A rigidity theorem for hypersurfaces in a sphere

By LIU XIMIN (Dalian)

Abstract

Let M^{n} be a closed hypersurface in the unit sphere S^{n+1}. Denote by $|h|^{2}$ and H the square of the length of its second fundamental form and the mean curvature, respectively, suppose that $|\nabla h|^{2} \geq n^{2}|\nabla H|^{2}$. If $|h|^{2}<2 \sqrt{n-1}, M^{n}$ is a small hypersphere in S^{n+1}. We also characterize all M^{n} with $|h|^{2}=2 \sqrt{n-1}$. When M^{n} has constant mean curvature, it is just the result of Hou [3].

1. Introduction

Let S^{n+1} be an $(n+1)$-dimensional unit sphere with constant sectional curvature 1, let M^{n} be an n-dimensional closed hypersurface in S^{n+1}, and e_{1}, \ldots, e_{n} a local orthonormal frame field on $M^{n}, \omega_{1}, \ldots, \omega_{n}$ its dual coframe field. Then the second fundamental form of M^{n} is

$$
h=\sum_{i, j} h_{i j} \omega_{i} \otimes \omega_{j} .
$$

Denote by H the mean curvature and $|h|^{2}$ the square of the length of the second fundamental form. As it is well known, there are many rigidity results for minimal hypersurfaces or hypersurfaces with constant mean curvature H in S^{n+1} by use of J. Simons' method, for example, see [1], [4], [6], [8] etc. In [3], Hou proved the following theorem:

Mathematics Subject Classification: 53C42, 53A10.
Key words and phrases: hypersurface, sphere, second fundamental form, mean curvature.
This work is supported in part by the National Natural Science Foundation of China.

Theorem A. Let M^{n} be a closed hypersurface of constant mean curvature in S^{n+1}. Then
(1) If $|h|^{2}<2 \sqrt{n-1}, M^{n}$ is a small hypersphere $S^{n}(r)$ of radius $r=$ $\sqrt{\frac{n}{n+|h|^{2}}}$.
(2) If $|h|^{2}=2 \sqrt{n-1}, M^{n}$ is either a small hypersphere $S^{n}\left(r_{0}\right)$ or $H(r)$ torus $S^{1}(r) \times S^{n-1}(s)$, where $r_{0}^{2}=\frac{n}{n+2 \sqrt{n-1}}, r^{2}=\frac{1}{\sqrt{n-1}+1}$ and $s^{2}=$ $\frac{\sqrt{n-1}}{\sqrt{n-1}+1}$.

In the present paper, we would like to use Cheng-Yau's self-adjoint operator \square to prove the following general rigidity theorem.

Theorem B. Let M^{n} be an n-dimensional closed hypersurface in S^{n+1} with $|\nabla h|^{2} \geq n^{2}|\nabla H|^{2}$. Then
(1) If $|h|^{2}<2 \sqrt{n-1}, M^{n}$ is a small hypersphere $S^{n}(r)$ of radius $r=$ $\sqrt{\frac{n}{n+|h|^{2}}}$.
(2) If $|h|^{2}=2 \sqrt{n-1}, M^{n}$ is either a small hypersphere $S^{n}\left(r_{0}\right)$ or $H(r)$ torus $S^{1}(r) \times S^{n-1}(s)$, where $r_{0}^{2}=\frac{n}{n+2 \sqrt{n-1}}, r^{2}=\frac{1}{\sqrt{n-1}+1}$ and $s^{2}=$ $\frac{\sqrt{n-1}}{\sqrt{n-1}+1}$.

Obviously, when M^{n} has constant mean curvature, Theorem B becomes Theorem A, so Theorem B is an extension of Theorem A.

2. Preliminaries

Let M^{n} be an n-dimensional closed hypersurface in S^{n+1}. We choose a local orthonormal frame e_{1}, \ldots, e_{n+1} in S^{n+1} such that at each point of $M^{n}, e_{1}, \ldots, e_{n}$ span the tangent space of M^{n} and form an orthonormal frame there. Let $\omega_{1}, \ldots, \omega_{n+1}$ be its dual coframe. In this paper, we use the following convention on the range of indices:

$$
1 \leq A, B, C, \cdots \leq n+1 ; \quad 1 \leq i, j, k, \cdots \leq n
$$

Then the structure equations of S^{n+1} are given by

$$
\begin{equation*}
d \omega_{A}=\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& d \omega_{A B}=\sum_{C} \omega_{A C} \wedge \omega_{C B}-\frac{1}{2} \sum_{C, D} K_{A B C D} \omega_{C} \wedge \omega_{D} \tag{2}\\
& K_{A B C D}=\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right) . \tag{3}
\end{align*}
$$

Restrict these forms to M^{n}, we have

$$
\begin{equation*}
\omega_{n+1}=0 . \tag{4}
\end{equation*}
$$

From Cartan's lemma we can write

$$
\begin{equation*}
\omega_{n+1 i}=\sum_{j} h_{i j} \omega_{j}, \quad h_{i j}=h_{j i} . \tag{5}
\end{equation*}
$$

From these formulas, we obtain the structure equations of M^{n} :

$$
\begin{align*}
& d \omega_{i}=\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0 \tag{6}\\
& d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l} \tag{7}\\
& R_{i j k l}=\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\left(h_{i k} h_{j l}-h_{i l} h_{j k}\right) \tag{8}
\end{align*}
$$

where $R_{i j k l}$ are the components of the curvature tensor of M^{n} and

$$
\begin{equation*}
h=\sum_{i, j} h_{i j} \omega_{i} \otimes \omega_{j} \tag{9}
\end{equation*}
$$

is the second fundamental form of M^{n}. We also have

$$
\begin{gather*}
R_{i j}=(n-1) \delta_{i j}+n H h_{i j}-\sum_{k} h_{i k} h_{k j}, \tag{10}\\
n(n-1)(R-1)=n^{2} H^{2}-|h|^{2}, \tag{11}
\end{gather*}
$$

where R is the normalized scalar curvature, and H the mean curvature.
Define the first and the second covariant derivatives of $h_{i j}$, say $h_{i j k}$ and $h_{i j k l}$ by
(12) $\sum_{k} h_{i j k} \omega_{k}=d h_{i j}+\sum_{k} h_{k j} \omega_{k i}+\sum_{k} h_{i k} \omega_{k j}$,
(13) $\sum_{l} h_{i j k l} \omega_{l}=d h_{i j k}+\sum_{m} h_{m j k} \omega_{m i}+\sum_{m} h_{i m k} \omega_{m j}+\sum_{m} h_{i j m} \omega_{m k}$.

Then we have the Codazzi equation

$$
\begin{equation*}
h_{i j k}=h_{i k j}, \tag{14}
\end{equation*}
$$

and the Ricci's identity

$$
\begin{equation*}
h_{i j k l}-h_{i j l k}=\sum_{m} h_{m j} R_{m i k l}+\sum_{m} h_{i m} R_{m j k l} . \tag{15}
\end{equation*}
$$

For a C^{2}-function f defined on M^{n}, we define its gradient and Hessian $f_{i j}$ by the following formulas

$$
\begin{equation*}
d f=\sum_{i} f_{i} \omega_{i}, \quad \sum_{j} f_{i j} \omega_{j}=d f_{i}+\sum_{j} f_{j} \omega_{j i} . \tag{16}
\end{equation*}
$$

The Laplacian of f is defined by $\Delta f=\sum_{i} f_{i i}$.
Let $\phi=\sum_{i j} \phi_{i j} \omega_{i} \otimes \omega_{j}$ be a symmetric tensor defined on M^{n}, where

$$
\begin{equation*}
\phi_{i j}=n H \delta_{i j}-h_{i j} . \tag{17}
\end{equation*}
$$

Following Cheng-Yau [2], we introduce an opertator \square associated to ϕ acting on any C^{2}-function f by

$$
\begin{equation*}
\square f=\sum_{i, j} \phi_{i j} f_{i j}=\sum_{i, j}\left(n H \delta_{i j}-h_{i j}\right) f_{i j} . \tag{18}
\end{equation*}
$$

Since $\phi_{i j}$ is divergence-free, it follows [2] that the operatoris self-adjoint relative to the L^{2} inner product of M^{n}, i.e.,

$$
\begin{equation*}
\int_{M} f \square g=\int_{M} g \square f . \tag{19}
\end{equation*}
$$

We can choose a local frame field e_{1}, \ldots, e_{n} at any point $p \in M$, such that $h_{i j}=\lambda_{i} \delta_{i j}$, by use of (18) and (11), we have

$$
\begin{align*}
\square(n H) & =n H \Delta(n H)-\sum_{i} \lambda_{i}(n H)_{i i} \\
& =\frac{1}{2} \Delta(n H)^{2}-\sum_{i}(n H)_{i}^{2}-\sum_{i} \lambda_{i}(n H)_{i i} \tag{20}\\
& =\frac{1}{2} n(n-1) \Delta R+\frac{1}{2} \Delta|h|^{2}-n^{2}|\nabla H|^{2}-\sum_{i} \lambda_{i}(n H)_{i i} .
\end{align*}
$$

On the other hand, through a standard calculation by use of (14) and (15), we get

$$
\begin{equation*}
\frac{1}{2} \Delta|h|^{2}=\sum_{i, j, k} h_{i j k}^{2}+\sum_{i} \lambda_{i}(n H)_{i i}+\frac{1}{2} \sum_{i, j} R_{i j i j}\left(\lambda_{i}-\lambda_{j}\right)^{2} . \tag{21}
\end{equation*}
$$

Putting (21) into (20), we have

$$
\begin{equation*}
\square(n H)=\frac{1}{2} n(n-1) \Delta R+|\nabla h|^{2}-n^{2}|\nabla H|^{2}+\frac{1}{2} \sum_{i, j} R_{i j i j}\left(\lambda_{i}-\lambda_{j}\right)^{2} . \tag{22}
\end{equation*}
$$

Because M^{n} is closed, we obtain the following formula by integrating (22) and by noting $\int_{M^{n}} \Delta R=0$ and $\int_{M^{n}} \square(n H)=0$

$$
\begin{equation*}
\int_{M^{n}}\left[|\nabla h|^{2}-n^{2}|\nabla H|^{2}+\frac{1}{2} \sum_{i, j} R_{i j i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}\right]=0 . \tag{23}
\end{equation*}
$$

From (8), we have $R_{i j i j}=1-\lambda_{i} \lambda_{j}, i \neq j$, and by putting this into (23), we obtain

$$
\begin{equation*}
\int_{M^{n}}\left[|\nabla h|^{2}-n^{2}|\nabla H|^{2}+n|h|^{2}-n^{2} H^{2}-|h|^{4}+n H \sum_{i} \lambda_{i}^{3}\right]=0 . \tag{24}
\end{equation*}
$$

Let $\mu_{i}=\lambda_{i}-H$ and $|Z|^{2}=\sum_{i} \mu_{i}^{2}$, we have

$$
\begin{align*}
& \sum_{i} \mu_{i}=0, \quad|Z|^{2}=|h|^{2}-n H^{2}, \tag{25}\\
& \sum_{i} \lambda_{i}^{3}=\sum_{i} \mu_{i}^{3}+3 H|Z|^{2}+n H^{3} . \tag{26}
\end{align*}
$$

From (24)-(26), we get

$$
\begin{equation*}
\int_{M^{n}}\left[|\nabla h|^{2}-n^{2}|\nabla H|^{2}+|Z|^{2}\left(n+n H^{2}-|Z|^{2}\right)+n H \sum_{i} \mu_{i}^{3}\right]=0 . \tag{27}
\end{equation*}
$$

We need the following algebraic lemma due to M. Okumuru [7] (see also [1]).

Lemma 2.1. Let $\mu_{i}, i=1, \ldots, n$, be real numbers such that $\sum_{i} \mu_{i}=0$ and $\sum_{i} \mu_{i}^{2}=\beta^{2}$, where $\beta=$ constant ≥ 0. then

$$
\begin{equation*}
-\frac{n-2}{\sqrt{n(n-1)}} \beta^{3} \leq \sum_{i} \mu_{i}^{3} \leq \frac{n-2}{\sqrt{n(n-1)}} \beta^{3}, \tag{28}
\end{equation*}
$$

and the equality holds in (28) if and only if at least $(n-1)$ of the μ_{i} are equal.

By use of Lemma 2.1, we have
(29) $\int_{M^{n}}\left[|\nabla h|^{2}-n^{2}|\nabla H|^{2}+|Z|^{2}\left(n+n H^{2}-|Z|^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}}|H||Z|\right] \leq 0\right.$.

3. Proof of Thoerem B

Now consider the quadratic form $Q(u, t)=u^{2}-\frac{n-2}{\sqrt{n-1}} u t-t^{2}$. By the orthogonal transformation

$$
\left\{\begin{array}{l}
\bar{u}=\frac{1}{\sqrt{2 n}}\{(1+\sqrt{n-1}) u+(1-\sqrt{n-1}) t\} \\
\bar{t}=\frac{1}{\sqrt{2 n}}\{(\sqrt{n-1}-1) u+(\sqrt{n-1}+1) t\}
\end{array}\right.
$$

$Q(u, t)$ turns into $Q(u, t)=\frac{n}{2 \sqrt{n-1}}\left(\bar{u}^{2}-\bar{t}^{2}\right)$, where $\bar{u}^{2}+\bar{t}^{2}=$ $u^{2}+t^{2}=|h|^{2}$.

Take $u=\sqrt{n}|H|, t=|Z|$, then

$$
\begin{aligned}
n+n H^{2} & -\frac{n(n-2)}{\sqrt{n(n-1)}}|H||Z|-|Z|^{2}=n+Q(u, t)=n c+\frac{n\left(\bar{u}^{2}-\bar{t}^{2}\right)}{2 \sqrt{n-1}} \\
& =n+\frac{n\left(-\bar{u}^{2}-\bar{t}^{2}\right)}{2 \sqrt{n-1}}+\frac{n \bar{u}^{2}}{\sqrt{n-1}} \geq n-\frac{n}{2 \sqrt{n-1}}|h|^{2} .
\end{aligned}
$$

From (29) and (30) we have

$$
\begin{equation*}
0 \geq \int_{M^{n}}\left\{\left(|\nabla h|^{2}-n^{2}|\nabla H|^{2}\right)+|Z|^{2}\left[n-\frac{n}{2 \sqrt{n-1}}|h|^{2}\right]\right\} . \tag{31}
\end{equation*}
$$

By the assumption of theorem $|\nabla h|^{2} \geq n^{2}|\nabla H|^{2}$, we know if $|h|^{2}<$ $2 \sqrt{n-1}$, we have $|Z|^{2} \equiv 0$, which means that M^{n} is totally umbilical and hence is a small hypersphere $S^{n}(r)$, where $r=\sqrt{\frac{n}{n+|h|^{2}}}$.

If $|h|^{2}=2 \sqrt{n-1}$, then equality holds in Lemma 2.1, and it follows that at least $(n-1)$ of λ_{i} 's are equal to one another. When $\lambda_{1}=\lambda_{2}=$ $\cdots=\lambda_{n}, M^{n}$ is totally umbilical and hence a small hypersphere $S^{n}\left(r_{0}\right)$ where $r_{0}=\frac{n}{n+2 \sqrt{n-1}}$. When M^{n} is not totally umbilical, there are exactly $(n-1)$ of λ_{i} 's that are equal to one another. Then from [3] we know that M^{n} is $H(r)$-torus $S^{1}(r) \times S^{n-1}(s)$, where $r^{2}=\frac{1}{\sqrt{n-1}+1}$ and $s^{2}=\frac{\sqrt{n-1}}{\sqrt{n-1}+1}$. This completes the proof of Theorem B.

From Theorem B, we have the following corollary immediately.
Corollary 1 [3]. Let M^{n} be an n-dimensional closed hypersurface with constant mean curvature in S^{n+1}. Then
(1) If $|h|^{2}<2 \sqrt{n-1}, M^{n}$ is a small hypersphere $S^{n}(r)$ of radius $r=$ $\sqrt{\frac{n}{n+|h|^{2}}}$.
(2) If $|h|^{2}=2 \sqrt{n-1}, M^{n}$ is either a small hypersphere $S^{n}\left(r_{0}\right)$ or $H(r)$ torus $S^{1}(r) \times S^{n-1}(s)$, where $r_{0}^{2}=\frac{n}{n+2 \sqrt{n-1}}, r^{2}=\frac{1}{\sqrt{n-1}+1}$ and $s^{2}=$ $\frac{\sqrt{n-1}}{\sqrt{n-1}+1}$.
Corollary 2. Let M^{n} be an n-dimensional closed hypersurface with constant normalized scalar curvature R in S^{n+1}. Suppose $R \geq 1$, then
(1) If $|h|^{2}<2 \sqrt{n-1}, M^{n}$ is a small hypersphere $S^{n}(r)$ of radius $r=$ $\sqrt{\frac{n}{n+|h|^{2}}}$.
(2) If $|h|^{2}=2 \sqrt{n-1}, M^{n}$ is either a small hypersphere $S^{n}\left(r_{0}\right)$ or $H(r)$ torus $S^{1}(r) \times S^{n-1}(s)$, where $r_{0}^{2}=\frac{n}{n+2 \sqrt{n-1}}, r^{2}=\frac{1}{\sqrt{n-1}+1}$ and $s^{2}=$ $\frac{\sqrt{n-1}}{\sqrt{n-1}+1}$.
Proof. From (11),

$$
n^{2} H^{2}-\sum_{i, j} h_{i j}^{2}=n(n-1)(R-1) .
$$

Taking the covariant derivative of the above expression, and using the fact $R=$ constant, we get

$$
n^{2} H H_{k}=\sum_{i, j} h_{i j} h_{i j k}
$$

By Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum_{k} n^{4} H^{2}\left(H_{k}\right)^{2}=\sum_{k}\left(\sum_{i, j} h_{i j} h_{i j k}\right)^{2} \leq\left(\sum_{i, j} h_{i j}^{2}\right) \sum_{i, j, k} h_{i j k}^{2}, \tag{32}
\end{equation*}
$$

that is

$$
\begin{equation*}
n^{4} H^{2}|\nabla H|^{2} \leq|h|^{2}|\nabla h|^{2} . \tag{33}
\end{equation*}
$$

On the other hand, from $R \geq 1$, we have $n^{2} H^{2}-|h|^{2} \geq 0$. Thus

$$
|\nabla h|^{2} \geq n^{2}|\nabla H|^{2},
$$

so Corollary 2 follows from Theorem B.
Acknowledgement. This note was written during the author's stay at the Max-Planck-Institut für Mathematik in Bonn. The author would like to express his thanks to the institute for its hospitality and support.

References

[1] H. Alencar and M. P. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc. 120 (1994), 1223-1229.
[2] S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195-204.
[3] Z. H. Hou, Hypersurfaces in sphere with constant mean curvature, Proc. Amer. Math. Soc. 125 (1997), 1193-1196.
[4] H. B. Lawson, Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2), 89 (1969), 187-197.
[5] H. Li, Global rigidity theorems of hypersurfaces, Ark. Mat. 35 (1997), 327-351.
[6] K. Nomizu and B. Smyth, A formula for Simon's type and hypersurfaces, J. Diff. Geom. 3 (1969), 367-377.
[7] M. Okumuru, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-213.
[8] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) $\mathbf{8 8}$ (1968), 62-105.

LIU XIMIN
DEPARTMENT OF APPLIED MATHEMATICS
DALIAN UNIVERSITY OF TECHNOLOGY
DALIAN 116024
CHINA
E-mail: xmliu@dlut.edu.cn
(Received January 31, 2001)

