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On square factors of terms of binary recurring
sequences and the ABC Conjecture

By PAULO RIBENBOIM (Kingston)

Abstract. Assuming that the (ABC) Conjecture is true, we prove that for each
binary recurring sequence with terms Un, there exist infinitely many primes p such
that p2 does not divide U

p−
�

D
p

�. This generalizes the result of Silverman about the

incongruence of Wieferich ap−1 6≡ 1 (mod p2).

§ 1. Introduction

By Fermat’s little theorem, if a > 1 and p is a prime number not
dividing a, then ap−1 ≡ 1 (mod p). If ap−1 ≡ 1 (mod p2) we say that
p satisfies the congruence of Wieferich for the basis a. This congruence
has first appeared in a theorem of Wieferich concerning Fermat’s last the-
orem (see Ribenboim [9]). Due to the work of Inkeri [5], Aaltonen

and Inkeri [1], and more recently of Mihăilescu [6], [7] the study of this
congruence has become relevant in connection with Catalan’s conjecture.
Very few examples of primes satisfying the congruence of Wieferich are
known, despite extensive calculations. For base 2, the only known primes
p satisfying the congruence are 1093 and 3511 (the search was done for
p < 4× 1012 in [2] and continued to p < 42× 1012 by R. Brown and R.

McIntosh, unpublished). Therefore in most computed cases the incon-
gruence of Wieferich ap−1 6≡ 1 (mod p2) holds. Nevertheless the following
statement has never been proved:
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1.1. For each basis a ≥ 2 there exist infinitely many primes p such
that ap−1 6≡ 1 (mod p2).

In [17] Silverman proved:

1.2. If the (ABC) Conjecture is true then the statement 1.1 is also
true.

In [14] we gave a different and simpler proof of 1.2.
For more information about Wieferich’s congruence the reader may

consult [10], [11].
For each integer a ≥ 2 the numbers an − 1 (for n ≥ 0) are the terms

of a binary recurring sequence. Our purpose in this paper is to extend
the concept of Wieferich congruence and incongruence to binary recur-
ring sequences, to formulate the analogue of 1.1 and to prove the result
corresponding to 1.2.

§2. Preliminaries and requisite results

A. Binary recurring sequences

Let P > 0, Q 6= 0 be integers such that gcd(P,Q) = 1 and D =
P 2 − 4Q 6= 0. Let U0 = 0, U1 = 1, V0 = 2, V1 = P and for all n ≥ 2 let

Un = PUn−1 −QUn−2

Vn = PVn−1 −QVn−2.

U = U(P, Q) = (Un)n≥0 and V = V(P, Q) = (Vn)n≥0 are the binary recur-
ring sequences of first kind (respectively of second kind) with parameters
(P,Q). If α = P+

√
D

2 , β P−√D
2 then α, β are the roots of X2−PX+Q = 0.

Below we list well-known facts about these sequences which will be required
in this paper. For details, see [11] or [15].

2.1. For all n ≥ 0:

Un =
αn − βn

α− β
, Vn = αn + βn.

2.2. For all n ≥ 0:
V 2

n −DU2
n = 4Qn.
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2.3. If 1 ≤ m < n then Um | Un if and only if m | n.

2.4. If 1 < m < n then Vm | Vn if and only if m | n and n
m is odd.

Let d = gcd(m,n). Then we have:

gcd(Um, Un) = Ud.2.5.

gcd(Vm, Vn) =

{
Vd when

m

d
,
n

d
are odd,

1 or 2 otherwise.
2.6.

gcd(Um, Vn) =

{
Vd when

m

d
is even so

n

d
is odd,

1 or 2 otherwise
2.7.

gcd(Um, Q) = gcd(Vm, Q) = 12.8.

for all m ≥ 1, gcd(D, Q) = 1.

2.9.
U2m = UmVm,

V2m = V 2
m − 2Qm

for all m ≥ 0.

2.10. If r ≥ 1, m ≥ 1 and m is odd then Urm = UrZ where

Z = D
m−1

2 Um−1
r +

m

1
QrD

n−3
2 Um−3

r +
m

2

(
m− 3

1

)
Q2rD

m−5
2 Um−5

r

+ · · ·+ m

i

(
m− i− 1

i− 1

)
QirD

m−2i−1
2 Um−2i−1

r + · · ·+ mQ
m−1

2 r.

2.11. If r ≥ 1, m ≥ 1 and m is odd, then Vmr = VrT where

T = V m−1
r − m

1
QrV m−3

r +
m

2

(
m− 3

1

)
Q2rV m−5

r − · · ·

· · ·+ (−1)i m

i

(
m− i− 1

i− 1

)
QirV m−2i−1

r ± · · ·+ (−1)
m−1

2 mQ
m−1

2 r.

We write p | U , respectely p | V and we say that the prime p divides
the sequence U , respectively V, if there exists n ≥ 1 such that p | Un,
respectively p | Vn. In this situation there exists the smallest such index,
which is denoted by r = r(p) for the sequence U , and denoted by s = s(p)
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for the sequence V. The index r(p), respectively s(p) is called the rank of
appearance of p in U , respectively in V. Then p | Un if and only if r(p) | n,
while p | Vn if and only if s(p) | n and n

s(p) is odd.

For the sequences U and V we have the following results about the
rank of appearance:

2.12. If P is even and Q is odd then r(2) = 2 and s(2) = 1. If P is
odd and Q is even then 2 does not divide U , nor V. If P and Q are both
odd, then r(2) = 3 and s(2) = 3.

2.13. Let p be an odd prime. If p | P but p - Q then r(p) = 2. If p - P
but p | Q then p does not divide U . If p - PQ but p | D then r(p) = p.
Finally, if p - PQD then r(p) |

(
p−

(
D
p

))
, where

(
D
p

)
is the Legendre

symbol.

For p > 2, no analogous fully satisfactory result is valid for the se-
quence V (see [11] or [15]).

The following lemma, proved in [12] will be needed; the proof below
is simpler and it is included for the convenience of the reader.

Lemma 2.14. For r ≥ 1 and m ≥ 1, Urm = UrZ, where gcd(Ur, Z)
divides m.

Proof. If m is odd, by 2.10 Urm = UrZ and gcd(Ur, Z) divides m.
Now let m = 2en, where e ≥ 1 and n is odd. Then

Urm = UnrVnrV2nr . . . V2e−1nr.

Since n is odd we have Unr = UrZ0 with gcd(Ur, Z0) dividing n. Let
Z = Z0VnrV2nr . . . V2e−1nr. Then Urm = UrZ. Since gcd(Ur, V2inr) = 1 or
2 (for i = 0, 1, . . . , e− 1). Then gcd(Ur, Z) divides 2en = m. ¤

For the sequence V we also have:

Lemma 2.15. If r ≥ 1, m ≥ 1 and m is odd, then Vrm = VrT where

gcd(Vr, T ) divides m.

Proof. This follows at once from 2.11. ¤

Note 2.16. The condition that D 6= 0 implies that the terms of U , as
well as the terms of V are all distinct.
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B. Powerful numbers

Let p be any prime number; we denote by vp the p-adic valuation.
Let k ≥ 2. The non-zero integer n is said to be k-powerful when

vp(n) = 0 or vp(n) ≥ k for every prime number p. A 2-powerful number
is simply called a powerful number. If k ≤ h every h-powerful number is
also a k-powerful number.

The reader may wish to consult Ribenboim [10] or [15] to learn about
the interesting properties of powerful numbers.

It is immediate that every powerful number n may be written (but
not in a unique way) in the form n = a2b3. For any number n, the factor
n∗ =

∏
pvp(n) (for all p such that vp(n) ≥ k) is called the k-powerful part

of n. Then n = n∗n′ with gcd(n∗, n′) = 1.
If n is any non-zero integer, its radical is defined to be

rad(n) =
∏

p|n
p.

We note:

2.17. If m,n 6= 0 then rad(mn) ≤ rad(m) · rad(n). If m | n then
rad(m) | rad(n). If gcd(m,n) = 1 then rad(mn) = rad(m) · rad(n).

2.18. If n is k-powerful then

(
rad(n)

)k ≤ |n|.

C. Consequences of the (ABC) Conjecture

First we recall the statement of the (ABC) Conjecture.

2.19. (ABC) Conjecture. For every ε > 0 there exists K > 0 (de-
pending on ε) such that if A, B, C are non-zero coprime integers such
that A + B + C = 0. Then

max
{|A|, |B|, |C|} < K

[
rad(ABC)

]1+ε
.

There are many consequences of the (ABC) Conjecture for solutions of
diophantine equations.

The following statement is not very different from some results in [13]
and in [14]. For the convenience of the reader we give the proof below.
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2.20. Let A, B, C, R be positive square-free integers. Let S be the
set of all triples (x, y, z) of non-zero integers such that:

1) There exist integers `,m ≥ 2 such that 1
` + 1

m < 1 and x is `-poweful
and y is m-powerful;

2) rad(z) | R;

3) there exist non-zero integers a, b, c (which depend on the triple
(x, y, z)) such that rad(a) |A, rad(b) |B, rad(c) |C, gcd(ax, by, cz)= 1
and ax + by + cz = 0.

If the (ABC) Conjecture is assumed to be true then S is a finite set.

Proof. Let S1 = {(x, y, z) ∈ S
∣∣ |y| ≤ |x|}, and S2 = {(x, y, z) ∈ S

∣∣
|x| ≤ |y|}. We show that S1 is a finite set. By symmetry, we deduce that
S is also finite.

Let ε = 1
6 . By the (ABC) Conjecture there exists K > 0 such that if

(x, y, z) ∈ S1 then
|x| ≤ |ax| < Kr

7
6

where

r = rad(ax · by · cz) ≤ rad(abc) · |x| 1` |y| 1
m rad(z) ≤ ABCR |x| 1` + 1

m .

So |x| < K ′|x|( 1
` + 1

m ) 7
6 where K ′ = K(ABCR)

7
6 . Since 1

` + 1
m ≤ 5

6

then |x| < K ′|x| 3536 hence |x| < (K ′)36. So |x| is bounded, hence also |y| is
bounded. Since ax + by + cz = 0 then |z| is also bounded, showing that
S1 is a finite set. ¤

We shall now indicate a consequence of the (ABC) Conjecture con-
cerning powerful terms in binary recurring sequences. A proof that there
are only finitely many powerful Fibonacci numbers (under the assumption
of the (ABC) Conjecture may be found in the paper of Mollin [8]. It
should be noted that the proofs constants flaws (it considers only Fibonacci
numbers with odd indices and does not take into account that if 3 | n then
the Fibonacci number Un and the Lucas number Vn are both even); these
flaws are, of converse very easy to repair.

In the paper of Ribenboim and Walsh [16] there are results about
the powerful part of terms Un and Vn. As a special case, it was shown for
any binary recurring sequences:
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2.21. If the (ABC) Conjecture is assumed to be true then the sets
{n ≥ 1 | Un is powerful} and {n ≥ 1 | Vn is powerful} are finite.

A direct proof of this result is very simple. But we shall actually prove
a stronger statement which will be needed in the main Theorem 3.1.

For the sequence V(P, Q) we write each terms as a product Vn =
V ]

nV ′
n where V ]

n =
∏

p|2P pvp(Vn), V ′
n =

∏
p-2P pvp(Vn). So gcd(V ]

n , V ′
n) = 1;

moreover Vn is powerful if and only if both V ′
n and V ]

n are powerful. Thus
{n ≥ 1 | Vn is powerful} ⊆ {n ≥ 1 | V ′

n is powerful}. These sets may be
different: V2(4,−1) = 18 = 2× 9 is not powerful but V ′

2(4,−1) = 9 is.

Our purpose now is to prove:

2.22. If the (ABC) Conjecture is assumed to be true then the sets
{n ≥ 1 | Un is powerful} and {n ≥ 1 | V ′

n is powerful} are finite.

Proof. Let N = {n ≥ 1 | Un is powerful or V ′
n is powerful}. The

proof hinges on the identity V 2
n −DU2

n = 4Qn and we shall use the facts
that gcd(Vn, Q) = gcd(Un, Q) = 1 for every n ≥ 1 and gcd(D, Q) = 1. We
distinguish several cases, according to the parity of P , Q.

Let A = rad(2P ), B = rad(2D), C = 2, R = rad(Q) and let S be the
set of triples associated to A, B, C, R, introduced in 2.20. We shall define
an injective mapping n 7→ (W 2

n , T 2
n , Qn) from N to S. By 2.20 S is a finite

set, so N is also a finite set. Now we come to the actual proof.

Case 1. P is even, hence Q is odd. 4 | D and Vn is even for every

n ≥ 1. Let an =
(

V ]
n

2

)2

, bn = −D
4 , cn = −1, Wn = V ′

n, Tn = Un. So

anW 2
n + bnT 2

n + cnQn = 0, gcd(anW 2
n , bnT 2

n , cnQn) = 1. Also if Un is
powerful, then T 2

n is 4-powerful, W 2
n is 2-powerful. If V ′

n is powerful, then
W 2

n is 4-powerful and T 2
n is 2-powerful. Therefore (W 2

n , T 2
n , Qn) ∈ S for

every n ∈ N . Clearly the mapping n 7→ (W 2
n , T 2

n , Qn) is injective, hence
in Case 1 the set N is finite.

Case 2. P is odd and Q is even, so D is odd and Vn is odd for every
n ≥ 1. Now let an = (V ]

n)2, bn = −D, cn = −4, Wn = V ′
n, Tn = Un. We

verify in the same way that (W 2
n , T 2

n , Qn) ∈ S and so N is also finite in
Case 2.

Case 3. P and Q are odd, hence D is odd. If 3 - n then Un and Vn

are odd; if 3 | n then Un and Vn are even.
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(a) 3 - n. We put an = (V ]
n)2, bn = −D, cn = −4, Wn = V ′

n, Tn = Un.

As before if n ∈ N then (W 2
n , T 2

n , Qn) ∈ S.

(b) 3 | n. We consider two possibilities

(b1) Un is powerful. Since Un is even, then v2(Un) ≥ 2.

• If v2(Un) = 2 let an =
(

V ]
n

2

)2

, bn = −4D, cn = −1,

Wn = V ′
n and Tn = Un

4 , hence Tn is powerful. As before

(W 2
n , T 2

n , Qn) ∈ S.

• If v2(Un) ≥ 3 let an =
(

V ]
n

2

)2

, bn = −D, cn = −1, Wn = V ′
n

and Tn = Un

2 so Tn is powerful and again (W 2
n , T 2

n , Qn) ∈ S.

(b2) V ′
n is powerful. Let an =

(
V ]

n

2

)2

, bn = −D, cn = −1, Wn = V ′
n,

Tn = Un

2 ; then (W 2
n , T 2

n , Qn) ∈ S.

This completes the discussion of all the cases. ¤

Now let a > b ≥ 1 with gcd(a, b) = 1. Let P = a + b, Q = ab, so
D = (a − b)2. The integers Un ∈ U , Vn ∈ V are given by Un = an−bn

a−b ,
Vn = an + bn.

In particular, if a = 2, b = 1 then Un = 2n − 1, Vn = 2n + 1.
Thus, we obtain, in particular the well-known consequences of the (ABC)
Conjecture:

2.23. The (ABC) Conjecture implies that there are only finitely num-
bers 2n − 1 or 2n + 1 which are powerful.

In particular these are only finitely many Mersenne numbers Mq =
2q − 1 (with q prime) or Fermat numbers Fm = 22m

+ 1 (with m ≥ 0)
which are powerful.

No proof of these statements is known without assuming the truth of
the (ABC) Conjecture. This matter has been more fully discussed in [15].

§3. The new theorem

We keep the same notations. In particular, r(p) denotes the rank of
appearance of p in U , when p | U , and s(p) denotes the rank of appearance
of p in V when p | V .
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Theorem 3.1. We assume that the (ABC) Conjecture is true. Then:

1) The set
{

p prime, p - 2PQD
∣∣ for every n, either p2 - Un or p | n

r(p)

}

is infinite.

2) The set
{
p prime, p - 2PQD

∣∣ p divides V and for every n either p2 -Vn

or p | n
s(p)

}
is infinite.

Proof. 1) By 2.22 there exists n0 such that Un is not powerful for
every n > n0. Let n0 < q1 < q2 < . . . where each qi is a prime number.
Then gcd(Uqi , Uqj ) = 1 for i 6= j. For each i ≥ 1 there exists a prime pi

such that pi | Uqi
but p2

i - Uqi
. Since gcd(Uqi

, Uqj
) = 1 for i 6= j then

pi 6= pj . Hence there exists i0 ≥ 1 such that pi - 2PQD for all i ≥ i0.

Let ri = r(pi) so ri 6= 1 and ri | qi hence ri = qi.

Let n be such that p2
i | Un, so ri = qi divides n and by Lemma 2.14

Un = UqiZ where gcd(Uqi , Z) divides n
qi

. By hypothesis pi | Uqi
but

p2
i - Uqi ; hence pi | Z and so pi | n

qi
= n

ri
.

This shows that the set of all primes p - 2PQD, such that if p2 | Un

then p | n
r(p) , is an infinite set.

2) By 2.22 there exists n0 such that if n > n0 then V ′
n is not power-

ful. Let n0 < q1 < q2 < . . . where each qi is an odd prime. We have
gcd(V ′

qi
, V ′

qj
) | gcd(Vqi , Vqj ) = P , but gcd(V ′

qi
, P ) = 1, so gcd(V ′

qi
, V ′

qj
) = 1

for all i 6= j. For each i ≥ 1 there exists a prime pi such that pi | V ′
qi

but p2
i - V ′

qi
. Then pi 6= pj for all i 6= j. Hence there exists i0 such that

pi - 2PQD for all i ≥ i0. Each pi | V ′
qi

, so pi | Vqi . Let n be such that
p2

i | Vn; we denote by si = s(pi). Since pi | V ′
qi

then pi | Vqi hence si | qi.
But pi - P so si 6= 1 therefore si = qi. We also have: si = qi divides n

with n
qi

odd and by Lemma 2.14. Vn = VqiT where gcd(Vi, T ) divides n
qi

.
Since pi | V ′

qi
then pi | Vqi ; if p2

i | Vqi , since pi - 2P then p2
i | V ′

qi
which is

absurd. So p2
i - Vqi , hence pi | T and pi | n

qi
. This shows that the set of

all primes p, p - 2PQD such that if p2 | Vn then p | n
s(p) is an infinite set.

¤

We obtain the immediate corollary:
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Corollary 3.2. There exist infinitely many primes p such that p2 -
Up−(D

p ).

Proof. Consider the set S of all primes p such that p - 2PQD and if

p2 | Un then p | n
r(p) . Let p ∈ S. Since p | Up−(D

p ) but p - p−(D
p )

r(p) because

(D
p ) = ±1, then p2 - Up−(D

p ), by Theorem 3.1, we deduce that there are

infinitely many primes p such that p2 - Up−(D
p ). ¤

We obtain the following corollary, which includes Silverman’s result
mentioned in the Introduction. Let a > 1, P = a + 1, Q = a and consider
the sequences U(P, Q), V(P,Q). Then Un = an−1

a−1 , Vn = an + 1. We have

D = P 2−4Q = (a−1)2, so Up−(D
p ) = ap−1−1

a−1 . We also note that p divides
V if and only if p - a and there exists the smallest s such that as ≡ −1
(mod p) so the order of a modulo p is even, namely 2s. Now we indicate
the corollary.

Corollary 3.3. We assume that the (ABC) Conjecture is true. Let

a > 1, then:

1) There exist infinitely many primes p such that ap−1 6≡ 1 (mod p2).

2) There exist infinitely many primes p such that p - a, the order of a

modulo p is 2s and as 6≡ −1 (mod p2).

Proof. 1) We consider the sequence U(a + 1, a), with D = (a− 1)2.
By Corollary 3.2 there exist infinitely many primes p - a(a+1)(a−1) such
that p2 - Up−(D

p ) = ap−1−1
a−1 , hence ap−1 6≡ 1 (mod p2).

2) By Theorem 3.1 there are infinitely many primes p such that p |
V(a+1, a) and p2 - Vs where 2s is the order of a modulo p. This translates
into the statement (2). ¤
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