =-\theta \wedge \theta+\Theta \tag{11}
\end{align*}
$$

In the above equations θ (resp. Θ) are the local connection forms in the tangent bundle $T M$ (resp. the curvature 2-forms on M).

3. The main theorem

Let $M\left(\phi, \Omega, \xi_{r}, \eta^{r}, g\right)$ be a $(2 m+3)$-dimensional C^{∞}-manifold with soldering form $d p$ and carrying an f-structure ϕ [22], that is a tensor field
of type (1.1) of rank $2 m$ which satisfies

$$
\begin{gather*}
\phi^{3}+\phi=0, \tag{12}\\
\phi^{2}=-\mathrm{Id}+\sum \eta^{r} \otimes \xi_{r}, \quad \phi \xi_{r}=0, \quad \eta^{r} \circ \phi=0, \tag{13}\\
g\left(Z, Z^{\prime}\right)=g\left(\phi Z, \phi Z^{\prime}\right)+\sum \eta^{r}(Z) \eta^{r}\left(Z^{\prime}\right), \tag{14}
\end{gather*}
$$

where Id is the identity morphism of M.
If in addition the fundamental 2 -form Ω of M satisfies

$$
\begin{equation*}
\Omega\left(Z, Z^{\prime}\right)=g\left(\phi Z, Z^{\prime}\right), \quad \Omega^{m} \wedge \eta^{2 m+1} \wedge \eta^{2 m+2} \wedge \eta^{2 m+3} \neq 0 \tag{15}
\end{equation*}
$$

then M is known [22] to be a framed f-manifold.
With respect to the cobasis $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{a}, \eta^{r}\right\}$ of $\mathcal{O}=\operatorname{vect}\left\{e_{a}, \xi_{r}\right\}$ ($1 \leq a \leq 2 m ; 2 m+1 \leq r \leq 2 m+3$), the 2 -form Ω is expressed by the standard form

$$
\begin{equation*}
\Omega=\sum_{i=1}^{m} \omega^{i} \wedge \omega^{i^{*}}, \quad i^{*}=i+m . \tag{16}
\end{equation*}
$$

Making use of (9) and (13), one finds the known Kaehlerian relations

$$
\begin{equation*}
\theta_{j}^{i}=\theta_{j^{*}}^{i^{*}}, \quad \theta_{j}^{i^{*}}=\theta_{i}^{j^{*}} . \tag{17}
\end{equation*}
$$

We recall [18] that one may split the tangent space $T_{p}(M)$ of M at every point $p \in M$ as

$$
\begin{equation*}
T_{p}(M)=D_{p}^{\top} \oplus D_{p}^{\perp}, \tag{18}
\end{equation*}
$$

where $D_{p}^{\top}=\left\{e_{a} \mid a \in\{1, \ldots, 2 m\}\right\}$ and $D_{p}{ }^{\perp}=\left\{\xi_{r}\right\}$ are two complementary orthogonal distributions, called the horizontal and the vertical distribution respectively. As a consequence of this decomposition, one may write the soldering form as

$$
\begin{equation*}
d p=d p^{\top} \oplus d p^{\perp}, \tag{19}
\end{equation*}
$$

where $d p^{\top}=\left.d p\right|_{D^{\top}}$ and $d p^{\perp}=\left.d p\right|_{D^{\perp}}$. By reference to [18] (see also [12]), the connection forms $\theta_{b}^{a}, \theta_{s}^{r}$, and θ_{r}^{a} are called the horizontal, the vertical, and the transversal connection forms respectively. In the present
paper we assume that the θ_{r}^{a} vanish and that the vertical connection forms are defined by a cyclic permutation of the Reeb covectors η^{r}, that is:

$$
\begin{equation*}
\theta_{s}^{r}=f_{s} \eta^{r}-f_{r} \eta^{s}, \quad \forall \widehat{r, s, t} \quad(\text { cyclic }) . \tag{20}
\end{equation*}
$$

In the above relations, the f_{r} are scalar fields, called the principal scalars on M, and setting

$$
\begin{equation*}
\eta=f_{r} \eta^{r}, \quad \eta^{\sharp}=\xi=\sum f_{r} \xi_{r}, \tag{21}
\end{equation*}
$$

η and ξ are called the principal pfaffian and the principal vector field respectively. Taking into account that

$$
\begin{equation*}
\theta_{r}^{a}=0, \tag{22}
\end{equation*}
$$

one derives by (10) and (20) that

$$
\begin{equation*}
d \eta^{r}=\eta \wedge \eta^{r} \tag{23}
\end{equation*}
$$

This shows that the Reeb covectors are η^{r} exterior recurrent forms [3]. In addition, exterior differentiation of (23) and taking into account (21), yields

$$
\begin{equation*}
d f_{r}=f_{r} \eta \tag{24}
\end{equation*}
$$

which expresses that η is an exact form. Since one has that

$$
\left(d \eta^{r}\right) \neq 0, \quad \eta^{r} \wedge d \eta^{r}=0,
$$

it follows according to a known definition [6] that in the case under discussion the Reeb covectors are of class 2. Let now

$$
\begin{equation*}
\varphi^{\perp}=\eta^{2 m+1} \wedge \eta^{2 m+2} \wedge \eta^{2 m+3} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi^{\top}=\omega^{1} \wedge \cdots \wedge \omega^{2 m} \tag{26}
\end{equation*}
$$

be the simple unit forms which correspond to the distributions $D_{p}{ }^{\perp}$ and $D_{p}{ }^{\top}$ respectively. Taking the exterior derivative of (25) and (26), and in view of (20) and (22), one derives that

$$
\begin{equation*}
d \varphi^{\perp}=0 \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
d \varphi^{\top}=0 . \tag{28}
\end{equation*}
$$

Hence, in terms of well known terminology [9], the above equations show that φ^{\perp} and φ^{\top} are integral invariants of $D_{p}{ }^{\perp}$ and $D_{p}{ }^{\top}$ respectively. Therefore, by the theorem of Frobenius, we conclude that the manifold M under consideration may be viewed as the local Riemannian product

$$
\begin{equation*}
M=M^{\top} \times M^{\perp}, \tag{29}
\end{equation*}
$$

where M^{\top} is a $2 m$-dimensional manifold tangent to D^{\top} and M^{\perp} is a 3-dimensional manifold tangent to $D^{\perp}\left(=\left\{\xi_{r}\right\}\right)$.

Remark 3.1. As the tangent space $T_{p}(M)$, the soldering form $d p$ may be split as

$$
d p=d p^{\top}+d p^{\perp},
$$

where $d p^{\top}$ and $d p^{\perp}$ are the horizontal and the vertical components of $d p$ respectively. In the case under discussion, operating on $d p^{\top}$ and $d p^{\perp}$ by the exterior covariant derivative operator d^{∇}, one finds

$$
\begin{equation*}
d^{\nabla}\left(d p^{\perp}\right)=0, \quad d^{\nabla}\left(d p^{\top}\right)=0, \tag{30}
\end{equation*}
$$

which, since ∇ is the Levi-Civita connection, leads to

$$
d^{\nabla}(d p)=0 .
$$

Using (20), (21), and (22), one gets

$$
\begin{equation*}
\nabla \xi_{r}=f_{r} d p^{\perp}-\eta^{r} \otimes \xi \tag{31}
\end{equation*}
$$

and one derives

$$
\begin{equation*}
\left[\xi_{r}, \xi_{s}\right]=f_{s} \xi_{r}-f_{r} \xi_{s} \tag{32}
\end{equation*}
$$

In view of (24), the covariant differential of $\left[\xi_{r}, \xi_{s}\right]$ can be expressed as

$$
\begin{equation*}
\nabla\left[\xi_{r}, \xi_{s}\right]=\eta \otimes\left[\xi_{r}, \xi_{s}\right]-\left[\xi_{r}, \xi_{s}\right]^{b} \otimes \xi \tag{33}
\end{equation*}
$$

with which one can check Jacobi's identity

$$
\sum_{r, s, t}\left[\xi_{r},\left[\xi_{s}, \xi_{t}\right]\right]=0, \quad \forall \widehat{r, s, t}
$$

Next, operating on (21) with ∇, and using (20) and (21), one derives that

$$
\begin{equation*}
\nabla \xi=\|\xi\|^{2} d p^{\perp} \tag{34}
\end{equation*}
$$

consequently, following a well known definition [2] one may consider ξ as a concurrent vector field on M^{\perp}. This implies [15] (see also [13]) that ξ is an exterior concurrent vector field on M^{\perp}. Since $\|\xi\|^{2}=\sum f_{r}{ }^{2}$, one gets at once by (24) that

$$
\begin{equation*}
d\|\xi\|^{2}=2\|\xi\|^{2} \eta . \tag{35}
\end{equation*}
$$

Therefore, since $d^{\nabla}\left(d p^{\perp}\right)=0$, operating on (34) by d^{∇} yields

$$
\begin{equation*}
d^{\nabla}(\nabla \xi)=\nabla^{2} \xi=2\|\xi\|^{2} \eta \wedge d p^{\perp} \tag{36}
\end{equation*}
$$

Hence, by reference to [13], the Ricci tensor field \mathcal{R} of M^{\perp} is expressed by

$$
\begin{equation*}
\mathcal{R}(\xi, Z)=-4\|\xi\|^{2} g(\xi, Z), \quad Z \in \Xi(M) \tag{37}
\end{equation*}
$$

Next, by (24) one may write

$$
\begin{equation*}
\left(d f_{r}\right)^{\sharp}=f_{r} \xi_{r}, \quad\left(d f_{r}\right)^{\sharp}=\operatorname{grad} f_{r}, \tag{38}
\end{equation*}
$$

and after further elaboration, one derives that

$$
\begin{equation*}
\left[\left(d f_{r}\right)^{\sharp},\left(d f_{s}\right)^{\sharp}\right]=0, \quad \forall \widehat{r, s, t} . \tag{39}
\end{equation*}
$$

Accordingly we may say that the vector fields $\left(d f_{r}\right)^{\sharp},\left(d f_{s}\right)^{\sharp}$, and $\left(d f_{t}\right)^{\sharp}$ define a commutative group.

Next, by (24) one has that

$$
\left\|\operatorname{grad} f_{r}\right\|^{2}=\|\xi\|^{2} f_{r}^{2}
$$

and since

$$
\operatorname{div} Z=\operatorname{tr} \nabla Z, \quad Z \in \Xi(M)
$$

one derives that

$$
\operatorname{div} \operatorname{grad} f_{r}=f_{r}^{3}+\|\xi\|^{2} f_{r}^{2}, \quad\|\xi\|^{2}=\sum f_{r}^{2} .
$$

Hence, noticing that $\left[\operatorname{grad} f_{r}, \operatorname{grad} f_{r}\right]=0$ and on behalf of [20], we conclude from the above relations that the scalars f_{r} define an isoparametric system.

In another perspective, we recall that the star operator $*$ on an oriented n-dimensional Riemannian manifold (M, g) is an isometric bundle isomorphism between $\Lambda T^{*} M$ and itself, and maps $\Lambda^{q} T^{*} M$ isomorphically to $\Lambda^{n-q} T^{*} M$ (see also [14]).

Coming back to the case under consideration, one has

$$
\begin{equation*}
\Lambda^{q} T^{*} M \rightarrow \Lambda^{2 m+3-q} T M \tag{40}
\end{equation*}
$$

With the usual notation, we denote the codifferential of a p-form by $\delta=$ $(-1)^{p} *^{-1} d *$, where $*^{-1}=(-1)^{n(n-p)}$ (p is the degree of the form, n is the dimension of the manifold, thus $\delta \omega$ is of degree $p-1$; see also [14]). Then, in the case under consideration, one deduces that

$$
\begin{equation*}
d \delta \eta=0 . \tag{40}
\end{equation*}
$$

Since η is a closed pfaffian, there follows at once that

$$
\begin{equation*}
\Delta \eta=0 . \tag{42}
\end{equation*}
$$

This shows that η is a harmonic pfaffian (and consequently η^{\sharp} is a harmonic vector field). Finally, consider the immersion $x: M^{\top} \rightarrow M$. As it is well known, the second quadratic forms l_{r} associated with x are defined by

$$
\begin{equation*}
l_{r}=-\left\langle d p^{\top}, \nabla \xi_{r}\right\rangle \tag{43}
\end{equation*}
$$

Then, by reference to (31), it can be seen that the l_{r} vanish, and consequently the immersion $x: M^{\top} \rightarrow M$ is totally geodesic.

Summarizing, we can formulate the following
Theorem 3.1. Let $M\left(\phi, \Omega, \xi_{r}, \eta^{r}, f_{r}, g\right)$ be a $(2 m+3)$-dimensional manifold endowed with a vertical cyclic connection structure and with vanishing transversal connection forms. Let $\eta, \xi\left(=\eta^{\sharp}\right)$, and f_{r} be the principal pfaffian, the principal vector field, and the principal scalars on M; and let $D_{p}{ }^{\top}$ and $D_{p}{ }^{\perp}=\left\{\xi_{r}\right\}$ be the horizontal and the vertical distributions respectively on M.

Then any such manifold may be viewed as the local Riemannian product $M=M^{\top} \times M^{\perp}$, where M^{\top} is a $2 m$-dimensional presymplectic submanifold tangent to D_{p}^{\top} and M^{\perp} is a 3-dimensional submanifold tangent to $D_{p}{ }^{\perp}$.

The following properties are proved.
(i) The immersion $x: M^{\top} \rightarrow M$ is totally geodesic;
(ii) the principal vector field ξ is an exterior concurrent vector field on M^{\perp}, i.e.

$$
\nabla^{2} \xi=2\|\xi\|^{2} \eta \wedge d p^{\perp}
$$

and this implies

$$
\mathcal{R}(\xi, Z)=-4\|\xi\|^{2} g(\xi, Z), \quad Z \in \Xi(M)
$$

where \mathcal{R} denotes the Ricci tensor field of M^{\perp};
(iii) the principal pfaffian η is harmonic;
(iv) the vector fields $d f_{r}{ }^{\sharp}$ define a commutative group, and the scalars f_{r} define an isoparametric system.

4. Corollaries

Making use of E. Cartan's structure equations, involving the curvature 2 -forms (11), one derives by (20), (23), and (24) that the vertical curvature forms Θ_{r}^{s} satisfy

$$
\begin{align*}
\Theta_{r}^{s}= & \left(\left(\|\xi\|^{2}-\frac{f_{t}^{2}}{2}\right) \eta^{r}+f_{r} f_{t} \eta^{t}\right) \wedge \eta^{s} \tag{44}\\
& -\left(\left(\|\xi\|^{2}-\frac{f_{t}^{2}}{2}\right) \eta^{s}+f_{s} f_{t} \eta^{t}\right) \wedge \eta^{r}, \quad \forall \widehat{r, s, t}
\end{align*}
$$

Then, by reference to [19], the above expressions for Θ_{r}^{s} affirm that the vertical submanifold M^{\perp} of M is a conformally flat submanifold of M.

In another perspective, let

$$
\begin{equation*}
V=V^{r} \xi_{r}, \quad r \in\{2 m+1,2 m+2,2 m+3\}, \tag{45}
\end{equation*}
$$

be any vertical vector field on M^{\perp}, and assume that V is a skew-symmetric Killing vector field, having ξ as generative [16] (see also [12]), thus

$$
\begin{equation*}
\nabla V=V \wedge \xi \tag{46}
\end{equation*}
$$

where \wedge denotes the wedge product of vector fields

$$
V \wedge \xi=\eta \otimes V-V^{b} \otimes \xi
$$

Since by (31) one gets

$$
\begin{equation*}
\nabla V=d V^{r} \otimes \xi_{r}+g(V, \xi) d p^{\perp}-V^{b} \otimes \xi \tag{47}
\end{equation*}
$$

then comparison of (46) and (47) gives

$$
\begin{equation*}
d V^{b}=\eta \wedge V^{b} \tag{48}
\end{equation*}
$$

which by (48) is in agreement by Rosca's lemma [16], [17] (see also [12]). Moreover, since V is a Killing vector field and the vector field $\xi\left(=\eta^{\sharp}\right)$, is harmonic, one finds by (21) that

$$
\begin{equation*}
d g(V, \xi)=0 \tag{49}
\end{equation*}
$$

and (49) is in agreement with Bochner's theorem [21], and thus yields a confirmation for the correctness of our computations. In addition, by (34) and (46), one calculates that

$$
\begin{equation*}
[V, \xi]=g(V, \xi) \xi \tag{50}
\end{equation*}
$$

and the above equation means that V defines an infinitesimal conformal transformation of ξ. Operating now on (46) by the operator d^{∇} and in view of (34), one gets

$$
d^{\nabla}(\nabla V)=\nabla^{2} V=\|\xi\|^{2} V^{b} \wedge d p^{\perp}
$$

which shows that V is an exterior concurrent vector field on M^{\perp} with $\|\xi\|^{2}$ as concurrent scalar, and by (6) one may write

$$
\mathcal{R}(V, Z)=-2\|\xi\|^{2} g(V, Z)
$$

On the other hand, by (17) and (22), one finds that

$$
\begin{equation*}
d \Omega=0 \tag{51}
\end{equation*}
$$

Since Ω has constant rank, this means that Ω is a presymplectic form on M. We notice that in this case $\operatorname{Ker}(\Omega)$ coincides with the vertical distribution $D_{p}{ }^{\perp}=\left\{\xi_{r}\right\}$ of M, which is also called the characteristic distribution of Ω.

Denote now with the usual notation

$$
\begin{equation*}
\Omega^{b}: \quad T M \rightarrow T^{*} M: \quad Z \rightarrow-i_{Z} \Omega={ }^{b} Z, \tag{52}
\end{equation*}
$$

the symplectic isomorphism defined by $\Omega[8]$. Since Ω is closed, any vector field X with the property that ${ }^{b} X$ is closed, defines an infinitesimal automorphism of Ω, i.e.

$$
\begin{equation*}
\mathcal{L}_{X} \Omega=0 \tag{53}
\end{equation*}
$$

Assume that X is a horizontal vector field on M, i.e.

$$
X=X^{a} e_{a}, \quad a \in\{1, \ldots, 2 m\} .
$$

Then, by (52) one has

$$
\begin{equation*}
{ }^{\mathrm{b}} X=\sum\left(X^{i^{*}} \omega^{i}-X^{i} \omega^{i^{*}}\right), \quad i \in\{1, \ldots, m\}, i^{*}=i+m, \tag{54}
\end{equation*}
$$

and by the structure equations (10) one gets by exterior differentiation of ${ }^{b} X$

$$
\begin{equation*}
d^{b} X=-\left(d X^{i^{*}}+X^{a} \theta_{a}^{i^{*}}\right) \wedge \omega^{i}-\left(d X^{i}+X^{a} \theta_{a}^{i}\right) \wedge \omega^{i^{*}} \tag{55}
\end{equation*}
$$

Hence, in order for ${ }^{b} X$ to be a ϕ-closed form [16], one must write

$$
\left\{\begin{array}{l}
d X^{i}+X^{a} \theta_{a}^{i}=-\lambda \omega^{i^{*}}, \tag{56}\\
d X^{i^{*}}+X^{a} \theta_{a}^{i^{*}}=\lambda \omega^{i},
\end{array}\right.
$$

where λ is a scalar. Taking now the covariant differential of the vector field X, one deduces by (56) and the structure equations (9) that

$$
\begin{equation*}
\nabla X=\lambda \phi d p \tag{57}
\end{equation*}
$$

This shows that X is a ϕ-concurrent vector field. Further, operating on the vector valued 1-form $\phi d p$ by the operator d^{∇}, one calculates that

$$
d^{\nabla}(\phi d p)=0,
$$

and therefore it follows from (57) that

$$
\begin{equation*}
\nabla^{2} X=\frac{d \lambda}{\lambda} \otimes \nabla X \tag{58}
\end{equation*}
$$

Hence, the above equation proves that the vector field X is, according to well known terminology [10], a 2-covariant recurrent vector field with closed recurrence form.

Summarizing, we proved the following

Theorem 4.1. The vertical submanifold M^{\perp} of the manifold M under consideration is conformally flat, and the vertical skew-symmetric Killing vector field V is an exterior concurrent vector field which morover also defines an infinitesimal conformal transformation of the principal vector field ξ. The structure 2-form Ω of M is presymplectic, and if X is any horizontal vector field for which in addition ${ }^{\mathrm{b}} X\left(=-i_{X} \Omega\right)$ is ϕ-closed, then Ω is invariant by X, i.e. $\mathcal{L}_{X} \Omega=0$; moreover, X also has the following 2 properties:
a) X is a ϕ-concurrent vector field, i.e.

$$
\nabla X=\lambda \phi d p
$$

b) X is a 2-covariant recurrent vector field with closed recurrence form, i.e.

$$
\nabla^{2} X=\frac{d \lambda}{\lambda} \otimes \nabla X
$$

References

[1] A. Bucki, Submanifolds of almost ν-paracontact manifolds, Tensor N. S. 40 (1984), 69-89.
[2] B. Y. Chen, Geometry of submanifolds, M. Dekker, New York, 1973.
[3] D. K. Datta, Exterior recurrent forms on manifolds, Tensor NS 36 (1982), 115-120.
[4] J. Dieudonné, Treatise on Analysis, vol. 4, Academic Press, New York, 1974.
[5] F. Etayo and R. Rosca, On Riemannian manifolds endowed with a \mathcal{T}-parallel almost contact g-structure, Publ. Math. Debrecen 50 (1997), 57-68.
[6] C. Godbillon, Géometrie différentielle et mécanique analytique, Herman, Paris, 1969.
[7] M. Kobayashi, Differential geometry of symmetric twofold $C R$-submanifolds with cosymplectic 3-structure, Tensor N. S. 41 (1984), 69-89.
[8] P. Libermann and C. M. Marle, Géométrie Symplectique, Bases Théorétiques de la Mécanique, U. E. R. Math. du C. N. R. S. 7 (1986).
[9] A. Lichnerowicz, Géometrie des groupes de transformations, Dunod, Paris, 1958.
[10] Y. Matsuyama, On a hypersurface with recurrent or birecurrent second fundamental form, Tensor N. S. 42 (1985), 168-172.
[11] I. Mihai and R. Rosca, On manifolds endowed with a \mathcal{T}-Killing almost contact 2-strucure, Libertas Math. (Univ. Arlington, Texas) (to appear).
[12] I. Mihai, R. Rosca and L. Verstraelen, Some aspects of the differential geometry of vector fields, Padge, K. U. Brussel 2 (1996).
[13] M. Petrovic, R. Rosca and L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds, Soochow J. Math. 15 (1989), 179-187.
[14] W. A. Poor, Differential Geometric Structures, McGraw Hill, New York, 1981.

102 F. Defever and R. Rosca : Framed $(2 M+3)$-dimensional manifolds . . .
[15] R. Rosca, Exterior concurrent vectorfields on a conformal cosymplectic manifold admitting a Sasakian structure, Libertas Math. (Univ. Arlington, Texas) 6 (1986), 167-174.
[16] R. Rosca, On conformal cosymplectic quasi-Sasakian manifolds, Giornate di Geometria, Univ. Messina, 1988.
[17] R. Rosca, On exterior concurrent skew symmetric Killing vector fields, Rend. Mat. Messina 2 (1993), 131-145.
[18] R. Rosca, On K-left invariant almost contact 3-structures, Results in Mathematics 27 (1995), 117-128.
[19] S. Tachibana and W. N. Yu, On Riemannian spaces admitting more than one Sasakian structure, Tohoku Math. J. 22 (1970), 536-540.
[20] A. West, Isoparametric systems, Geometry and Topology of Submanifolds $\mathbf{1}$ (1989), 222-230.
[21] K. Yano, Integral formulas in Riemannian geometry, M. Dekker, New York, 1970.
[22] K. Yano and M. Kon, Structures on manifolds, World Scientific, Singapore, 1984.

```
FILIP DEFEVER
ZUIVERE EN TOEGEPASTE DIFFERENTIAALMEETKUNDE
DEPARTEMENT WISKUNDE, K.U. LEUVEN
CELESTIJNENLAAN 200 B
B-3001 LEUVEN
BELGIUM
RADU ROSCA
59 AVENUE EMILE ZOLA
75015 PARIS
FRANCE
```

(Received May 11, 2000; file obtained November 6, 2000)

[^0]: Mathematics Subject Classification: 53B20.
 Key words and phrases: framed manifolds, f-structures.
 The first author is a Postdoctoral Researcher of the Research Council of the K.U. Leuven.

