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Modules with comparability

By MIGUEL FERRERO (Porto Alegre) and ALVERI SANT’ANA (Porto Alegre)

Dedicated to Prof. A. Bovdi on his 65th birthday

Abstract. Rings with comparability were introduced in [4] as a class of rings
which properly contains right distributive rings. The purpose of this paper is to study
modules with comparability. We prove here that many results for rings with compa-
rability can be extended to modules. Also there are nice one-to-one correspondences
between submodules and right ideals of the base ring which have a good behaviour
concerning primeness, semiprimeness and completely primeness.

Introduction

Let R be a ring and let P be a completely prime ideal of R which is
contained in the Jacobson radical of R. Then R is said to satisfy compa-
rability with respect to P if for every elements a, b ∈ R, one the following
conditions holds: aR ⊆ bR, bR ⊆ aR or (aR)S−1 = (bR)S−1, where
(aR)S−1 = {x ∈ R : ∃s ∈ S with xs ∈ aR} and S = R \ P . Rings with
P -comparability were introduced and studied by the authors in [4], and
this class of rings is an extension of the class of right distributive rings
which contains a completely prime ideal in the Jacobson radical.

The purpose of this paper is to study modules with comparability.
We extend here several results obtained in [4] for rings with comparabil-
ity. In particular, we show that these modules have a submodule which
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is isomorphic to certain factor of an ideal of the base ring. One-to-one
correspondences between submodules and right ideals of R are obtained.

In Section 1 we recall some basic definitions and facts that we will use
later on. In Section 2 we define the comparability for modules and give
some equivalent conditions and examples.

In Section 3 we obtain some general results, mainly concernig with
waists. These results, in general, extends results which are known for
right distributive rings ([5]–[7]).

The main results of this paper are contained in Section 4. Assume
that M is a right R-module with Q-comparability, where Q is a completely
prime ideal of R contained in the Jacobson radical which is a waist of R

as right ideal and MQ 6= 0. Then we prove that for any x ∈ M \ MQ,
there is a one-to-one correspondence between submodules of MQ and right
ideals of R which are contained in Q and contains the annihilator of x. We
also show that a submodule L of MQ is a completely prime (resp. prime,
semiprime) submodule of M if and only if the correspondent right ideal of
R is completely prime (resp. prime, semiprime) for any x /∈ MQ (similar
result for any x /∈ L).

Throughout this paper R is always a ring with an identity element
and M is a right module over R. The Jacobson radical of R is denoted by
J(R) and the set of units of R by U(R). Also, if L is a submodule of M

and x ∈ M we denote by (L : x) the set of all the elements a ∈ R with
xa ∈ L. The notations ⊂ and ⊃ mean strict inclusions. Ideals of R are
assumed to be two-sided unless otherwise stated.

1. Pre-requisites

Let R be a ring and M a right R-module. Recall that a submodule
L of M is said to be prime (resp. semiprime) if for every m ∈ M and
a ∈ R we have that mRa ⊆ L (resp. maRa ⊆ L) implies either m ∈ L or
Ma ⊆ L (resp. ma ∈ L). This definition is the natural extension of prime
(resp. semiprime) right ideal of R (see [3]).

On the other hand, a submodule L of M is said to be a completely
prime submodule if for every m ∈ M and a ∈ R we have that ma ∈ L

implies either m ∈ L or Ma ⊆ L [3]. When M = RR and P is a two-sided
ideal of R, then P is completely prime as right submodule if and only if
for all a, b ∈ R we have that ab ∈ P implies either a ∈ P or b ∈ P . The
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definition that we will use here of a completely prime ideal of R is this
last one, even for right ideals and also for right multiplicative ideals of R.
This will not cause confusion since most of the completely prime ideals
we consider here are contained in the Jacobson radical of R and thus are
two-sided ideals ([5], Lemma 2.5).

In ([5], Section 2), the authors introduced the definition of right mul-
tiplicative ideals and the right associated multiplicative ideal Pr(I), for a
right ideal I of R, to study distributive rings (see also [2]). Now we extend
this notion for modules. If L is a submodule of M we define the associated
completely prime right multiplicative ideal of L by

Pr(L) = {a ∈ R : ∃y /∈ L with ya ∈ L}.
It is easy to check that Pr(L) is a completely prime right multiplicative
ideal of R (in the sense given above for ideals of R).

Note that if P is a completely prime ideal of R, then S = R \ P is a
multiplicatively closed subset of R.

If S is a multiplicatively closed subset of R we put

LS−1 = {m ∈ M : ∃s ∈ S with ms ∈ L}.
Recall that a multiplicatively closed subset S of R is said to be a right

Ore set, if for every s ∈ S, a ∈ R, there exist t ∈ S and b ∈ R such that
at = sb. We begin with the following.

Lemma 1.1. Let R be a ring, M a right R-module and assume that
S ⊆ R is a right Ore set. Then (mR)S−1 is submodule of M , for every
m ∈ M . Moreover, if N is a submodule of M , then NS−1 is a submodule
of M .

Proof. Let x, y ∈ (mR)S−1. Then there exist s, t ∈ S with xs, yt ∈
mR. Also, there exist u, v ∈ S such that su = tv, because S is a right Ore
set, and then (x−y)su = xsu−ytv ∈ mR. In a similar way it follows that
xr ∈ (mR)S−1, for every r ∈ R. The rest is clear. ¤

We say that a submodule L of M is a waist if for every submodule N
of M we have either L ⊆ N or N ⊆ L [1]. Waists in right distributive rings
have been studied in [5] and [6] and in rings with comparability in [4].

Note that L is a waist of M if and only if L ⊂ xR, for every x ∈ M \L.
Also a waist is always contained in the Jacobson radical of M .

The following lemma is easy to prove.

Lemma 1.2. Let M be a right R-module, N a submodule of M and
L ⊇ N a waist of M . Then we have N = x(N : x), for every x /∈ L.
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2. The comparability for modules

In [4] we introduced and study rings with comparability. Recall that if
P is a completely prime ideal of a ring R contained in the Jacobson radical,
then R is said to satisfy P -comparability if for every a, b ∈ R one of the
following conditions holds: aR ⊆ bR, bR ⊆ aR or (aR)S−1 = (bR)S−1. In
this section we introduce the comparability for modules.

If R is a ring and P is a completely prime ideal contained in J(R), we
say here that P is a (right) admissible ideal if S = R\P is a right Ore set.
Recall that if R is a ring with P -comparability, then P is an admissible
ideal of R ([4], Proposition 1.4).

If M is a right R-module and P is an admissible ideal of R, then
(mR)S−1 is an R-submodule of M , for all m ∈ M , by Lemma 1.1.

Definition 2.1. Let M be a right R-module and P an admissible ideal
of R. We say that M is an R-module with comparability with respect to P

(P -comparability, for short), if for every x, y ∈ M one of the following
conditions holds: xR ⊆ yR, yR ⊆ xR or (xR)S−1 = (yR)S−1, where
S = R \ P .

If M is a module with P -comparability, then we also say that M

satisfies (or has) P -comparability. The comparability for modules has
also several equivalent formulations, as the comparability for rings. The
following result extends ([4], Proposition 1.4) and the proof is similar. For
this reason will be omitted here.

Proposition 2.2. Let M be a right R-module, P an admissible ideal

of R and S = R \ P . The following conditions are equivalent:

(i) M satisfies P -comparability.

(ii) For all x, y ∈ M we have either xR ⊆ yR or (yR)S−1 ⊆ (xR)S−1.

(iii) For all x, y ∈ M we have either xR ⊆ yR or yR ⊆ (xR)S−1.

(iv) For all x, y ∈ M we have either xR ⊆ yR or y ∈ (xR)S−1.

(v) (xR)S−1 is an R-submodule and a waist of M , for all x ∈ M .

Under certain assumption the fact that S = R \ P is a right Ore set
can be deduced from the comparability condition. We have,
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Lemma 2.3. Let P be a completely prime ideal of R, M an R-module

which contains an element whose annihilator is zero, and assume that for

all x, y ∈ M one of the following conditions holds: xR ⊆ yR, yR ⊆ xR or

(xR)S−1 = (yR)S−1, where S = R \ P . Then R has P -comparability. In

particular, P is an admissible ideal.

Proof. Let x ∈ M be an element whose annihilator is zero and
suppose a, b ∈ R. Apply the comparability condition to xa and xb. It is
easy to see that either aR ⊆ bR or there exists s ∈ S such that bs ∈ aR.

¤

The typical examples of modules in which the comparability holds
are distributive modules. However, as next Example 2.5 shows there are
modules with comparability which are not distributive.

Proposition 2.4. Let M be a right distributive module over R and

P a completely prime ideal of R contained in J(R). Then M satisfies

P -comparability.

Proof. Let x, y ∈ M . Since M is distributive Theorem 1.6 of [9]
implies that (xR : y) + (yR : x) = R. Hence there exist r, s ∈ R such that
r + s = 1, yr ∈ xR and xs ∈ yR. If r ∈ J(R) then s = 1− r ∈ U(R) and
so xR ⊆ yR. In the other case we have r /∈ P and so y ∈ (xR)S−1. ¤

In [4] we gave examples of rings with comparability. Assume that R is
a ring and P is a completely prime ideal contained in the Jacobson radical
of R. If R satisfies P -comparability, then the right R-module RR satisfies
P -comparability. Also, any factor R/I has P comparability, where I is a
right ideal of R contained in P . For example, we have the following.

Example 2.5 (c.f. [4], Section 2). Assume that T is a right chain ring
with maximal ideal M and let D be a domain contained in the skew field
F = T/M . Consider the canonical mappings π : T → F and j : D → F .
We denote by R the pullback of D and T and let P be the set of all the
elements (0, x) ∈ R, where x ∈ M . Then P is a completely prime ideal of
R contained in J(R). We assume, in addition, that F is a right skew field
of fractions of D. Then R has P -comparability ([4], Theorem 2.4). If I is
a right ideal of T , then I can be identified with the right ideal of R which
consists of all the elements (0, y) ∈ R, with y ∈ I. It is easy to see that
the right R-module M = R/I has P -comparability.
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3. Some general results

In this section we give some results on modules with P -comparability
which extend results which are known for distributive rings ([5]–[7]). We
assume that M is a right R-module which has P -comparability, where P

is an admissible (completely prime) ideal of R contained in the Jacobson
radical, and put S = R \ P . We begin with the following.

Proposition 3.1. Let M be a right R-module with P -comparability.

Assume that I ⊆ P is a right ideal of R which is a waist. Then xI is a

waist of M , for every x ∈ M . In particular, every element of MI is of the

form ma, where m ∈ M and a ∈ I, and MI is also a waist.

Proof. Let x, y ∈ M with y /∈ xI. If y ∈ xR then we have y = xr

for some r ∈ R \ I. Thus we have I ⊂ rR and so xI ⊆ xrR = yR. If
x ∈ (yR)S−1, then there exists s ∈ S such that xs ∈ yR. So in this case
xI ⊆ xsR ⊆ yR. Hence we always have xI ⊂ yR and it follows that xI is
a waist of M .

Now, if y ∈ MI we can write y =
∑n

i=1 miai, where mi ∈ M and
ai ∈ I, for every 1 ≤ i ≤ n. Then by the first part there exists i such that
mjaj ∈ miI, for all j 6= i. So for some a ∈ I we have y = mia. It follows
that MI =

⋃
m∈M mI and thus MI is also a waist. The proof is complete.

¤
Lemma 3.2. Let M be a right R-module and P an admissible ideal

of R. If M has P -comparability, then M has P ′-comparability, for every

admissible ideal P ′ ⊆ P .

Proof. Let P ′ be an admissible ideal of R contained in P . For
x, y ∈ M with xR * yR, we have yR ⊆ (xR)S−1 ⊆ (xR)S′−1, where
S′ = R \ P ′. ¤

Now we give the following

Definition 3.3. Let M be a right R-module. We say that M is a mod-
ule with comparability if M satisfies P -comparability, for every admissible
ideal P ⊆ J(R).

Note that when R is a ring with comparability there exists a largest
completely prime ideal Q ⊆ J(R) ([4], Corollary 1.7) and R has Q-
comparability. We can prove that in our case this is also true under some
additional assumption. First note the following.
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Remark 3.4. Assume that M is a right R-module with P -compara-
bility and there exists some element of M whose annihilator is zero. Then
P is a waist as right ideal of R. In fact, R has P -comparability, by
Lemma 2.3. Hence it is enough to apply Lemma 1.3 of [4].

From Lemma 3.2 and the results in [4] we immediately have the fol-
lowing.

Corollary 3.5. Let M be a right module over a ring with compa-
rability R. Then M is a module with comparability if and only if M
has Q-comparability, where Q is the largest completely prime ideal of R
contained in the Jacobson radical.

In the following results we assume that P is an admissible ideal of R
which is a waist as a right ideal. As we pointed out above the assumption
holds if R is a ring with comparability.

Proposition 3.6. Let M be a right R-module with Q-comparability
and P ⊆ Q an admissible ideal of R which is a waist as right ideal. If
MP 6= 0, then Pr(MP ) = P .

Proof. First we claim that Pr(mP ) = P , for every m ∈ M with
mP 6= 0. In fact, since m /∈ mP the inclusion P ⊆ Pr(mP ) is clear.
Conversely, if a ∈ Pr(mP ) there exists y /∈ mP such that ya ∈ mP . Also
either y = mr, for some r ∈ R, or ms = yr, for some r ∈ R and s /∈ P .
Note that in the first case r /∈ P and so we have again the second case.
Hence mP = msP = yrP ⊆ yP , because P = sP . It follows that there
exists b ∈ P with ya = yb. Thus y(a− b) = 0 and consequently a− b ∈ P
(if a − b /∈ P , then P ⊂ (a − b)R and so 0 = yP ⊇ mP , a contradiction).
The claim follows.

The rest is clear since 0 6= MP =
⋃{mP : m ∈ M with mP 6= 0}.

¤
Corollary 3.7. Under the same assumption as in Proposition 3.6, if

MP 6= 0, then MP is a completely prime R-submodule of M and MP =
xP , for every x ∈ M \MP .

Proof. Let x ∈ M \MP and suppose that there exists c ∈ R with
xc ∈ MP . Then by Proposition 3.6 we have c ∈ Pr(MP ) = P and so
Mc ⊆ MP . Hence MP is a completely prime submodule of M .

Furthermore, by Proposition 3.1 MP is a waist of M and so MP =
x(MP : x). Also, since x /∈ MP we have P ⊆ (MP : x) ⊆ Pr(MP ) = P .
The result follows. ¤

Now we consider semiprime R-submodules of M contained in MP .
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Proposition 3.8. Let M be a right R-module with P -comparability,

where P is a waist as right ideal of R. If K is a semiprime R-submodule

of M such that K ⊆ MP , then K is a waist of M . In particular, a prime

R-submodule of M contained in MP is a waist.

Proof. If K = MP is enough to apply Proposition 3.1. Assume
that K ⊂ MP and take x ∈ K and y /∈ K.

If y ∈ (xR)S−1, where S = R \ P , there exists s ∈ S such that
ys ∈ xR ⊆ MP . Then y ∈ MP since otherwise we would have s ∈
Pr(MP ) = P . Hence there exist m ∈ M and q ∈ P with y = mq. It
follows that mqRq ⊆ yP = ysP ⊆ xP ⊆ K, and since K is semiprime we
obtain y = mq ∈ K, a contradiction. Hence we have xR ⊆ yR and so K

is a waist. ¤

For any right R-module M , we define a submodule P (M) of M by

P (M) =
⋂
{K : K is a prime submodule of M}.

It is well-known that M/P (M) is a semiprime R-module.

Corollary 3.9. Let M be a right R-module with P -comparability such

that MP 6= 0, where P is a waist as a right ideal of R. Then P (M) is a

prime submodule of M which is a waist of M .

Proof. Since MP is a completely prime submodule of M we have
P (M) ⊆ MP . By Proposition 3.8 the family of prime submodules of M

contained in MP is linearly ordered by inclusion. Then the result easily
follows. ¤

4. Correspondence between submodules and right ideals

In this section we assume that M is a right R-module with compa-
rability and denote by Q the largest completely prime ideal contained in
J(R). In addition, we assume that Q is a waist as a right ideals of R and
MQ 6= 0. We put S = R \Q.

Recall that a right multiplicative ideal I of R is said to be a waist if
for any right multiplicative ideal K of R we have either I ⊆ K or K ⊆ I

([5], Section 2).
We begin the section with the following.
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Proposition 4.1. Under the above assumption, Q is the largest waist

of R and MQ is the largest waist of M . Moreover, for any right multi-

plicative ideal I which is a waist as a right multiplicative ideal we have

I ⊆ Q.

Proof. First note that if I is a right multiplicative ideal of R and
I * Q we have Q ⊂ I. In fact, if there exists a ∈ I \Q, then Q ⊂ aR ⊆ I.

Assume that I is a right multiplicative ideal which is waist as a right
multiplicative ideal and Q ⊂ I. We show that Pr(I) ⊆ J , where J is the
Jacobson radical of R. In fact, if there exists a ∈ Pr(I) \ J , for some t /∈ I

we have ta ∈ I. Define (I : t) = {b ∈ R : tb ∈ I}. Thus (I : t) is a right
ideal of R and (I : t) * J . Take c /∈ (I : t) and b ∈ (I : t). We have tc /∈ I

and tb ∈ I. Since I is a waist it follows that tb = tcr, for some r ∈ R.
Thus t(b− cr) = 0 and so b− cr ∈ Q, because t /∈ Q. Furthermore, c /∈ Q

and then Q ⊆ cR. Hence b ∈ cR + Q ⊆ cR and consequently (I : t) is a
waist, a contradiction because (I : t) * J .

Now we show that Pr(I) is a multiplicative waist. For if a ∈ Pr(I)
and b /∈ Pr(I), there exists x /∈ I such that xa ∈ I and xb /∈ I. It follows
using the same arguments as above that a ∈ bR + Q ⊆ bR.

From the above it follows that Pr(I) ⊆ bPr(I), for every b /∈ Pr(I).
In fact, if there exists c ∈ Pr(I) \ bPr(I) for some b /∈ Pr(I) we have
c = br, r ∈ R. Thus r ∈ Pr(Pr(I)) = Pr(I) and consequently c ∈ bPr(I), a
contradiction. Therefore Pr(I) ⊆ ⋂

b/∈Pr(I) bPr(I) ⊆ ⋂
b/∈Pr(I) bJ . Assume

that for some a ∈ ⋂
b/∈Pr(I) bJ , a /∈ Pr(I). Then a ∈ aJ and hence a =

0. Thus Pr(I) =
⋂

b/∈Pr(I) bJ and so Pr(I) is a right ideal of R. Now
Lemma 2.5 of [5] implies that Pr(I) is a two-sided ideal. It follows that
Pr(I) = Q, since Pr(I) is completely prime. Consequently I ⊆ Q, a
contradiction. The first part follows.

For the second, let L be a waist of M and assume that MQ ⊂ L. Take
x /∈ L. Then we know that L = x(L : x) and by Corollary 3.7 MQ = xQ.
Also, (L : x) properly contains Q since otherwise L ⊆ MQ. Now we show
that (L : x) is a waist of R, which is a contradiction by the first part. Let
I be a right ideal R. We have that either I ⊆ Q or Q ⊂ I. In the first case
I ⊆ (L : x). In the second we consider the submodule xI of M . If xI ⊆ L,
then I ⊆ (L : x). In the contrary case we have L ⊂ xI and so for any
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a ∈ (L : x), xa ∈ xI. It follows that there exists b ∈ I such that xa = xb.
Consequently x(a − b) = 0. Also, if for some a the difference a − b /∈ Q

we have Q ⊂ (a− b)R. Thus MQ = xQ ⊆ x(a− b)R = 0, a contradiction.
So we must have that a− b ∈ Q ⊆ I and therefore a ∈ I. This shows that
(L : x) ⊆ I and the proof is complete. ¤

Corollary 4.2. Under the above assumption, if L is a waist of M such

that P (M) ⊆ L, then Pr(L) ⊆ Q.

Proof. By Proposition 4.1 we may assume that L ⊂ MQ since oth-
erwise L = MQ and Proposition 3.6 gives the result.

Suppose that Pr(L) * Q. Then Q ⊂ Pr(L). Take a ∈ Pr(L) and
b /∈ Pr(L). Then there exists x /∈ L such that xa ∈ L. Also xb /∈ L,
thus xa = xbr, for some r ∈ R and so x(a − br) = 0. If a − br /∈ Q

then Q ⊂ (a − br)R and so xQ = 0 ⊆ P (M). Since x /∈ P (M) we
obtain MQ ⊆ P (M), a contradiction because P (M) ⊆ L. Consequently
a− br ∈ Q and since Q ⊆ bR it follows that a ∈ bR. Thus Pr(L) is a right
multiplicative waist which is a contradiction by Proposition 4.1. ¤

We denote by Ann(x) the R-annihilator of x ∈ M . We have the
following.

Lemma 4.3. Under the above assumption, for every x /∈ MQ we have

MQ ' Q/ Ann(x) as right R-modules.

Proof. Define ϕ : Q −→ MQ by ϕ(q) = xq, for all q ∈ Q. Then ϕ is
a surjective R-homomorphism, by Corolary 3.7. Also, note that Proposi-
tion 3.6 implies Ann(x) ⊆ Q. Hence MQ ' Q/ Ann(x) as right R-modules.

¤

From Lemma 4.3 there is a one-to-one correspondence between sub-
modules of M contained in MQ and right ideals I of R such that Ann(x) ⊆
I ⊆ Q. Now we study this correspondence more closely.

Theorem 4.4. Under the above assumption, if x /∈ MQ, then there

exists a one-to-one correspondence between waists of M and right ideals

of R which contains Ann(x) and are comparable with any other right ideal

of R containing Ann(x).

Proof. Let L be a waist of M . Then by Proposition 4.1, L ⊆ MQ

and so x /∈ L. Thus we have L = x(L : x). If I is a right ideal of R
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containing Ann(x), then either xI ⊆ L or L ⊆ xI. In the first case we
have I ⊆ (L : x). In the second case, if a ∈ (L : x), then xa ∈ L ⊆ xI
and it follows that there exists b ∈ I such that xa = xb. Consequently
x(a − b) = 0 and hence a − b ∈ Ann(x) ⊆ I. This shows that a ∈ I.
Therefore (L : x) ⊆ I and so (L : x) is comparable with I.

Conversely, let H be a right ideal of R with Ann(x) ⊆ H and such
that for any right ideal K of R with Ann(x) ⊆ K we have either K ⊆ H
or H ⊆ K. Note first that H ⊆ Q since otherwise H would be a waist of R
with H ⊃ Q. We show that xH is a waits of M . In fact, take y ∈ M \xH.
If y /∈ MQ we have xH ⊆ MQ = yQ ⊆ yR. So we may assume that
y ∈ MQ = xQ. Hence there exists b ∈ Q such that y = xb and clearly
b /∈ H. It follows that H ⊂ bR + Ann(x) and we obtain xH ⊆ xbR = yR.

Finally, the correspondence is one-to-one by Lemma 4.3. ¤
Now we relate prime (resp. completely prime, semiprime) submodules

with prime (resp. completely prime, semiprime) ideals under the corre-
spondence of Theorem 4.4. We begin with the following.

Theorem 4.5. Under the above assumption, for any submodule L of
M which is a waist, the following conditions are equivalent:

(i) L is a completely prime submodule.

(ii) (L : x) is a completely prime ideal of R, for any x /∈ L.

(iii) (L : x) is a completely prime ideal of R, for any x /∈ MQ.

Proof. (i) =⇒ (ii) Suppose x /∈ L, ab ∈ (L : x) and a /∈ (L : x).
Then xa /∈ L and xab ∈ L. Since L is completely prime we have Mb ⊆ L
and so b ∈ (L : x). Hence (L : x) is a completely prime right ideal.
Also note that (L : x) ⊆ Pr(L) and so by Corollary 4.2 it follows that
(L : x) ⊆ Q. Thus (L : x) is contained in J(R) and so is a two-sided ideal
([5], Lemma 2.5).

(ii) =⇒ (iii) It is clear.
(iii) =⇒ (i) Assume that x /∈ MQ. Then L = x(L : x) and as above

(L : x) ⊆ Q. Also, by Proposition 3.6 and Corollary 3.7 we have that
Pr(L) = Pr(x(L : x)) = (L : x). Suppose that z /∈ L and za ∈ L. We show
that Ma ⊆ L, which completes the proof. We have a ∈ Pr(L) = (L : x)
and so xa ∈ L. Take any m ∈ M . If m /∈ MQ by the same argument as
above we have ma ∈ L. Assume that m ∈ MQ = xQ. In this case there
exists q ∈ Q such that m = xq and ma = xqa ∈ L because (L : x) is a
two-sided ideal. The proof is complete. ¤

We could not answer the question on whether for some x /∈ L we can
have that (L : x) is completely prime but (L : y) is not completely prime
for some y /∈ L. In this direction we have the following.
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Lemma 4.6. Under the above assumption, for a submodule L which

is a waist and x ∈ M \ L we have that (L : x) is a completely prime ideal

of R if and only if (L : x) is the largest element of the family {(L : y)}y/∈L.

Proof. Suppose that (L : x) is a completely prime ideal of R. If y /∈
L and a ∈ (L : y), then ya ∈ L and so a ∈ Pr(L) = Pr(x(L : x)) = (L : x).
Conversely, if (L : x) is the largest member in the family {(L : y)}y/∈L,
a, b ∈ R, ab ∈ (L : x) and a /∈ (L : x), then we have xa /∈ L and xab ∈ L.
Hence b ∈ (L : xa) ⊆ (L : x). Thus (L : x) is completely prime. ¤

From Theorem 4.5 and Lemma 4.6 we have the following.

Corollary 4.7. Under the above assumption, if L is a completely

prime submodule of M which is a waist, then the family {(L : y)}y/∈L

is an unitary family and Pr(L) = (L : y) for every y /∈ L.

Proof. The first part follows easily. The second is immediate since
Pr(L) =

⋃
m/∈L(L : m). ¤

Theorem 4.8. Under the above assumption, for any submodule L of

M which is a waist, the following conditions are equivalent:

(i) L is a prime submodule.

(ii) (L : x) is a prime right ideal of R, for any x /∈ L.

(iii) (L : x) is a prime right ideal of R, for any x /∈ MQ.

Proof. (i) =⇒ (ii) Suppose that L is a prime submodule and x /∈ L.
If a, b ∈ R, a /∈ (L : x) and aRb ⊆ (L : x), then xaRb ⊆ L and xa /∈ (L : x).
Thus Mb ⊆ L and it follows that xb ∈ L, i.e., b ∈ (L : x).

(ii) =⇒ (iii) Immediate.
(iii) =⇒ (i) Assume that (L : x) is prime, for every x /∈ MQ and for

m ∈ M \ L and t ∈ R we have mRt ⊆ L. We show that Mt ⊆ L. By the
way of contradiction, suppose that there exists y ∈ M \L such that yt /∈ L.
We compare m and y. If y = mr, for some r ∈ R, we have yt = mrt ∈ L,
a contradiction. Thus there exist s ∈ S and b ∈ R such that ms = yb.
Now we consider two cases.

Case 1: y /∈ MQ. In this case (L : y) is prime and as ybRt = msRt ⊆
mRt ⊆ L we have bRt ⊆ (L : y). Hence b ∈ (L : y) because yt /∈ L. It
follows that ms ∈ L, so s ∈ Pr(L) ⊆ Q, which is a contradiction.

Case 2: y ∈ MQ. In this case, choose some x /∈ MQ. Then we
have y = xq, for some q ∈ Q. Thus xqbRt = ybRt = msRt ⊆ L, hence
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qbRt ⊆ (L : x) and by assumption we have either xqb ∈ L or xt ∈ L. But
xqb = yb /∈ L and consequently the only possibility is xt ∈ L. Now we
compare yt and yb.

If yt = ybr, for some r ∈ R, then xqtRqt = ytRqt = ybrRqt =
xqbrRqt ⊆ L. Consequently xqt = yt ∈ L, a contradiction. The remaining
possibility says that ybu = ytc, for some u ∈ S and c ∈ R. It follows that
xqbu = ybu = ytc = xqtc and so xqtcRqtc = xqbuRqtc ⊆ xqbRtc ⊆ L.
This gives qtc ∈ (L : x), i.e., xqtc ∈ L. Therefore we have msu = ybu =
ytc = xqtc ∈ L, which is a contradiction again since su /∈ Q. The proof is
complete. ¤

Theorem 4.9. Under the above assumption, for any submodule L of

M which is a waist, the following conditions are equivalent:

(i) L is a semiprime submodule.

(ii) (L : x) is a semiprime right ideal of R, for any x /∈ L.

(iii) (L : x) is a semiprime right ideal of R, for any x /∈ MQ.

Proof. (i) =⇒ (ii) Let x /∈ L and a ∈ R such that aRa ⊆ (L : x).
Then xaRa ⊆ L and since L is semiprime it follows that xa ∈ L. Thus
a ∈ (L : x).

(ii) =⇒ (iii) Obvious.
(iii) =⇒ (i) Suppose that m ∈ M \ L, a ∈ R and maRa ⊆ L. Thus

aRa ⊆ (L : m) and by (iii) it follows that if m /∈ MQ, then a ∈ (L : m),
i.e., ma ∈ L. Assume that m ∈ MQ and take x /∈ MQ. Hence m = xq for
some q ∈ Q. Consequently xqaRqa ⊆ maRa ⊆ L and so qaRqa ⊆ (L : x).
The assumption gives qa ∈ (L : x) and hence ma = xqa ∈ L. The proof is
complete. ¤

We end the paper with the following.

Corollary 4.10. Let R be a ring with comparability and Q the largest

completely prime ideal of R contained in J(R). If M is a right R-module

with comparability and L is a semiprime R-submodule of M such that

L ⊆ MQ, then L is a prime R-submodule of M .

Proof. By Proposition 3.8 L is a waist. Now applying ([4], Theo-
rem 4.1) we obtain that (L : x) is a prime right ideal, for every x /∈ MQ.
The result follows from Theorem 4.8. ¤
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